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ABSTRACT Saccharomyces cerevisiae rewires its transcriptional output to survive stress-
ful environments, such as nitrogen scarcity under fermentative conditions. Although
divergence in nitrogen metabolism among natural yeast populations has been reported,
the impact of regulatory genetic variants modulating gene expression and nitrogen
consumption remains to be investigated. Here, we employed an F1 hybrid from two
contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis
factors involved in the divergence of gene expression regulation in response to nitro-
gen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of
chromatin accessibility, transcription factor binding, and gene expression through
ATAC-seq (assay for transposase accessible chromatin) and RNA-seq (transcriptome
sequencing). We observed large variability in allele-specific expression and accessibility
between the two genetic backgrounds, with a third of these differences specific to a
deficient nitrogen environment. Furthermore, we discovered events of allelic bias in
gene expression correlating with allelic bias in transcription factor binding solely under
nitrogen scarcity, where the majority of these transcription factors orchestrates the
nitrogen catabolite repression regulatory pathway and demonstrates a cis � environ-
ment-specific response. Our approach allowed us to find cis variants modulating gene
expression, chromatin accessibility, and allelic differences in transcription factor binding
in response to low nitrogen culture conditions.

IMPORTANCE Historically, coding variants were prioritized when searching for causal
mechanisms driving adaptation of natural populations to stressful environments.
However, the recent focus on noncoding variants demonstrated their ubiquitous role
in adaptation. Here, we performed genome-wide regulatory variation profiles between
two divergent yeast strains when facing nitrogen nutritional stress. The open chroma-
tin availability of several regulatory regions changes in response to nitrogen scarcity.
Importantly, we describe regulatory events that deviate between strains. Our results
demonstrate a widespread variation in gene expression regulation between naturally
occurring populations in response to stressful environments.

KEYWORDS yeast, allele-specific, ATAC-seq, nitrogen, regulatory divergence, wine,
fermentation, gene regulation, genetics, natural variation

Uncovering the molecular configurations that underlie gene expression divergence
in adaptation to stressful environments constitutes a relevant genetic quest. The

yeast Saccharomyces cerevisiae provides an excellent genetic model to investigate the
link between the regulatory divergence of sequences and environmental fluctuations
(1). Yeast cells undergo extensive reprogramming of their gene expression profiles to
withstand different environmental stresses; of these, the transcriptional response to
nitrogen scarcity has been comprehensively described (2–5). Yeast fitness strongly
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depends on the availability of preferred nitrogen sources, and changes in such nutri-
tional signals trigger the immediate transcriptional rewiring of nitrogen metabolism. In
yeast, at least four pathways are involved in regulating nitrogen metabolism, with the
nitrogen catabolite repression (NCR) pathway (6) being the main orchestrator of the
response to nitrogen starvation. Importantly, extensive natural variation in nitrogen
consumption (7, 8) and starvation tolerance under wine fermentative conditions (3)
have been found among yeast populations, demonstrating significant divergence in
the regulatory mechanisms involved in the NCR pathway (9).

Yeast strains have different nitrogen consumption profiles, amino acid preferences,
and tolerance to nitrogen scarcity during wine fermentation (7, 10). In general, wine
strains have rapid and efficient nitrogen consumption profiles compared to wild strains
(7, 10–12). In this way, winemaking strains exhibit physiological adjustments to poor
nitrogen environments while displaying good fermentation performance, a feature
that is a hallmark of domestication (10, 13–15). Using quantitative trait locus (QTL)
approaches, several genes involved in differences in nitrogen consumption have been
mapped (3, 7, 9, 16), including important nodes of the NCR pathway such as GTR1,
which encodes a subunit of a TORC1-stimulating GTPase (12) and RIM15, involved in
cell proliferation in response to nutrients (17). Nevertheless, the regulation of gene
expression and the modifying role of polymorphic transcription factors (TFs) in
response to nitrogen scarcity in wine strains remain to be elucidated.

Transcriptional divergence originates from genetic variants, which can be identified
through mapping of expression QTLs (eQTLs) (1, 18). eQTLs might regulate the adja-
cent allele (cis eQTL) or affect one or multiple distant genes (trans eQTL). First-genera-
tion (F1) hybrids constructed from individuals of divergent lineages offer a refined
approach to map cis factors responsible for expression divergence (19–22). In this F1
hybrid setup, the trans component is neglected, as trans eQTLs affect both parental al-
leles in the same way, therefore cancelling potentially different contributions. On the
other hand, cis effects will remain allele specific (23). Moreover, differences in the
expression of each allele (allele-specific expression [ASE]) are explained by the allele's
local variants, which might control the physical accessibility of its promoter or regula-
tory region (24). This could be achieved by modulating the affinity of TF binding sites
or affecting the regulation of the encoded RNA at a posttranscriptional level (25–28).
Numerous studies have extensively quantified ASE in different model organisms (29–
33). However, most of these studies have not incorporated a genome-wide experimen-
tal approach that assesses the cis-regulatory mechanisms underlying allelic expression
variation. Coupling massive mRNA sequencing with assays that cut DNA in vivo at
physically accessible chromatin regions, such as ATAC-seq (assay for transposase acces-
sible chromatin), can portray a whole-genome profile of DNA accessibility to transcrip-
tional regulators (34). In addition, ATAC-seq can also provide a genome-wide survey of
transcription factor binding (TFB), allowing the in silico footprinting of TFB at open
chromatin regions (35). ATAC-seq has been employed in yeast to investigate regulatory
mechanisms driving aging (36), metabolism and cell division (37), pathogenesis (38),
and cold adaptation in an interspecies hybrid (21). Recent studies in mouse crosses
have incorporated assays that profile allelic differences at the transcriptional regulatory
level (39–41), demonstrating the suitability of these techniques to measure allelic
imbalance in the regulation of gene expression.

Herein, we measure allelic imbalance occurring at the level of gene expression,
chromatin accessibility, and TFB in an F1 hybrid between two divergent S. cerevisiae
strains. We evaluated whether differences in nitrogen consumption between a wine-
making strain (DBVPG6765), and an undomesticated strain (YPS128) isolated from an
oak tree were due to cis-regulatory variants modulated through environments differing
in nitrogen availability. We report numerous events of allelic differences in chromatin
accessibility between these two strains, remarkably few of which directly correlate with
ASE. Furthermore, we show that one third of the allelic differences in gene expression
and accessibility occur only under low nitrogen. By performing allele-specific TFB
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footprinting, we reveal TFs that potentially drive allelic expression differences, some of
which have not been previously related to the regulation of nitrogen metabolism.

RESULTS
A differential response to nitrogen scarcity is observed in two divergent yeast

strains. To identify cis-regulatory variants driving gene expression divergence in the
adaptation of yeast to nitrogen scarcity, we performed allele-specific expression and
accessibility (ASE and ASA, respectively) employing RNA-seq (transcriptome sequenc-
ing) and ATAC-seq (assay for transposase accessible chromatin) in a S. cerevisiae cross
(Fig. 1). To construct the F1 hybrid, we selected the DBVPG6765 and YPS128 strains,
hereinafter referred to as WE (Wine European) and NA (North American), respectively.
We chose these two genetic backgrounds due to their extreme nitrogen consumption
profiles reported in former studies (7, 10–12) and the genetic distance between both
strains (on average 1 single-nucleotide polymorphism [SNP] every 148 bp, 0.6%
sequence divergence) allowing us to properly perform allele-specific analyses. Our pre-
vious results demonstrated that the WE strain consumed larger amounts of total yeast
assimilable nitrogen (YAN) under wine fermentation conditions, while NA exhibited
lower yields. To evaluate the response of these two genetic backgrounds to low nitro-
gen, the WE � NA F1 hybrid was grown under low or excess nitrogen concentrations
(SM60 and SM300, respectively; see Materials and Methods).

First, we assessed nitrogen consumption kinetics in the WE � NA hybrid and the pa-
rental strains under both fermentation conditions. We sampled fermentations at an
early time point, i.e., 14 h after synthetic grape must inoculation. Under excess nitrogen
conditions, the parental NA strain exhibited lower consumption levels of total YAN
than the hybrid and WE strains (P value, 1e204, analysis of variance [ANOVA])
(Fig. 2A). Although we did not find higher total YAN consumption in the hybrid, after
examining each nitrogen source, we found that the hybrid strain consumed higher lev-
els of serine and alanine in excess nitrogen compared to both parental strains (P
value, 0.05, ANOVA) (Fig. 2B). We formally estimated heterosis and found that the
consumption of six amino acids had a heterosis coefficient higher than 1 (Fig. 2C).
Among those amino acids that are rapidly consumed in the hybrid, we found all amino
acids transported by Agp1p/Gnp1p (serine, threonine, and glutamine) (Fig. 2C). In con-
trast to excess nitrogen, under low nitrogen conditions, YAN was almost depleted from
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FIG 1 Allele-specific expression and chromatin accessibility profiling to reveal molecular mechanisms orchestrating gene
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(North American) lineages of S. cerevisiae were selected to construct a WE � NA hybrid which was used to perform fermentations
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the media after 14 h of fermentation, particularly by the WE and WE � NA strains, with
the NA strain exhibiting lower total YAN consumption (P value, 0.05, ANOVA, Fig. 2A).
In addition, we found differences in the consumption kinetics for 14 amino acids when
comparing the hybrid and the two parental strains (P value, 0.05, ANOVA), together
with heterosis in valine consumption (Fig. 2B and C). After 14 days of fermentation, the
three genetic backgrounds showed no differences in their fermentation performance
under excess nitrogen (Fig. 2D), though under low nitrogen conditions, the NA strain
had the lowest total CO2 loss (P value WE 2 NA= 0.01; P value WE � NA 2 NA=0.09,
ANOVA), which indicates a stronger negative effect of nitrogen scarcity on the fermen-
tation performance of the NA strain and nitrogen starvation stress (10, 42).
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Furthermore, low nitrogen affected all strains’ fermentation kinetics compared to excess
nitrogen culture conditions, diminishing the maximum fermentation speed by 63%, 58%,
and 60% in NA, WE, and WE� NA strains, respectively (Fig. 2E). These results demonstrate
that the genotype affects fermentation performance during nitrogen scarcity and suggest
a dominant inheritance of efficient nitrogen consumption in yeast.

Low correlation between gene expression and chromatin accessibility in
response to fermentation under low nitrogen. We collected mRNA from the WE �
NA hybrid after 14h of fermentation under low or excess nitrogen culture conditions. We
chose this time point due to the primary consumption of preferred nitrogen sources
under excess nitrogen (NCR suppressed state) and the complete YAN consumption under
low nitrogen, likely triggering a nitrogen starvation stress response (NCR active state).
Hence, significant differences in gene expression and regulation between environments
and genetic backgrounds were expected (Fig. 2B) (10, 42). We found a total of 3,719 DEGs
(differentially expressed genes) between conditions, of which 1,842 and 1,877 were up-
regulated or downregulated, respectively, in response to low nitrogen (false discovery
rate [FDR] of,0.05 [see Table S1a in the supplemental material]). Among the upregulated
genes, we found 69 DEGs previously classified as NCR sensitive (43). Interestingly, 21 of
these NCR-sensitive genes were determined among the top 30 genes that were most
induced by low nitrogen (Table S1b). Enriched biological processes among low nitrogen
induced genes were related to transport, energy generation, detoxification, and oxido-
reduction (Table S2a), while genes associated with ribosomal biogenesis were signifi-
cantly enriched among downregulated genes (Table S2b).

To profile the chromatin accessibility landscape in response to low nitrogen, we per-
formed ATAC-seq in hybrid replicates collected in the aforementioned culture conditions
(for ATAC-seq quality control [QC] plots, see Fig. S1 in the supplemental material). First,
we assessed the correlation between gene expression and chromatin accessibility. We
found a significant, though moderate correlation (Spearman R=0.28 and R=0.30 for
excess and low nitrogen, respectively; P value, 1e299), between the amount of gene
expression (reads per kilobase per million [RPKM]) and the corresponding ATAC-seq sig-
nal up to 1,000bp upstream of the transcript start site (TSS). A sliding window analysis
showed that the highest and most significant correlation between gene expression of a
given gene and its nearest ATAC-seq signal differed between nitrogen levels (Fig. 3A). In
particular, for excess nitrogen, we found a narrower signal region upstream of the TSS
(2350 to 250bp, Spearman R=0.32, P value, 1e2135), while we estimated a wider
region for low nitrogen (2400 to 150bp, Spearman R=0.33, P value, 1e2140) (white
squares in Fig. 3A). These results show that different segments within the gene’s regula-
tory regions respond to changing nitrogen concentrations. For the analyses shown here-
after, to evaluate the corresponding ATAC-seq signal, we considered a regulatory region
of 400bp upstream of the TSS of each gene. We based the selection of the regulatory
region size on two reasons. (i) It correlates well with gene expression under low and
excess nitrogen conditions. (ii) Another study previously used a similar region size (44).

By analyzing 5,625 regulatory regions, we found an increase in chromatin accessibility
in 376 differentially accessible regions (DARs) and a decrease in 875 DARs (FDR, 0.05)
under low nitrogen conditions, representing 22.2% of the analyzed regions (Fig. 3B and
Table S1). Generally, chromatin accessibility fold changes between conditions were lower
in absolute magnitude for DARs (mean j log2 fold change [FC] j = 0.38) than those expres-
sion fold changes observed for DEGs (mean j log2 FC j = 0.95) (P value=0.001, Mann-
Whitney-Wilcoxon test, Fig. 3C). We found that regions regulating genes involved in glu-
cose transport and urea metabolism were less accessible under low nitrogen conditions
(Table S2c), while regions regulating genes involved in the metabolism of nonpreferred
nitrogen sources were more accessible when subjected to nitrogen scarcity (Table S2d).

We examined whether differential gene expression between conditions correlated
with chromatin accessibility. We found that 444 DEGs and DARs showed downregulation
and lower accessibility, and conversely, an induction in transcript levels with higher chro-
matin accessibility. Downregulated genes within this positively correlated set were
enriched in processes related with cytoplasmic translation and vitamin biosynthesis,
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while upregulated genes were enriched for catabolism of allantoin and glyoxylate
(Fig. 3D). In contrast, a large number of DEGs related with ribosome biogenesis showed
no differences in accessibility at their regulatory regions across nitrogen conditions, de-
spite being concertedly less expressed in response to low nitrogen (Fig. S2A). In addition,
among non-DEGs, we found differential accessibility in genes related with sugar trans-
port (Fig. S2B). These results indicate that approximately 12% of gene expression differ-
ences in the yeast genome positively correlated with chromatin accessibility differences
between conditions. We would like to highlight that RNA-seq and ATAC-seq experiments
were performed independently, although carefully sampling after the same period of
time. Still the absence of correlation between gene expression fold changes and chroma-
tin accessibility has been previously observed in yeast (21, 45). In summary, chromatin
accessibility results complement those obtained by RNA-seq by providing novel evi-
dence of regulatory rewiring under contrasting nitrogen conditions.
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Allele-specific expression and chromatin accessibility under excess and low
nitrogen conditions. We compared the transcriptional response to low nitrogen of
each parental genome within a shared (WE � NA) trans environment. We found that
parental genomes display a highly similar transcriptional response to low nitrogen
(Pearson R=0.911, P value, 2.2e216), although differences in ASE could still be
found. Therefore, we investigated ASE by performing a binomial test of read counts at
21,647 SNPs in 3,923 genes (1,732 genes did not have SNPs or only had SNPs with
fewer than 10 counts). Differential ASE was determined in 543 genes, of which 147 and
245 were solely found in excess nitrogen and low nitrogen, respectively, while 153
were significant under both conditions (Fig. 4A and B and Table S3), the majority of
which (152) maintained the ASE direction, i.e., bias in expression favored the same ge-
notype in both conditions. Allelic ratios in both conditions were correlated (Pearson
R=0.69, P value, 1e215), although they were lower than those described in other
ASE assays in yeast (22, 46). Accordingly, a significant portion of ASE differences in
yeast under contrasting nitrogen conditions are dependent on the cis-genotype �
environment interaction, rather than primordially on the cis-genotype configuration.

Further dissection of the ASE of strongly upregulated genes under low nitrogen
conditions (FC. 3, 251 DEGs) allowed us to identify key variants involved in NCR. For
example, we found high WE allelic expression compared to the NA variant for the
amino acid permeases GAP1 and PUT4 and for the ammonium permease MEP2
(Fig. 4B). In contrast, the NA allele encoding the NCR-sensitive allantoate transporter
(DAL5) showed a strong bias in expression compared to the WE allele. These results
indicate that genetic variants in ammonium and specific amino acid permeases are
overexpressed in wine strains when facing nitrogen scarcity, putatively due to cis-regu-
latory variants.

To assess these differences, allele-specific accessibility was determined in each pa-
rental genome in response to low nitrogen within the shared trans environment
(Fig. 1C). Interestingly, we found a moderate correlation between the chromatin acces-
sibility response of both parental genomes (Pearson R = 0.529, P value, 1e215),
which was lower than that found for the gene expression response, suggesting a
greater impact of environmentally dependent differences in cis regulation acting on
chromatin accessibility than on gene expression. We tested allelic imbalance in chro-
matin accessibility (binomial test) and were able to quantify ASA in 15,333 SNPs
belonging to 4,822 regulatory regions. A total of 252 regions exhibited differential
ASA, and from this, 113 and 69 regulatory regions showed ASA under either low or
excess nitrogen, respectively (Table S3). ASA was moderately correlated between nitro-
gen conditions (Pearson R=0.61, P value, 1e215), similar to what was found for ASE.
Importantly, all regions that showed ASA in both conditions (70 in total) maintained
the imbalance direction, i.e., bias in accessibility favored the same genotype in both
conditions (Fig. 4C). Among enriched biological processes in regions that showed ASA
in low nitrogen, we found more accessible regulatory regions associated with the
expression of aldehyde metabolic process genes and the response to oxidative stress
in the WE and NA genomes, respectively (Table S4c and S4d).

Taking the differential ASE and ASA data sets together, we assessed the intersection
between them under each condition. Under excess nitrogen, 13 genes displaying ASE
also showed ASA in the same direction, while 5 genes showed ASA in the opposite
direction (Fig. 4D). Moreover, under low nitrogen, 28 genes showed ASE and ASA in
the same direction, while 10 displayed ASA and ASE in opposite directions (Fig. 4E).
Overall, these results indicate a convergence between ASA and ASE in 41 genes, where
open chromatin alleles had greater expression levels. However, only 5% and 9% of
genes in ASE coincided with allelic imbalance in accessibility occurring in the same
direction in excess or low nitrogen, respectively, while the large majority of genes
exhibiting ASE did not show ASA levels and vice versa. These results suggest that addi-
tional regulatory mechanisms, such as differences in TFB, could influence differences in
allelic expression.
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Allelic imbalance in transcription factor binding reveal environment-dependent
regulatory mechanisms driving gene expression divergence. To explore the link
between TFB and allele-specific expression differences occurring in the WE � NA
hybrid, we used ATAC-seq to infer TFB and generate genome-wide binding scores for
141 TFs. First, we inspected fold changes of TFB scores in the hybrid across conditions,
discovering a strong correlation with ATAC-seq fold changes (Pearson R=0.71, P
value, 1e2130) (Fig. 5A). However, no overall correlation between fold changes of
TFB scores and gene expression differences between conditions was found (Pearson
R=0.072, P value 1.58e231) (Fig. 5A), suggesting a complex interplay between global
TFB and gene expression, while also evidencing a direct effect of chromatin accessibil-
ity on TFB scores. We reexamined the correlation between TFB scores and gene expres-
sion, but this time individually for each TF. In this way, we found a significant correla-
tion for 11 out of 141 TFs (Pearson R. 0.2, FDR, 0.1) (Table S5a). The Cst6p TF
showed the highest correlation between TFB and gene expression (Pearson R=0.36,
FDR= 0.03) (Fig. 5B). Cst6p encodes a basic leucine zipper TF involved in the stress
response (47), and our results suggest a role for Cst6p in response to low nitrogen con-
ditions. Moreover, for all TFs tested, the binding scores were highly correlated with
their ATAC-seq fold changes, ranging from Dal80p (Pearson R=0.882, FDR= 3.08 e-25)
to Fkh2p (Pearson R=0.50, FDR= 3.14 e26) (Table S5a).

Next, we inferred allele-specific binding (ASB) by estimating the TFB scores for each
parental strain (Fig. 1E). We found a significant correlation between ASB and ASA (for
low nitrogen; Pearson R=0.53, P value, 1e2130). However, no genome-wide correla-
tion was found between ASB and ASE under any condition (for low nitrogen; Pearson
R=0.09, P value = 4.36e247). As previously done with the hybrid TFB scores, we also
decided to inspect the correlation between ASB and ASE for each TF individually
(Table S5b). Under low nitrogen, we observed that the allele-specific binding for six
TFs correlated with ASE of their target genes (Pearson R. 0.2, FDR, 0.05). Among
them, we found three out of the four GATA-type zinc finger TFs that participate in NCR
regulation; i.e., Gat1p, Dal80p, and Gzf3p (Fig. 5C and Table S5b). Together with Gln3p,
these GATA TFs share very similar binding motifs (shown in Fig. 5C), which suggest
that these correlations might not be specific for any of these TFs in particular. In the
case of Gln3p, a shorter and less informative GATA motif was used, which substantially
increased the number of predicted binding sites compared to those of the other GATA
factors, suggesting a stronger influence of false-positive binding sites on the lack of
correlation between Gln3p ASB and the ASE of its target genes under low nitrogen
(Pearson R= 0.09). We cross-referenced our Dal80p in silico binding data under nitro-
gen scarcity with a Dal80p chromatin immunoprecipitation-DNA sequencing (Chip-
seq) data set performed under a similar stress condition (43), and found a strong agree-
ment for Dal80p binding at 36 (53%) of 67 predicted bound promoters.

In addition to GATA factors, we found that Skn7p, Swi4p, Tos8p, Yap5p, Tod6p,
and Yox1p TFs had a significant correlation between ASB and ASE under low nitro-
gen (Table S5b). When nitrogen is not limited, we found a significant correlation
between ASE and ASB solely for Yap5p and Swi4p (Pearson R. 0.2, FDR, 0.1), and
specifically for this condition for Yap7p (Table S5b). These results suggest a role for
TFs that have not previously been associated with nitrogen metabolism in the adap-
tation of winemaking strains to nitrogen scarcity in grape must. Nevertheless, we
expect that the significant correlations found between ASB and ASE were con-
founded by the allele-specific ATAC-seq signal, which prompted us to evaluate our
ASB data in more detail.

FIG 4 Legend (Continued)
maintained between conditions, while red bars indicate that allelic ratios were inverse between conditions. (B) The bar plots show the expression ratio
of genes with significant ASE and induced by SM60 (FDR, 0.05, log2 fold change. 3). Genes with allelic ratios higher than 0.5 had higher expression
of the WE allele, while genes with allelic ratios lower than 0.5 had higher expression of the NA allele. Blue bars indicate genes that also showed
differential ASA in the same direction of ASE, i.e., bias favoring the same genotype in accessibility and expression. (C) Upset plot showing the numbers
of regulatory regions in differential ASA in SM300 and SM60 and the intersection across conditions. (D and E) The upset plot shows the number of
differential ASE and ASA in SM300 (D) and SM60 (E), and the intersection of these within the same condition.
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We tested for significant differences in ASB (see Materials and Methods) and found
that 623 out of 27,370 binding sites were differentially bound in both conditions
(Fig. 5D and Table S5c and S5d). Furthermore, 513 (22%) and 293 (25%) of the binding
sites displaying ASB overlapped with a SNP under low or excess nitrogen, respectively.
This represents a higher proportion than that observed for all tested binding sites
(16%), suggesting that binding sites cooccurring with SNPs were more likely to be dif-
ferentially bound (chi-square test, P value = 7.3e218).

Next, we wanted to identify TFs that are differentially bound to the WE or NA allele
that might drive ASE in the absence of chromatin accessibility differences. Hence, we
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focused our ASB analysis on those regulatory regions in which we did not find ASA,
but their genes showed ASE. Under low nitrogen conditions, of the 311 genes that
showed ASE (but not ASA), we found 55 regulatory regions displaying ASB, represent-
ing 17% of the ASE differences (Fig. 5E, FDR, 0.1). Also, 247 genes showed ASE but
not ASA in excess nitrogen; of those, 30 showed ASB at their regulatory regions
(Fig. 5E, FDR, 0.1). Moreover, many of the binding sites showing ASB did not alter
allelic expression (Fig. 5E). These results demonstrate the additional contribution of
ASB in the absence of ASA toward differences in allelic expression under low nitrogen
conditions.

Identification of cis-acting variants driving allelic expression differences in
response to nitrogen scarcity. We inspected in detail those DEGs whose expression
was upregulated or downregulated by low nitrogen in the hybrid context, which also
exhibited ASB and ASE but not ASA. We observed ASB in 23 and 13 regulatory regions,
respectively, in DEGs induced or repressed under low nitrogen (Fig. 6A and Fig. S3,
induced and repressed in low nitrogen, respectively). As an example of a binding site
cooccurring with a SNP and displaying ASB, we show the TFB site for the transcrip-
tional repressor Mot2p localized at the regulatory region of the HXK1 gene, which enc-
odes a hexokinase that phosphorylates hexoses for subsequent glycolysis (Fig. 6B). We
found a 1.2-fold-higher binding for the WE allele than for the NA allele (FDR 0.08), con-
sistent with higher expression of the HXK1-NA allelic variant under low nitrogen. The
causal variant could be a SNP (A.G) affecting the binding motif of Mot2p in the NA
genome. Another example is shown for a differentially bound region in the promoter
of STF1, which codes for an accessory protein involved in the inhibition of the F1F0-ATP
synthase complex, at which the binding sites of Gln3p and Pho2p colocalize with a
SNP that might drive allelic differences in expression found for the STF1 gene (Fig. 6C).
Among downregulated DEGs, we observed differential binding at the motifs for the
TFs Msn2p, Msn4p, and Rgm1p present in the promoter of THI4, which is involved in
thiamine biosynthesis (Fig. S3B).

As an example of a binding site that is relatively far from a putative causal SNP but
that exhibits large allelic binding differences, we found in the MEP2 regulatory region
(which encodes a ammonium permease) two sequentially occurring GATA-like sites for
Gln3p, both of which showed higher binding scores for the WE allele than for the NA
variant (1.93-fold higher in WE under low nitrogen, FDR, 0.003, Fig. 6D), coincident
with the higher expression of the MEP2-WE allele under the same culture condition.
Importantly, MEP2 was highly induced under low nitrogen, and the allelic differences
in binding and expression were significant only under limited nitrogen.

In summary, our results demonstrate that the specific identification of allele-specific
TFB, together with differences in chromatin accessibility, can shed light onto novel mo-
lecular targets and mechanisms driving phenotypic differences between yeast strains.

DISCUSSION

In this work, we describe genome-wide allelic imbalance events at three levels—gene
expression, chromatin accessibility, and transcription factor binding—which allowed us
to expose cis mechanisms driving the adaptation to low nitrogen fermentation in wine-
making yeast. The transcriptional response of the WE � NA hybrid to low nitrogen
resembled that of other studies of yeast under nitrogen stress (10, 43, 48, 49). However,
the numerous differences found in allele-specific expression (ASE) and accessibility (ASA)
suggest widespread variation in cis mechanisms regulating nitrogen metabolism among
natural yeast populations. We found large differences in the gene expression and chro-
matin accessibility profiles in response to nitrogen scarcity, even though both strategies
provided similarly enriched functional annotations among the concertedly regulated
genes. We hypothesize that differences in accessibility translate into differences in gene
expression at distinct times depending on the pathway involved. For example, we found
increased accessibility and expression for genes associated with metabolism of nonpre-
ferred nitrogen sources (e.g., allantoin and carnitine). In contrast, we found less accessibil-
ity in six genes encoding hexose transporters without the involvement of differential
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gene expression, which could still have occurred at an earlier or later time point during
fermentation. Several hexose transporters are downregulated under nitrogen starvation
during wine fermentation (50), with the exception of the hexose transporter HXT5 (51),
for which we also report increased accessibility and expression under low nitrogen. In
addition, we found that several ribosome biogenesis genes were expressed less under
low nitrogen, but this response was absent when we inspected accessibility at their pro-
moters, suggesting that this group of genes is regulated by mechanisms other than chro-
matin organization. In fact, the gene expression output that we measured (mainly proc-
essed mRNA) can be influenced by mechanisms other than chromatin accessibility,
including transcription rate (52), mRNA turnover (53), and by regulatory elements such as
TFs and noncoding RNAs (33).

Nitrogen availability is essential for a complete wine fermentation, and nitrogen
scarcity affects yeast biomass (54), fermentation performance, and time to complete
fermentation (3, 55). The domestication process selected wine yeasts to withstand
nitrogen scarcity stress while still maintaining good fermentation performance (14).
For instance, ammonium is an excellent nitrogen source for yeast growth and is rapidly
consumed at early stages, but only if the concentration of other preferred nitrogen
sources such as glutamine is low (42). Here, we found that the ammonium permease
MEP2 was highly induced under low nitrogen while also showing significant allelic bias
favoring the WE allele. Our findings indicate that differential binding of Gln3p (or other
GATA-like TFs) at the MEP2 promoter might explain differences in allelic expression in
the absence of differential chromatin accessibility, in agreement with Gln3p being a
crucial regulator of MEP2 expression (56). A similar case was found for the nonpreferred
nitrogen source proline, in which the transporter encoded by the PUT4 gene was found
in allelic bias favoring the WE allele, again in the absence of differences in chromatin
accessibility. This finding is interesting, since proline cannot be assimilated under oxy-
gen-deprived conditions (57). Indeed, oxygenation has a significant effect upon wine
fermentation, accelerating the fermentation rate and impacting the production of vola-
tile compounds (58). Additionally, we found that the allantoate permease DAL5 has a
strong allelic bias favoring the NA strain. Allantoate is absent in wine must (59), and
our results point to cis regulation orchestrating low priority uptake of allantoate in the
WE background. Summarizing, the expression of genes involved in nitrogen transport
was frequently found in allelic bias, in particular when cells suffered nitrogen scarcity.
The expression of these transporters is mainly controlled by two pathways, the NCR
and the SPS (Ssy1-Ptr3-Ssy5) sensor system, which are differentially activated depend-
ing on nitrogen availability. In wine fermentation, the SPS pathway maximizes the
uptake of preferred nitrogen sources by inducing the expression of their specific per-
meases (42). On the other hand, the NCR pathway represses generic permeases and
those involved in internalizing poor nitrogen sources, but under nitrogen insufficiency
such repression is released by NCR deactivation (42). To highlight the involvement of
these two pathways in the allelic differences in expression and regulation found
among genes encoding nitrogen-compound permeases, we show a summary of our
findings in Fig. 7.

As highlighted herein, our results indicate an important participation of GATA TFs
in cis-regulatory divergence driving physiological differences under low nitrogen fer-
mentation. Regions containing GATA motifs were more likely to have higher allele
accessibility and/or allelic binding, an observation that correlates with higher allelic
expression. Importantly, this link between imbalance in allelic expression and regula-
tion was significant only under nitrogen stress, highlighting the role of environmental
fluctuations on cis-acting causal variants driving eQTLs. In addition, we identified sev-
eral binding motifs affected by variants that might constitute causal polymorphisms
driving differential allelic expression. Certainly, allele-specific binding data obtained
from digital TF footprinting serves to identify chromatin regions likely containing
causal variants driving differences in allelic expression. Here, we compared two genetic
backgrounds in a hybrid context under controlled laboratory conditions; hence,
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mechanistic conclusions should be taken cautiously. These candidate regions that con-
tain cis-regulatory variants could be subjected to future experimental validation, such
as precise genome editing or allele swap, to validate their role in determining pheno-
typic differences.

In conclusion, we demonstrate that joint allele-specific profiling of chromatin acces-
sibility and gene expression of a divergent yeast cross unveil regulatory dynamics driv-
ing a considerable portion of transcriptome divergence. Our findings determine the
contribution of chromatin organization toward allelic differences in expression.
Importantly, we detected that allele-specific TF binding adds a layer of regulation in
the absence of differences in promoter accessibility. Our results improve our under-
standing of cis-regulatory elements’ role on nitrogen regulation and starvation adapta-
tion in winemaking yeast.

MATERIALS ANDMETHODS
Yeast strains and culture conditions.We used S. cerevisiae strains DBVPG6765 (hereinafter referred

to as Wine European [WE]) and YPS128 (hereinafter referred to as North American [NA]), as previously
described (60, 61). An F1 hybrid (WE � NA) was constructed by mating haploid strains of opposite mat-
ing types of WE (MATa hoD::NatMX ura3D::KanMX) and NA (MATa hoD::HphMX ura3D::KanMX), which had
been generated previously (61).

Fermentations were performed in synthetic wine must (SM) following the recipe in reference 10 with
modifications (see Table S6 in the supplemental material). Two SMs containing different yeast assimilable
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nitrogen (YAN) concentrations were used for fermentations, i.e., SM300 (300mg/ml YAN [excess nitrogen])
and SM60 (60mg/ml YAN [low nitrogen]).

Fermentation assays. Precultures were started from single colonies collected from YPD plates.
These cultures were grown for 48 h in 50-ml Falcon tubes containing 10ml of SM60 or SM300 at 28°C
under constant agitation (250 rpm). From these precultures, 1� 106 cells/ml were inoculated into 50ml
of SM60 or SM300 for fermentation. We conducted fermentations in at least three biological replicates
in 250-ml bottles sealed with a drilled rubber stopper coupled to an airlock filled with 80% glycerol to
allow for CO2 release. A 100-mm cannula was inserted into the rubber stopper to perform periodical
sampling. All components were autoclaved, and fermentors were assembled under sterility inside a flow
cabin. Fermentations were performed under constant agitation using magnetic stirring at 25°C. Must
samples were collected by obtaining 0.5 to 1ml of fermented SM. Fermentation kinetics were monitored
by manually weighing the fermentors to determine CO2 release every 2 days.

High performance liquid chromatography. Samples obtained from fermentations were processed
for quantification of amino acids using high performance liquid chromatography (HPLC) (Shimadzu,
USA) with a Bio-Rad HPX-87H column (62). Briefly, 100 ml of filtered must was incubated with 3 ml of
diethyl ethoxymethylenemalonate (DEEM) (Sigma-Aldrich catalog no. 87-13-8) for 30min in a sonication
bath at room temperature in a solution containing 580 ml of borate buffer (pH 9) and 250 ml of metha-
nol. After sonication, samples were incubated for 2 h at 70°C. After the derivatization reaction, 20 ml of
the processed samples was injected into a Shimadzu Prominence HPLC (Shimadzu, USA). The concentra-
tion of each amino acid was calculated using a calibration curve obtained from sequential dilutions of
nonfermented SM.

RNA extraction and sequencing. Yeast cells of the WE � NA hybrid were collected for RNA sequenc-
ing after 14h of fermentation in SM300 or SM60 in triplicates. Yeast cells were washed three times with
phosphate-buffered saline (PBS) buffer, and total RNA was extracted following a hot-formamide protocol
(63). RNA in formamide was treated with DNase I (Promega, USA) to remove genomic DNA traces and puri-
fied using the GeneJET RNA Cleanup and Concentration Micro kit (Thermo Fisher Scientific catalog no.
K0841). RNA integrity was confirmed using a Fragment Analyzer (Agilent, USA). The RNA-seq libraries were
constructed using the TruSeq RNA Sample Prep kit v2 (Illumina, USA). Sequencing was conducted using
paired-end 100-bp reads on an Illumina HiSeq in a single lane for all samples.

ATAC-seq assay and sequencing. For ATAC-seq, fermentations of the WE and NA parental strains,
together with the WE � NA hybrid, were performed in duplicates, and cells in SM60 and SM300 were
sampled after 14 h. Cells were quantified using a Neubauer counting chamber. Five million haploid WE
and NA cells and 2.5 million diploid WE � NA cells were spun down (1.8 � g for 4min at room tempera-
ture) and washed twice using SB buffer (1 M sorbitol, 10mM MgCl2, 40mM HEPES [pH 7.5]). Cells were
treated with 50mg/ml of zymolyase 20T (Euromedex UZ1000-A) in 200 ml of SB for 30min at 30°C, after
which cells were washed two times with SB buffer. Immediately after, cells were incubated for 30min at
37°C in 50 ml of transposition mix, containing 25 ml Nextera Tagment DNA Buffer (Illumina catalog no.
15027866), 22.5mL H2O, and 2.5 ml Nextera Tagment DNA enzyme I (Illumina catalog no. 15027865).
Subsequently, DNA was purified using the DNA Clean and Concentrator-5 kit (Zymo Research D4003)
following the supplier's instructions.

Tagmented DNA was amplified and barcoded using Nextera Index i5 and i7 series PCR primers. The
PCR consisted of 25 ml NEBNext Hi-Fidelity 2� PCR Master Mix (New England Biolabs catalog no. NEB.
M0541S), 7.5 ml H2O, 6.25 ml i5 primer (10mM), 6.25 ml i7 primer (10mM), and 5 ml tagmented DNA. PCR
cycles were set as follows: 1 cycle of 72°C for 5min; 1 cycle of 98°C for 30 s; 8 cycles with 1 cycle consist-
ing of 98°C for 10 s, 63°C for 30 s, and 72°C for 1min. Subsequently, the amplified ATAC-seq library was
subjected to double-sided size selection using magnetic beads (AMPure XP; Beckman Coulter catalog
no. BC-A63880). First, 50 ml of the library was incubated with 20 ml of beads (0.4�), after which the su-
pernatant was collected. Subsequently, a left-side selection was performed by incubating the library
with 1.1� of beads, after which the supernatant was discarded. DNA bound to the beads was washed
twice with freshly made 80% ethanol and then eluted in 20 ml of H2O. Library quality was assessed using
a Fragment Analyzer (Agilent, USA) and quantified in Qubit (Thermofisher, USA). Sequencing was con-
ducted using paired-end 75-bp reads on an Illumina NextSeq 500.

Allele-specific read mapping. To estimate allele-specific counts derived from RNA-seq and ATAC-
seq reads and to account for the mapping of SNP-informative reads, we modified the S. cerevisiae refer-
ence genome (R64-1-1) using SNPsplit (64). Genome-wide SNP data from the WE and NA strains were
obtained from the Saccharomyces Genome Resequencing Project (65). These data were used to replace
the reference genome nucleotide sequence at 17,425 sites, in which the same genotype occurs for these
two strains, but differed against the S288c reference strain. Next, the modified reference sequence was
masked at 81,169 polymorphic sites between the NA and WE strains. A genome index was built using
Bowtie2 (66) and then used to map ATAC-seq and RNA-seq reads in the WE � NA hybrid (using Bowtie2
option “very-sensitive”). Before allele-specific mapping, sequencing reads were processed using fastp
(67) to trim low quality 39 ends (Q, 20) and to exclude reads shorter than 36 bp (-A, disable automatic
adaptor trimming; -3, trimming by quality at 39 end; -l 36, min length of 36 bp). Alignments containing
all hybrid mapped reads were used for differential analysis of gene expression and chromatin accessibil-
ity of the WE � NA hybrid response to low nitrogen. Furthermore, SNPsplit was used to divide the hybrid
alignments in two bam files, each containing only SNP-informative reads corresponding to either paren-
tal background (approximately 16 to 22% of the total mapped reads for each parent [Table S7]). These
allele-specific alignment files were used to evaluate the response (gene expression, chromatin accessibil-
ity, and TF binding) of each parental genome to low nitrogen.
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Hybrid RNA-seq analysis. RNA-seq read counts per gene in the WE � NA hybrid were obtained
from bam alignments using featureCounts (68) and the modified R64-1-1 genome annotation
(ENSEMBL, release date 2018-10). Genes with at least 30 read counts across the three replicates under at
least one condition were selected for further statistical analysis (5,625 out of 6,534 genes). The differen-
tial transcriptome response of the WE � NA hybrid to low nitrogen (SM60) was estimated using DESeq2
(69) (design=; condition).

ATAC-seq data analysis. ATAC-seq read alignments were processed as follows. (i) PCR duplicates
were identified and removed using Genrich (github.com/jsh58/Genrich). (ii) Reads mapped to blacklisted
regions were removed (i.e., mitochondrial genome, ribosomal genes in chromosome 12, and subtelo-
meres). (iii) Only properly paired mapped reads (mates mapped to the same chromosome, pairs mapped
in convergent direction) were kept using sambamba (70). ATAC-seq coverages around the transcription
start site (TSS) of those genes that passed RNA-seq count filters were obtained using deepTools
computeMatrix (10-kb bins) and plotHeatmap (71), which were then further processed for plotting with
the ComplexHeatmap R package (72). TSSs were obtained from reference 73. Correlations between
ATAC-seq coverage (RPKM) and gene expression (RPKM) were calculated using the cor R package
(method = “spearman”). To match genes with their nearby ATAC-seq signal, we selected a regulatory
region 400 bp upstream of the TSS for each gene. For 224 genes that lacked an annotated TSS, we used
the transcript start as TSS. The ATAC-seq signals of 5,625 regulatory regions were quantified by counting
mapped reads using featureCounts. Differential responses in ATAC-seq in the WE � NA hybrid to low
nitrogen (SM60) were estimated using DESeq2 (design=; condition).

Allelic imbalance analyses of RNA-seq and ATAC-seq data. To test for differential allelic imbalance
in chromatin accessibility or gene expression, we used the R package MBASED on allele counts (74).
Counts at each SNP were obtained using ASEReadCounter employing the pipeline described in refer-
ence 77. We excluded those SNPs from one parent that overlapped with an indel of the other parental
strain and those that fell within low mappability regions of either parent (determined after mapping pa-
rental DNA-seq reads to the reference genome). Besides, only SNPs with at least five counts in both
parents in SM300 or SM60 were retained for further analysis. Allelic counts were obtained by summing
up SNP read counts at regulatory regions (ATAC-seq) or genes (RNA-seq). A binomial test implemented
in MBASED was used to statistically evaluate allelic imbalance. Genes or regulatory regions with an
adjusted P value (Benjamini-Hoch [BH] correction) lower than 0.05 in at least two replicates were consid-
ered to display significant allelic imbalance.

Allele-specific transcription factor binding analyses from ATAC-seq footprints. Analysis of allele-
specific transcription factor binding (TFB) from ATAC-seq footprints was performed using TOBIAS (78).
Briefly, ATAC-seq alignments of the WE � NA hybrid were used to obtain Tn5 cut sites which were cor-
rected for cutting bias by TOBIAS ATACorrect. The binding signal per site was calculated using TOBIAS
ScoreBigWig (–fp-min 5 –fp-max 30) for 5,401 regulatory regions. To calculate TFB, we obtained binding
motifs for 141 yeast TFs from the JASPAR database (75). Based on this, TFB was quantified at motifs
occurring in the regulatory regions by TOBIAS BinDetect. Binding scores were further processed in R. To
evaluate differences in binding scores, we used a linear model implemented by the limma R package
(76). We excluded from this analysis those TFs that showed low expression in SM300 or SM60
(RPKM, 5), and motif sites that were not considered by TOBIAS as “bound” in any condition. We consid-
ered binding differences with a FDR, 0.1 as statistically significant. For the analysis of allele specific TFB,
allele-specific mapped reads were identified with SNPsplit (see above). Allele-specific alignments were
further processed for TOBIAS analyses, as previously indicated for the hybrid. In allele-specific analysis,
we excluded motifs located at regions having low ATAC-seq coverage after SNP splitting. Total and al-
lele-specific alignment statistics are provided in Table S7.

Data availability. RNA-seq and ATAC-seq raw reads are available in SRA under the project
PRJNA705961.
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