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Abstract: (1) Background: Current vestibular rehabilitation therapy is an exercise-based approach
aimed at promoting gaze stability, habituating symptoms, and improving balance and walking
in patients with mild traumatic brain injury (mTBI). A major component of these exercises is the
adaptation of the vestibulo-ocular reflex (VOR) and habituation training. Due to acute injury, the gain
of the VOR is usually reduced, resulting in eye movement velocity that is less than head movement
velocity. There is a higher chance for the success of the therapy program if the patient (a) understands
the exercise procedure, (b) performs the exercises according to the prescribed regimen, (c) reports
pre- and post-exercise symptoms and perceived difficulty, and (d) gets feedback on performance.
(2) Methods: The development and laboratory evaluation of VestAid, an innovative, low-cost, tablet-
based system that helps patients perform vestibulo-ocular reflex (VORx1) exercises correctly at
home without therapist guidance, is presented. VestAid uses the tablet camera to automatically
assess patient performance and compliance with exercise parameters. The system provides physical
therapists (PTs) with near real-time, objective (head speed and gaze fixation compliance), and
subjective (perceived difficulty and pre- and post- exercise symptoms) metrics through a web-based
provider portal. The accuracy of the head-angle and eye-gaze compliance metrics was evaluated.
The accuracy of estimated head angles calculated via VestAid’s low-complexity algorithms was
compared to the state-of-the-art deep-learning method on a public dataset. The accuracy of VestAid’s
metric evaluation during the VORx1 exercises was assessed in comparison to the output of an inertial
measurement unit (IMU)-based system. (3) Results: There are low mean interpeak time errors
(consistently below 0.1 s) across all speeds of the VORx1 exercise, as well as consistently matching
numbers of identified peaks. The spatial comparison (after adjusting for the lag measured with the
cross-correlation) between the VestAid and IMU-based systems also shows good matching, as shown
by the low mean absolute head angle error, in which for all speeds, the mean is less than 10 degrees.
(4) Conclusions: The accuracy of the system is sufficient to provide therapists with a good assessment
of patient performance. While the VestAid system’s head pose evaluation model may not be perfectly
accurate as a result of the occluded facial features when the head moves further towards an extreme
in pitch and yaw, the head speed measurements and associated compliance measures are sufficiently
accurate for monitoring patients’ VORx1 exercise compliance and general performance.

Keywords: vestibular rehabilitation; VORx1 exercises; dizziness; exercise monitoring; telemedicine

1. Introduction

An estimated 35.4% of adults in the United States have some kind of vestibular dys-
function requiring medical attention [1,2]. This dysfunction usually results in dizziness and
vertigo, which can impact daily life and is a major risk factor for falls. Fall incidents are
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significantly greater in individuals with vestibular hypofunction than in healthy individuals
of the same age and result in enormous direct and indirect medical costs [1]. While vestibular
dysfunctions affect all populations, servicemembers and veterans are at higher risk of being
subject to mild traumatic brain injury (mTBI) leading to elevated reports of dizziness [3]. Ser-
vicemembers exposed to blasts have frequent complaints of vertigo, gaze instability, motion
intolerance, and other symptoms consistent with peripheral vestibular pathology [3].

Current vestibular rehabilitation is an exercise-based approach aimed at promoting
gaze stability, habituating symptoms, and improving balance and walking [4]. A major
component of these exercises is the adaptation of the vestibulo-ocular reflex (VOR), which
is the primary eye motion mechanism to stabilize scenes on the human retina during
fast head motions. As a result of acute injury, the gain of the VOR is usually reduced,
resulting in eye movement velocity that is less than head movement velocity. Consequently,
as people move their heads, the image on which they are stabilizing their vision slips
across the retina and causes blurred vision and dizziness [4]. The most common exercises
provided for persons with complaints of dizziness and concussion are gaze stabilization
or VORx1 adaptation exercises. In these exercises, patients perform active eye and head
movements in a lighted room while focusing on a target. These exercises recalibrate the
VOR through the concept of retinal slip [5].

An integral part of vestibular rehabilitation is an individualized home exercise pro-
gram that a clinician prescribes to address a patient’s particular functional limitations and
impairments [1,6]. Vestibular rehabilitation is most effective when applied in a customized
fashion [7]. Evidence shows that patients who are compliant with home exercise regimens—
following them for extended time periods—demonstrate greater improvement than those
who do not [8]. However, providing patient-compliant, home-program vestibular rehabili-
tation exercises is challenging due to patients’ difficulty in understanding and following the
instructions, their lack of motivation, a lack of feedback to the patient, and other adherence
issues. There is a higher chance for the success of the home exercise program if the patient
(a) understands the exercise procedure, (b) follows the therapists’ instructions, (c) and
provides pre- and post-exercise symptoms and perceived difficulty between visits that the
clinician can use to give feedback on performance (knowledge of results).

To the best of our knowledge, only a few low-cost technological aids have been
designed to ensure the patients’ correct performance of gaze stabilization exercises at home.
Huang et al. developed an iPod-based system [9] to measure the consistency of head
movement speed with the prescribed frequency as the patients perform VORx1 exercises.
These exercises consist of patients moving their heads in the pitch, yaw or roll planes, while
fixating their gaze on a target in front of them as they move their head at a prescribed
speed. The objective is to keep the target in focus while moving the head at the prescribed
speed. There are different parameters that will affect the outcome of the exercises, which
an experienced physical therapist (PT) will change over the course of the therapy based
on the individual’s needs. These include the type/size of the target, the distance from
the target, the speed and frequency of head movement, the plane of head movement, the
base of support, and posture of the subject. Another line of research by Schubert et al. has
produced StableEyes, a portable device that allows the conduct of a VOR gain adaptation
technique, in which the patient visually tracks a target, which moves with programmable
speeds synchronously with their head [10].

In this paper, we present the VestAid, an innovative, low-cost home-exercise system
that helps patients follow the clinicians’ instructions and uses the tablet camera to auto-
matically assess compliance in the performance of the VORx1 exercises. The system is
implemented as a tablet-based app (extendable to phones and monitor displays) for the
patient and a web-based portal for the PT. The PT inputs the parameters of the exercises
(suggested dosage, direction and speed of head movement, optotype shape and type,
contrast with background). Video instructions on the tablet help patients recall how to
perform the VORx1 exercises and a metronome guides head speed during the exercises.
The system collects symptom data before and after each exercise, which is then combined
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with objective performance data to provide feedback to both the patient and the PT. All of
the data are stored in the cloud to support remote monitoring by the rehab provider. With
the tablet camera, face and eye detection is used to analyze the accuracy of the head and eye
movement during the exercise. Convolutional neural network (CNN) models are used to
detect the face from the image, and extract landmark points (eye and nose positions). Head
pose is computed using the face image and the selected facial landmarks. A peak detection
algorithm is used to determine head-speed compliance. The system provides the PT with
near real-time objective (head speed, gaze compliance) and subjective (pre- and post- exer-
cise symptoms, perceived difficulty) metrics of compliance through a web-based provider
portal. In addition, the system provides individualized, gamified feedback and rewards to
help keep the patient engaged, motivated, and compliant throughout the therapy.

In this paper, we describe lab-testing of the feasibility of the VestAid system by:
(1) Testing the accuracy of the VestAid head-angle estimation algorithm by comparing its
performance against HopeNet [11], a state-of-the-art deep-learning method that requires
too much computational load for use in the tablet-based app; (2) testing the accuracy of
the VestAid head-turn frequency determination method by comparing its performance
to an inertial measurement unit (IMU) affixed to the back of the head during the conduct
of the exercises; and (3) evaluating the eye-gaze compliance algorithm using a publicly
available dataset.

2. Materials and Methods
2.1. Description of the System

The VestAid app provides adaptive individualized gaze-stabilization exercises based
on therapist-provided directives. The PTs can design home program sessions and set the
session parameters using the VestAid web portal, as shown in Figure 1. These parameters
include the plane of head motion (yaw, pitch or roll), exercise dosing and duration, head
speed, target size, background (type, color, stationary or moving, speed, and direction of
motion), distance to target, and duration of the exercises.
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Figure 1. VestAid workflow.

After the session parameters are set, the patients can use the VestAid app. The patient-
facing tablet-based app provides exercise instructions through an instructional video and
in-exercise guidance through metronome beeps tuned to the prescribed speed to ensure
patients perform exercises properly at home. The tablet’s built-in camera is used to record
the patient’s head movements and feeds the data to image-processing algorithms to track the
patient’s eye-gaze, head movement range, and head velocity. The captured video is processed
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on the tablet to detect facial landmark points. VestAid estimates parameters of interest, such as
3D head angles (roll, pitch, and yaw) and eye movement in near real-time using novel machine
learning algorithms. Based on these parameters, VestAid computes head and eye movement
compliance metrics, such as the percentage of the patient that has performed the exercise with
correct speed. The app also collects the patient’s pre- and post-exercise symptoms (dizziness,
headache, nausea, and fogginess) and perceived difficulty of the exercise, all in formats from
validated studies [12]. The computed head speed and eye-gaze compliance metrics as well
as subjective symptoms are made available to the therapist via the VestAid web portal. To
motivate the patient and improve exercise compliance, the therapist can enable a gamified
reward system. The data are stored in the cloud to support remote monitoring by the PT. A
summary of the VestAid app functionalities is provided in Table 1.

Table 1. Summary of VestAid software functionalities.

Functionality Implementation

Exercise setup

The therapist can easily set individualized exercise parameters for VORx1
exercises in the VestAid web portal: Exercise duration and dosing (no. of
times/day); distance from the screen; screen background; size, color, and

attributes of optotypes; and frequency of head movement.

Exercise guidance

The app includes instructional videos to help patients understand how to
perform the exercises. The app guides the patients during the exercises by

providing audio metronome beeps with the prescribed frequency. Audio beeps
are played in the app similar to a metronome with an adjustable beat per

minute (bpm) rate. The PT sets the bpm rate according to the required
frequency of head movement with a default value of 1–2 Hz as supported by

research [1,12].

Objective and subjective data collection

VestAid computes objective measures of the patients’ head motion and
eye-gaze compliance (from video captured by the tablet camera during the

exercise). VestAid collects pre- and post-exercise subjective symptom ratings
(headache, dizziness, nausea, and fogginess) based on vestibular/ocular-motor

screening (VOMS) for concussion [12]. At the end of each exercise, VestAid
collects patients’ ratings of the perceived difficulty.

Compliance determination

Machine learning algorithms determine patients’ facial features and head
angles. Based on these features, compliance of head motion (percentage of time
conducted with prescribed speed vs. fast or slow; change of the head speed as
a function of time) and eye-gaze (percentage of time focusing on the optotype

target) are determined.

Patient feedback
Feedback on exercise compliance is provided to patients using an encouraging

game-based rewards system. If enabled by the PT, patients can spend their
exercise rewards in a computerized racing game.

PT reports Easy-to-understand, time-stamped reports with graphical summaries are
generated for the therapist. The PT can access reports through the web portal.

2.2. Description of Patient Interaction with the App

The App pages have been developed using the following guidelines:
Simple language and graphics: To minimize the reading of text material, wherever

there is a text display, the language is kept simple (8th grade reading level), in order that it
does not add to the patient’s cognitive load. In the body of the app, simple graphic displays
and minimal animation are used to avoid the unwanted effect on patient symptoms. In
addition, we developed videos to communicate instructions and demonstrate the exercises.

Contrast: The visual environment provided to the patients can affect their symptoms
while doing the exercises. Therefore, we have avoided high-contrast and busy backgrounds
to start and have selected muted and moderately contrasted background and font colors
in the app to avoid unwanted patient symptoms. Busy backgrounds and high contrast
settings are only available if the PT sets up an exercise, which requires these backgrounds.
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Font size: Large fonts and a low density of text to display instructions/feedback is
used to avoid cognitive fatigue.

When patients log in to the app, they are taken to a start page that displays the
summary of the prescribed exercises (Figure 2). From there, they can view a video that
communicates instructions and demonstrates the exercises (Figure 3). Tapping on the
exercise icon will take the patient to a page, in which they rate their pre-exercise dizziness,
headache, nausea, and fogginess symptoms on a continuous scale of 0 (no symptom)–10
(as bad as it can get) based on the VOMS system of symptom rating [12] (Figure 4). Then,
the patient is taken to the exercise screen with the background scene displayed using the
patterns and contrasts set by the PT (Figure 5). After completing the exercise, the patient
is led to a post-exercise screening page (Figure 6), in which they rate their post-exercise
symptoms (similar to pre-exercise symptom rating), as well as the perceived difficulty,
using a discrete scale of 0 (extremely easy)–10 (extremely hard) that has been validated
by Robertson et al. ([13,14]). The patient is then presented with a feedback page with a
performance and compliance reward summary (Figure 7). During the course of therapy,
it is natural for patients to experience difficulty, in order for the rewards to not directly
depend on an ideal performance. Instead, the patients are rewarded for various aspects of
performance in order that every user will earn some reward so long as they attempt the
exercise. Each patient will receive 5 virtual coins for completing the exercise, 0 to 5 coins
based on their head speed compliance, and 0 to 5 coins based on their gaze compliance.
These coins are incorporated into a reward-based system to encourage adherence to the
therapy regimen.
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2.3. Gamification

Gamification refers to the use of game design elements in non-game contexts [15].
The general idea is to use some elements, normally found to be motivating in games,
for use in real-world situations to motivate certain behaviors, such as compliance to a
repetitive rehabilitation exercise. Research results show that badges, leaderboards, and
performance graphs positively affect user experience and task meaningfulness, while
avatars, meaningful stories, and teammates affect the user’s relationship to social aspects
of the situation (e.g., [16]). Gamification generally provides positive effects, but the effects
depend on the context of the gamification and on the users using it [17]. Therefore, it is
important to (1) choose gamification techniques that enhance the context, and (2) meet the
needs of the users.

Since the VestAid technology is designed for the primary user population of post-concussion
service members and athletes, a reward-based system with a car racing game component was
designed. The racing game opens to a garage where the patient can spend the coins awarded
based on their exercise performance to customize their racecar (Figure 8). The goal of each race
is to finish in the shortest possible time (Figure 9). Patients gain access to the racing game by
completing their required daily VORx1 exercises. For each day of completed exercises, patients
will unlock a new functional upgrade or track in the game. Functional car upgrades make it
easier to achieve the timing goals in each track. PTs can disable game functionality if they feel it
will negatively affect a patient’s therapy. The goal of the game feature in the app is to provide
a reward but it also serves a therapeutic purpose. When driving, the user is required to use
smooth pursuits and saccades, and is exposed to visual backgrounds that can serve as a form of
habituation training for the person living with dizziness.
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2.4. Description of the Algorithms

To determine a patient’s head-motion and eye-gaze compliance in the VORx1 exercises,
the captured video is analyzed on the tablet. Our approach includes the steps shown in the
next subsections:

2.4.1. Detection of the Patient’s Face in the Frames of the Captured Video

The first step in head and eye motion tracking is to detect the patient’s face in the
video captured by the tablet’s camera. To this end, we have implemented a variant of
the approach used by Liao et al. [18], which can effectively handle the unconstrained face
detection situations, such as arbitrary pose variations and occlusions that can occur. To
detect faces in the images, the approach uses an image feature called normalized pixel
difference (NPD) to find the difference between the face and the background. This method
uses a deep quadratic tree approach to learn the optimal sets of NDP features to partition
the complex face manifolds.

2.4.2. Detection of Facial Landmarks and Estimation of Head Angles

After the face is identified, the next step is to detect facial landmarks, such as the eyes
(Figure 10). To this end, we have adopted and improved the method proposed by Ren et al. [19].
The approach aims to first perform encoding of the landmark-specific texture independently and
then to do a joint regression. To improve the computational complexity, we have implemented
a supervised descent method (SDM) based on the work by Xiong et al. [20] and Wu et al. [21].
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Figure 10 shows a few examples, in which we detect different facial landmarks in the
pictures, while the person in the frame changes head positions with respect to the camera,
illustrating the robustness of the approach to changes in head position.

2.4.3. Determination of Head-Motion Compliance Based on the Estimated Head Angles

The head motion in the VORx1 exercises will result in periodic head yaw (respectively
pitch) signals when the patient does horizontal (respectively vertical) movements (Figure 11).
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Figure 11. Head yaw motion signal for a 60-s horizontal VORx1 exercise.

The head angles oscillate between two extremes, represented by peaks and valleys
in the curve. If the head movements are performed uniformly with exactly the same
amplitude and frequency, the head angle waveform would be a perfectly periodic curve
with the period equal to the period of head movement and the amplitude equal to the
amplitude of the head movement (maximum head angle displacement from the neutral
position, in which one’s head has zero yaw angle). In reality, the motion is not perfectly
periodic as the subject’s slightest change in head movement speed will cause changes in
the peak-to-peak (valley-to-valley) time, which represents the time of a left-to-right-to-left
(or right-to-left-to right) head movement.

Since the sampling is not uniform (i.e., the time difference between two consecutive
frames is not constant and can vary by a few milliseconds), we did not apply Fourier-based
methods to determine head speed compliance. Instead, we used a computationally efficient
peak detection algorithm that smooths the signal before identifying the local maxima [22].
Following this, the generated list of peaks is further filtered by only retaining peaks with a
prominence greater than their height, thereby only leaving the greatest local maxima within
each region bounded by a zero-crossing on each side. Finally, all peaks with a height under
an arbitrary threshold (4 degrees) are dropped to ensure that a small perturbation is not
treated as a full head turn. Using the above method, we extract the peaks and valleys of the
filtered signal, and determine the actual head movement speed using the time difference
between peaks and valleys. To decide whether the patient has complied to the prescribed
speed, we define a compliance range (∆) to be within 15 bpm of the prescribed speed. For
example, if the prescribed exercise requires a head movement speed of 120 metronome bpm,
there is a window of ±15 bpm around 120 bpm that would constitute an acceptable exercise
speed. Any portion of the exercises that fall outside this range is marked slow or fast.

2.4.4. Determination of Eye-Gaze Compliance Based on Classification of
Eye-Gaze Detection

To determine eye-gaze compliance, we used a light-weight deep learning-based
method that is able to run on a regular tablet or smartphone without the need for a
graphics processing unit (GPU). We developed a convolutional neural network (CNN)-
based module for classifying the eye-gaze direction as “on-target” or “off-target” based
on the work of [23]. Figure 12 shows the original architecture of the neural networks that
employs convolutional layers followed by fully-connected (FC) layers.
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Figure 12. Architecture of CNN-based eye-gaze estimation algorithm.

To train the network, a public dataset [24] of videos of 10 persons conducting head and
eye motions similar to VORx1 exercises was used. Frames from the videos were extracted
and labeled as “on-target” and “off-target” based on whether the gaze was directed towards
the target regardless of head orientation (Figure 13). Left and right eye images were used
as the network input and the output is the binary classification result.
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We tuned the network using various network structures with different numbers of
convolutional layers or fully connected layers and compared the measures associated with
performance metrics to finalize the network structure. Table 2 shows the performance
comparison of five different network structures. The network with two CNN layers for each
eye and three fully connected layers reached the best accuracy, precision, and F1 score ([25]),
while the network with two CNN layers and two fully connected layers has the best recall.
Taking all metrics into consideration, we chose the network with two CNN layers and three
fully connected layers and implemented it in the VestAid software.
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Table 2. Comparison of different neural network structures.

Network Confusion Matrix Accuracy Precision Recall F1 Score

Two layers of CNN
for each eye, three

fully connected
layers

Prediction

0.9428 0.9296 0.8989 0.9140
Off-target On-target

Ground
Truth

Off-target 2002 72

On-target 107 951

One layer of CNN
for each eye, three

fully connected
layers

Prediction

0.9176 0.8984 0.8526 0.8749
Off-target On-target

Ground
Truth

Off-target 1972 102

On-target 156 902

Three layers of
CNN for each eye,

three fully
connected layers

Prediction

0.9256 0.8852 0.8960 0.8906
Off-target On-target

Ground
Truth

Off-target 1951 123

On-target 110 948

Two layers of CNN
for each eye, two
fully connected

layers

Prediction

0.9412 0.9092 0.9178 0.9135
Off-target On-target

Ground
Truth

Off-target 1977 97

On-target 87 971

Two layers of CNN
for each eye, four
fully connected

layers

Prediction

0.9345 0.9074 0.8979 0.9026
Off-target On-target

Ground
Truth

Off-target 1977 97

On-target 108 950

2.5. Evaluating the Accuracy of Head-Angle Estimation

We tested the accuracy of the VestAid head-angle estimation algorithm in two stages,
as shown in the next subsection. Figure 14 outlines the overall procedure.

2.5.1. Evaluation of Head-Angle Estimation on Static Faces from a Public Dataset

The first stage was to compare the accuracy of estimated head angles against a state-of-
the-art deep-learning method on a public dataset. Once we established that the algorithms
perform well on static face figures from the public dataset, we conducted the second
evaluation, i.e., the evaluation of the head-speed compliance metric resulting from the
implementation of the algorithms in the app.

For the head angle evaluation, we compared the performance of VestAid against that
of HopeNet [11], a state-of-the-art deep-learning that requires too much computational
load for use in the tablet-based app. We ran both algorithms on a subset of the Biwi Kinect
Head Pose Database, which contains head rotations in the range of ±75◦ (yaw), ±60◦

(pitch), and ±50◦ (roll) [26].
To compare the accuracy of the VestAid algorithm to the HopeNet, we examined the

average absolute error of the individual extrinsic Euler angles, the mean squared error of all
three extrinsic Euler angles, and the geodesic of the quaternion representations of the true
and estimated final orientations of the head with the given Euler angles for each model.

Details on the comparison between the two systems are included in the Supplementary
Materials, Section S1 [26].
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2.5.2. Evaluation of Head Angles and Speed Compliance in Action

To evaluate the accuracy of VestAid’s metrics during the VORx1 exercises, the VestAid
algorithm’s output was compared to the output of an inertial measurement unit (IMU)-
based system using a ruggedized IMU device developed by IAI (Rockville, MD, USA). The
IMU was affixed to the back of the head of the first author performing six variations of
VORx1 exercises (Table 3) on the VestAid app.

Table 3. Exercise attributes used in the evaluation.

Task Direction Speed (bpm)

1 Horizontal 80

2 Horizontal 120

3 Horizontal 160

4 Vertical 80

5 Vertical 120

6 Vertical 160

For each trial, the VestAid system was set to run for 30 s at 80, 120 or 160 bpm. The
subject followed the system’s metronome as closely and as smoothly as possible and
completed at least a 30-degree head sweep (+/− 15 degrees) for each head turn. Data
recording with the IMU began when the head alignment countdown reached 5 s remaining
and stopped once the exercise was completed. Five trials were completed at each target
bpm for each direction (horizontal/vertical) for a total of 30 trials. The IMU and VestAid
data were manipulated to the output head angle at timepoints of interest (details outlined
in Supplementary Materials, Section S2 [27,28].). To quantify the accuracy of the head
angle from the VestAid signal, the timepoints and their corresponding head angles from
the VestAid signal were then compared to their matching timepoints on the IMU-derived
signal to calculate the absolute error in head angle (Figure 15).
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To examine the frequency metrics output from the VestAid signal, the difference in the
timings between each peak (interpeak time error) for both the VestAid and IMU-derived
signal was calculated (Figure 15). For the instances where one or two individual peaks
may have been missed by the VestAid or IMU-derived signal, the corresponding peak in
the other signal was dropped from the analysis of interpeak times. The total number of
identified peaks, the measured head turn frequency, and the ‘percent correctness’ were
also compared. While many different types of metrics were calculated and compared
against the IMU-based system, the main goal of this validation study was to ensure that
the VestAid system can correctly determine whether the patient is performing the VORx1
exercises correctly.

3. Results/Discussion
3.1. Evaluation of Head-Angle Estimation on Static Faces from a Public Dataset

On the Biwi dataset described in Section 2, the VestAid head-angle estimation per-
formed comparably to HopeNet with less than 10 degrees average geodesic error, less
than 8 degrees average absolute error in the pitch plane, and less than 6 degrees average
absolute error in the yaw plane, as shown in Table 4. Therefore, the VestAid system shows
a good capacity to accuracy estimate head angles on static faces.

Table 4. VestAid and HopeNet head-angle estimation accuracy on a subset of Biwi dataset.

Model Avg abs Pitch
Error (deg.)

Avg abs Yaw
Error (deg.)

Avg abs Roll
Error (deg.)

Avg Geodesic
(deg.)

HopeNet 4.89 8.47 4.00 10.27

VestAid 7.61 5.98 4.91 9.65

3.2. Evaluation of Head Speed Compliance

Table 5 summarizes the spatial and temporal error calculations of the VestAid system
with reference to the IMU-based derivation.
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Table 5. Overview of temporal and spatial error metrics of the VestAid system.

Direction Horizontal Vertical

Speed (bpm) 80 120 160 80 120 160

No. of trials in category 5 5 5 5 5 5

Mean abs head angle error (deg.) 9.12 7.29 6.55 4.09 3.66 3.36

Mean head angle RMSE (deg.) 10.46 8.92 8.05 5.08 4.49 4.15

Mean no. of ID’d IMU peaks 17.00 26.00 32.40 17.00 25.60 33.40

Mean no. of ID’d VestAid peaks 17.00 26.00 31.80 16.80 25.20 33.20

Mean matched interpeak time
error (s) 0.06 0.08 0.05 0.09 0.07 0.04

Mean matched interpeak time
RMSE (s) 0.07 0.14 0.07 0.15 0.12 0.07

Mean abs head turn frequency
error (bpm) 3.08 9.02 10.77 4.42 8.17 8.51

Mean head turn frequency
RMSE (bpm) 3.79 12.44 13.62 6.21 11.37 13.00

Mean correct percent IMU (%) 99.52 98.67 97.47 98.76 98.76 91.13

Mean correct percent VestAid (%) 99.56 86.98 85.20 98.82 90.67 80.67

Mean correct percent difference (%) 0.04 −11.69 −12.27 0.06 −8.08 −10.46

As shown in Table 5, the peak detection of the VestAid system appears to align
reasonably well with the peaks derived from the IMU-based system. There are low mean
interpeak time errors (consistently below 0.1 s) across all speeds of the VORx1 exercise,
as well as consistently matching numbers of identified peaks. The spatial comparison
(after adjusting for the lag measured with the cross-correlation) between the VestAid
and IMU-based systems also show good matching, as shown by the low mean absolute
head angle error, in which for all speeds, the mean is less than 10 degrees. Incidences
of higher error in head angle are likely due to noisy head-angle calculations from the
face-detection algorithm.

Interestingly, when examining the mean absolute head-angle error and the mean RMSE
for both the horizontal and vertical directions, the error appears to decrease as the goal bpm
increases. This can be explained by plotting both the distribution of IMU-derived head angles
for each goal bpm (Figures 16a and 17a) and the relationship between the IMU-derived head
angles and the error of the VestAid-derived head angles (Figures 16b and 17b).
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Figure 16. (a) IMU-derived head angle distribution for all trials of horizontal VORx1 exercises at
different bpms; (b) error in the horizontal head pose angle vs. IMU-derived head angle.
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In both the vertical and horizontal directions (as shown in Figures 16a and 17a), the
range of motion of the subject appears to decrease as the goal bpm increases. As the
IMU-derived head angle increases in magnitude (as shown in Figures 16b and 17b), the
magnitude of the error also increases. This suggests that the decrease in apparent head-
angle error as the goal bpm increases is attributable to the subject’s decreased range of
motion at higher bpm rather than the higher bpm itself leading to improved performance.

The mean absolute head turn frequency error was the highest for the horizontal
VORx1 exercise performed at 160 bpm, with a value of 10.77 bpm. As previously stated,
the bounds for what is considered as ‘correct’ are set at +/− 15 bpm. Therefore, this
is considered acceptable when providing feedback to the user as to whether they are
performing the exercise properly. One critical aspect is that the error in these head turn
frequency measurements is a function of the error in the measurement of the constituent
peak-to-peak time interval (s) and the goal bpm, as shown in Equation (1). The derivation
for Equation (1) is demonstrated in Supplementary Materials, Section S3.

errbpm = goal

(
− errinterval

120
goal + errinterval

)
(1)

As the goal bpm increases, the same error in the measurement of the peak-to-peak
interval produces a higher error in the final bpm measurement.

When evaluating the performance of a subject for a specific trial, the VestAid and IMU
system give comparable metrics on the percentage of the exercise conducted correctly, as
shown by the similar mean correct percent values in Table 5. For trials condutced at 80 bpm,
the difference between the mean correct percent values is as low as 0.04 and 0.06 for the
horizontal and vertical tests, respectively. For higher bpms, the difference between the
two systems is greater, due to the aforementioned mathematical relationship between the
peak-to-peak interval measurement error and the frequency measurement (Equation (1)),
but still shows as being close in performance, with differences of less than 12.3% across all
head speeds (bpm). Overall, these results demonstrate VestAid’s capability to accurately
evaluate whether a patient is currently performing a VORx1 exercise at the assigned speed.

There were a number of limitations and challenges across these evaluation exercises.
First and foremost, the ground truth on which this analysis is based was derived via
the IMU measurement rather than the gold standard of a motion capture system. This
ground truth also incorporated the mean measured head angle from the VestAid system
in order to compensate for the lack of a DC-component to the IMU-derived head angle.
Finally, this ground truth was temporally aligned with the VestAid signal through the use
of cross-correlation, which has been previously employed to align camera-based position
and IMU signals within VR systems [27,28]. While visual inspection was done on each
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trial to ensure that the two signals appeared to be correctly aligned using this method, it
is important to note that this is not an ideal method of alignment for validation purposes
when compared to a perfect external synchronization without lag and was employed
to correct for a consistent time the lag encountered between the signals when external
synchronization was used.

4. Summary

In this paper, we demonstrated the capabilities and an initial evaluation of VestAid,
an innovative, low-cost, tablet-based system that helps patients perform vestibulo-ocular
reflex exercises (VORx1) correctly at home without therapist guidance. VestAid uses the
tablet camera to automatically assess patient performance and compliance with exercise
parameters. The system provides PTs with near real-time objective (head speed and
gaze fixation compliance) and subjective (perceived difficulty and pre- and post- exercise
symptoms) metrics through a web-based provider portal. In addition, the system uses
gamification to help keep the patient engaged throughout the therapy.

Initial results suggest that the accuracy of the system is sufficient to provide PTs with
an accurate and quantitative assessment of patient performance. Systematic data collection
and human studies to further validate the technology are underway. While the VestAid
system’s head-pose evaluation model may not be perfectly accurate as the head moves
further towards an extreme in any direction as a result of the occluded facial features, the
final head speed measurements and associated compliance measures are accurate for the
purposes of monitoring patient exercise compliance and general performance.

In the future, it would be worthwhile to further evaluate VestAid’s capabilities against
a gold-standard model for head pose detection. Furthermore, an investigation into ways
to improve head-angle estimation at more extreme head angles could help improve the
spatial accuracy of the system.

5. Patents

A patent application with USPTO was filed on 8 September 2020.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21248388/s1, Section S1: Details on the evaluation of head-angle estimation on static faces in
a public dataset; Section S2: Details on the evaluation of head angles and speed compliance in action;
Section S3: Derivation of the bpm error function (Equation (1)).
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