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Abstract

Purpose of Review Mixtures, or combinations and interac-
tions between multiple environmental exposures, are hypoth-
esized to be causally linked with disease and health-related
phenotypes. Established and emerging molecular measure-
ment technologies to assay the exposome, the comprehensive
battery of exposures encountered from birth to death, promise
a new way of identifying mixtures in disease in the epidemi-
ological setting. In this opinion, we describe the analytic com-
plexity and challenges in identifying mixtures associated with
phenotype and disease.

Recent Findings Existing and emerging machine-learning
methods and data analytic approaches (e.g., “environment-
wide association studies” [EWASs]), as well as large cohorts
may enhance possibilities to identify mixtures of correlated
exposures associated with phenotypes; however, the analytic
complexity of identifying mixtures is immense.

Summary If the exposome concept is realized, new analytical
methods and large sample sizes will be required to ascertain
how mixtures are associated with disease. The author recom-
mends documenting prevalent correlated exposures and repli-
cated main effects prior to identifying mixtures.
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Introduction

We are exposed to many different factors simultaneously
throughout our lifespan, ranging from drugs, infectious
agents, environmental pollutants, and macro- and
micronutrients. The exposome is an emerging attempt to con-
ceptualize and characterize the breadth of exposures humans
encounter from birth to death [1e, 2¢]. The exposome concept
promises to capitalize on our accelerating ability to measure
indicators of environmental exposure in a high-throughput
manner leveraging new tools, such as metabolomics [3]. In
fact, investigations are now underway to measure the
exposome in children to discover new associations in
development-related traits, such as the National Institute of
Environmental Health Sciences Children’s Health Exposure
Analysis Resource (CHEAR, see https://www.nichs.nih.
gov/research/supported/exposure/chear/). In contrast, most
epidemiological investigations to date consider one or a few
exposures at a time and we currently lack data-driven methods
to associate, and discover, numerous environmental expo-
sures, including mixtures, in etiological studies of disease.
New high-throughput measurements provide data to poten-
tially identify mixtures, defined as a combinations of co-
occurring exposures, associated with disease. Identification
of mixtures is important for public health and epidemiology
because it is hypothesized that exposures induce changes in
phenotype (disease and health indicators) not as a single agent,
but as a collection of agents acting in concert [4, 5]. In other
words, mixtures can be further thought of as groups of expo-
sures that together induce a change in phenotype that is dif-
ferent than the effect of each exposure component separately.
We note that the search for mixtures may contrast with the
well-known Bradford Hill criteria to assess causality [6].
Specifically, Hill’s criterion 3 is one of specificity or, in other
words, the simpler the association between exposure and


https://www.niehs.nih.gov/research/supported/exposure/chear/
https://www.niehs.nih.gov/research/supported/exposure/chear/
http://crossmark.crossref.org/dialog/?doi=10.1007/s40471-017-0100-5&domain=pdf

Curr Epidemiol Rep (2017) 4:22-30

23

disease, the more likely the association is causal [6]. In the era
of high-throughput measurement, Bradford Hill may need to
be revisited if evidence for combinations of exposures associ-
ated with diseases are realized [7¢°, 8]).

First, we present some definitions. We define phenotype as
a manifestation of a trait, such as disease and quantitative
characteristics (e.g., height, body mass index). In environmen-
tal epidemiological investigations, we attempt to model the
relationship between phenotypes (e.g., a disease or quantita-
tive characteristic) and exposures. We define exposure
combinations as a set of two or more exposures that occur
together. Exposure co-occurrences are a pair of two exposures
that co-occur together. Finally, mixtures are potentially
interacting combinations of exposures that are associated with
a phenotypic change. In other words, the potential effect on
the phenotype is influenced not by the individual constituents
of the mixture, but the combination. In the following sections,
we aim to further define analytically both co-occurrences and
mixtures of exposures and their associations with phenotype.

Analytic identification of mixtures of exposures in pheno-
type is fraught with challenges [9e, 10+]. In the following, we
review existing and emerging analytic methods to understand
the complex phenomena of co-occurring exposures and mix-
tures in the epidemiological setting and open challenges, ex-
tending the insights from Braun and others [11°].

Potential Complexity of Identifying Mixtures:
Expansive Number of Possible Combinations
of Exposures and Mixtures

The total number of sets of exposures that can exist is
immense. Suppose we have the capability of measuring
M number of exposures in an epidemiological study. A
combination of exposures can have any size: two (e.g.,
lead and cadmium), three (e.g., lead, cadmium, and
bisphenol A), or more. In a setting with binary exposure
variables (e.g., median split) and without any prior hy-
potheses, the total number of potential combination of
high exposures that can occur in a dataset of size 2 and
up to N is defined as “M choose N”, equal to m!/(n-
m)!*m! where M is defined as the number of high expo-
sures. For example, if our study had measured three (e.g.,
serum lead, cadmium, and arsenic) exposures in total, the
number of possible combinations of size two (M = 2) is 3,
including (lead, cadmium), (lead, arsenic), and (arsenic,
cadmium). Suppose we measure 100 exposures
(N = 100): the total number of combinations of size two
that could co-occur is 4950. Of size 5, the total combina-
tions are on the order of millions (exactly 75,287,520).
One can imagine the scale of the number of combinations
when scaling up to 100s of exposures of the exposome.
Therefore, a primary challenge of identification of

mixtures in phenotypes is the expansive number of expo-
sure combinations possible.

Dense Correlations and Examples of Co-occurring
Exposures in NHANES

While there are a vast number of possible combinations of
exposures, investigators may choose to focus on the most
prevalent co-exposures or those that co-occur more frequently
in the population. One way to identify co-occurring exposures
includes estimating the correlation between each pair of expo-
sures (e.g., through a Spearman or Pearson correlation mea-
sure) and “grouping” the highly correlated exposures with an
“unsupervised machine learning” technique, such as
clustering.

Others and we have described how to identify prevalent co-
exposures by displaying the correlation between multiple ex-
posures and finding co-occurring exposure “networks”
through unsupervised learning [12¢] based on “relevance net-
works” [13]. Briefly, a network is composed of a combination
of exposures, or nodes, whose connections are estimated by
the correlation between exposures (e.g., Spearman or Pearson
correlation). We assess the strength of the connection between
exposures in a network by estimating the p value of signifi-
cance through permutation-based tests. Specifically, each ex-
posure is randomly permuted (sampled without replacement),
and the correlations are re-computed to create a set of corre-
lations to reflect a null distribution of no correlation. Then, we
choose the most significant pairwise correlations to construct
the network. Networks are then visualized in a “correlation
globe” (Fig. 1), whereby each exposure variable is arranged
in a circle (“nodes”) and lines between nodes indicate non-
random correlation between exposure variables. There are
many ways to create such visualization; for example, we cre-
ated Fig. 1 with the Circos visualization package [14].

We implemented this method using epidemiological survey
data from the National Health and Nutrition Examination
Survey (NHANES), systematically computing pairwise corre-
lations between 289 exposure variables, or 81,937 total corre-
lations possible. Of these, the exposome network consisted of
2656 significant and replicated pairwise correlations. We iden-
tified several co-occurring exposures that are well known (see
Table 1 for examples of exposures positively correlated with
serum PCB170, cadmium, and {3-carotene). The correlation
structure is potentially “dense” (Fig. 1), and many exposures
co-occur with many others [7¢e, 12¢, 15, 16°°]. Therefore,
while the total number of combinations of exposures can be
impossibly expansive as described in the previous section, the
total number of prevalent co-occurring combinations of expo-
sures can be reduced in magnitude but is still is a challenge to
dissect.
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Fig. 1 Visualization of an exposome globe (reproduced with permission
from Patel and Manrai [12¢]). Exposure measurements are arranged in
groups in a circle. Pairs of exposures that are positively correlated with

We offer an additional cautionary note: by only focusing on
combinations that co-occur frequently, investigators will lose
opportunities to identify mixtures that involve dependencies
between rare exposures. For example, it may be possible that
hypothetical exposures A and B do not frequently co-occur;
however, a phenotypic response may be induced in the rare
chance that individuals encounter A and B. Or, put even more
simply, there could be exposures whose influence on a phe-
notype is “triggered” by another exposure B. Correlation, or
co-occurrence, does not equate to interaction.
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Prioritizing Co-occurring Exposures in Phenotype:
Toward EWASs

Drawing inspiration from “genome-wide association studies”
(GWASSs), an “environment-wide association study” (or
equivalently “exposome-wide association study” [EWAS]),
is a straightforward method to prioritize associations between
single exposures and a phenotype [17].

GWAS:s are a way to associate millions of genetic factors
with disease or phenotype along the entirety of the genome.
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Table 1 Examples of indicators
of exposures positively correlated

with serum beta carotene,
cadmium, and PCB170 in the
NHANES participant population,
derived from [12¢, 26¢°¢]

Beta carotene Cadmium PCB170
Alpha carotene Lead PCB172
cryptoxanthin Cotinine PCB177
Lutein and zeaxanthin Hepatitis A titer PCB178
Retinyl palmitate Vitamin E PCB180
Cadmium (urine) PCB183
Blood toluene Cadmium
Blood m/p xylene Lead
Oxychlordane
Vitamin E

1,2,3,7,8-Pentachlorodibenzo-p-dioxin
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin
1,2,3,4,6,7,8-Heptachlororodibenzo-p-dioxin

All are serum measures unless indicated

Due to wide accessibility of genome-scale GWAS assays that
can ascertain millions of genetic variants simultaneously, hu-
man geneticists have now moved from studying a handful of
genetic variants at a time to a more data-driven, comprehen-
sive, systematic, and agnostic reporting of genetic associations
and their replication in independent populations. At its sim-
plest, GWASs are epidemiological studies that examine the
association between the prevalence of genetic variants in cases
(diseased) versus controls (healthy), not unlike most environ-
mental epidemiological studies in design. Specific genetic fac-
tors are prioritized by examining what associations have a p
value lower than a family-wise error rate (e.g., Bonferroni
correction) and are replicated by testing significant associa-
tions in an independent cohort.

EWASs borrow the methods of GWAS to search for
and analytically validate environmental factors associated
with continuous phenotypes or cases versus controls. This
type of question is different from a hypothesis-driven ap-
proach in which a single candidate or a handful of envi-
ronmental factors are chosen a priori and tested individu-
ally for their association to a phenotype. Briefly, the
strength of EWAS is in comprehensively testing for linear
associations between each exposure and a phenotype,
similar to that of GWAS studies. Instead of testing a few
environmental associations at a time, EWAS evaluates
multiple environmental factors. EWAS is comprehensive
in that each factor measured is assessed for possible as-
sociation with the target phenotype. Next, associations are
systematically adjusted for multiplicity of comparisons.
Finally, EWAS calls for validation of significant associa-
tions in an independent population.

In an EWAS study, M total exposure variables are associ-
ated with a phenotype or outcome using a linear model, iter-
atively or one at a time. Thus, for an environmental factor X; in
the list of measured factors X; ... X, the disease state (V) is

modeled as a linear function of environmental factors and
adjustment variables (represented by Z)

Y=a+bX;+~Z (1)

X; corresponds to the environmental factor, and b; corre-
sponds to the effect size of that factor (e.g., beta coefficient or
odds ratio), adjusted by Z. The strength of association is com-
puted by the two-sided p value for b;, which tests the “null
hypothesis” that b; is equal to zero. Next, to mitigate the
chance for false positive discovery (type I error), a family-
wise error rate, such as Bonferroni correction, is applied.
The Bonferroni adjustment simply adjusts the nominal p value
threshold by the total number of tests conducted. This adjust-
ment guarantees the “family-wise error rate”—the probability
of having one or more false positive(s). However, the thresh-
old is conservative, and therefore, statistical power for detec-
tion is lost. An alternative to the family-wise error rate in-
cludes the false discovery rate (FDR) [18¢¢]. The FDR is less
conservative and therefore statistically more powerful than the
Bonferroni correction [19]. The FDR is the estimated propor-
tion of false discoveries made versus the number of real dis-
coveries made for a given significance level to control for
multiple hypothesis testing [18¢¢]. The usual method of esti-
mating the FDR is the Benjamini-Hochberg “step-down” ap-
proach; however, the approach assumes independence be-
tween tests. One way to address correlation between tests
includes estimation of the FDR empirically through permuta-
tion based approaches (e.g., [20]). Further, replication in an
independent dataset is sought for significant associations. We
have applied EWAS to prioritize individual exposures in dia-
betes [21¢], preterm birth [22], all-cause mortality [23], and
serum lipid levels [24].

Despite comprehensively searching M exposures in a data-
base with a phenotype Y of interest, EWAS does not explicitly
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find mixtures of exposures that interact to induce changes in the In an EWAS in telomere length [25], multiple correlated
phenotype. EWAS does, however, identify co-occurring expo-  PCB congeners were found in telomere length. These associ-
sures associated with the phenotype of interest. For example, in ~ ations indicate that these exposures statistically co-occur in
the first EWAS for diabetes, multiple associations were identi-  association with their respective phenotype. One can then vi-
fied between organochlorine compounds (e.g., PCB, organo-  sualize these co-occurring exposures in a focused correlation
chlorine pesticides) and diabetes prevalence [21¢]. globe. For example, Fig. 2 shows a correlation globe that only
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Fig. 2 Visualization of a correlation globe focusing on exposures telomere length) and a blue color font a negative direction in telomere
identified in EWAS in telomere length. Exposures identified in the length (e.g., higher cadmium levels were associated with shorter
EWAS procedure are seen in the outer circle in the orange (e.g., PCBs, telomeres). Edges are drawn between exposures that co-occur with
lower left) or blue (cadmium, bottom center) colored font. The orange EWAS-identified exposures; for example, cadmium and lead are both
color font indicates a positive direction of the association in telomere correlated with volatile compound levels, seen in the bottom of the figure

length (for example, higher PCB levels were associated with longer
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shows exposures that are correlated, or co-occur, with those
found in a EWAS in telomere length.

One can utilize exposure co-occurrences to increase the
power of detection of exposures associated with pheno-
type. How? Simply put, suppose two (of the M) exposures
measured in a cohort study co-occur 100% of the time
(e.g., their correlation equals 1). Therefore, these two ex-
posures provide redundant information, and the actual an-
alytic number of exposures will not be M, but M — 1
(subtracting 1 of the redundant exposures that co-occur
100% of the time). Conceptually, one can estimate how
redundant variables are in a dataset by computing their
correlations. The difference between the number of vari-
ables measured and the number of redundant variables is
known as the “effective number of exposure variables” (in
the toy example above, M — 1 is the effective number of
exposure variables). Knowing the “effective number of
exposure variables,” or the number of exposures in the
dataset after taking into account their co-occurrence/cor-
relation, can increase the power of detection of exposures
and mixtures by reducing the space of possible exposures
to explore. As a proof-of-principle, using the NHANES,
we re-estimated the effective number of variables for dif-
ferent categories of exposure [26°¢]. For example, we
found many of the 38 total polychlorinated biphenyls
(PCBs) measured in NHANES 1999-2004 to be redun-
dant and estimated an effective number of PCBs to be
24, significantly less than the 38 measured. For details
on how to estimate the effective number of variables to
reduce the complexity of testing for exposure-phenotype
associations, we direct readers to [26°].

Emerging Analytical Methods to Identify
Interactions Between Exposures Associated
to Phenotype

Emerging and existing machine-learning methods will en-
hance detection of mixtures associated with phenotypes and
disease outcomes. Typically, machine-learning approaches
apply algorithms to find variables (exposures) that are predic-
tive of an outcome (phenotype) in two steps. In the first step,
an algorithm “learns” the variables that are associated with the
outcome. The algorithm is then tested in an independent
dataset to estimate the predictive capability or generalizability
of the algorithm.

The EWAS screening method considers each environmen-
tal factor in a separate linear model one at a time or iteratively.
An issue that remains includes how to generalize beyond cor-
related factors associated with the outcome. One solution
might be to test exposures that are identified in EWAS for
interaction (e.g., [27]). For example, given L number of

exposures identified in an EWAS, an investigator may choose
to test all pairwise exposures of the L for interaction.

To discover interactions associated with the outcome,
one needs to test or model them simultaneously. However,
as the reader may know, modeling all possible interactions
in a linear model will lead to overfitting and non-
generalizable associations. Therefore, to analytically se-
lect exposures in phenotype, one can leverage a “feature
selection” algorithm, such as stepwise regression, where-
by different combinations of variables are input in a mod-
el and the most predictive model is chosen while preserv-
ing model parsimony (limited the number of variables in
the linear model). Classical stepwise regression is a chal-
lenge to apply due to their high variability in variable
selection, ultimately reducing their prediction accuracy
[28]. One alternative includes extensions to the linear
model, such as regularized regression.

One class of well-known methods includes extensions
to the linear model, known as “regularized” regression,
such as the “least angle selection and shrinkage operator”
(LASSO, [29]) or “ElasticNet” [30]. Both the LASSO and
the ElasticNet avoid overfitting the model by constraining
the size of coefficients (“shrinking”). One practical way of
identifying interactions between pairs of exposure vari-
ables is to enter all possible pairwise exposure interac-
tions into an algorithm such as LASSO, with a “multipli-
cative term” (e.g., interaction between exposure X;and
exposure X, is entered as X; X X,), expanding the scope
of Eq. 1 to the following, assuming all exposure variables
are continuous (and z-standardized or mean-subtracted
and divided by the standard deviation)

Y=a+bXi+...+byXm+aXixXo+.. +Z (2)

where all exposure variables X; through X, are included in the
model as “additive terms” along with all pairs of multiplica-
tive terms for interactions between pairs of variables
(e.g..X1 xX>), resulting in a model of size M plus M choose
2. Non-zero coefficients (e.g., a;) on multiplicative terms in-
dicate interaction. Therefore, the output of such a procedure
may include a list of interacting pairs of exposures — and their
additive terms — that are predictive of the phenotype or disease
outcome after shrinkage.

Along with ElasticNet, Agier et al. demonstrate feasi-
bility of other established and emerging methods for
conducting EWAS-like analyses, including use of sparse
partial least squares, “deletion/subtraction/addition”
(DSA), and Graphical Unit Evolutionary Stochastic
Search (GUESS) [31] in simulation studies. While prom-
ising, these methods still underperform in identifying sin-
gle exposures in phenotypes as the number of correlated
exposures increases, a problem that will undoubtedly in-
fluence identification of mixtures.
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Another “off-the-shelf” method that may consider de-
pendencies between exposure variables includes tree-
based methods and their variants, including random for-
ests and boosted machines. The first tree-based method,
“Classification and Regression Tree” (CART; [32]) is an
algorithm that selects combinations of variables, or expo-
sures, that are predictive of the phenotype (e.g., disease)
that resemble a “rule” or decision tree. A decision tree for
the prediction of diabetes (versus non-diabetics in a case-
control study) could resemble:

“if bisphenol A > 10 mg/dL and polychlorinated biphe-
nyl 170 > 0.01 mg/dL then predict diabetes with proba-
bility 0.8.”

Rules or decision trees can thereby represent dependencies
between multiple (greater than two) exposure variables asso-
ciated with a phenotype. However, classical CART is known
to have high variance, or their predictive capability is variable
in the test step after learning in the training dataset. This oc-
curs mainly because the algorithm is too specific or is said to
overfit the training data. Newer tree-based methods, such as
“random forests” aim to minimize this variance. Random for-
ests lower variance by executing a CART-like algorithm on
many randomized versions (or “bootstraps”) of the training
dataset and then selecting a prediction decision tree that pro-
duces an average prediction that results from the trees built on
the multiple randomized versions of the data. Usually, these
trees are deep and represent decision rules that are complex.

Lampa and colleagues applied another variant of a tree-
based approach to identify multiple exposures of a mix-
ture associated with a phenotype called “boosting” [33¢].
Boosted trees, unlike random forests, grow many small
(e.g., two to three exposures) trees that each aim to reduce
the prediction error. However, because random forests and
boosted trees harness predictive capability of multiple
trees (often hundreds and thousands of trees), additional
analytical steps must be taken to ascertain how pairs of
exposure variables are dependent or interact. This is done
through estimation of Friedman and Popescu’s H statistic
[34]. In essence, the statistic estimates how much variance
can be explained by interaction between pairs of exposure
versus their additive contributions by the boosted tree al-
gorithm and can be modified to ascertain interactions be-
tween multiple exposures. Lampa and colleagues tested
this method to identify mixtures in 27 correlated expo-
sures (e.g., PCBs, bisphenol A, etc.) in 1000 participants
that were predictive of serum bilirubin. The investigators
tentatively found an interaction between PCB-127 and
bisphenol A in predicting serum bilirubin concentrations.
Specifically, they found that an increase in the biomarker
levels of both of these analytes results in a greater than
additive increase in serum bilirubin levels.
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Power, Replication, and Interpretation of Identified
Mixtures

Practical considerations that can also be acknowledged to iden-
tify mixtures in phenotypes include (1) adequate statistical
power or, equivalently, sample size, (2) interpretation of
mixture-phenotype associations, and (3) replication of
mixture-phenotype associations. First, it is well known that
large sample sizes are required to find pairwise and higher order
interactions. Conceptually, detecting mixtures is a type of
“stratified” analysis. For example, suppose an investigator is
attempting to identify an effect of a mixture consisting of two
binary-valued exposures (£ and E>) in a phenotype Y. Since £,
and E, are binary valued, there are four possible configurations
of the two exposures of the mixture. Inferring a mixture or
interaction effect between £ and E, on Y requires data on all
four strata of £; and E,, increasing the sample size requirement
to detect stratum-specific associations in Y. As described above,
considering more than two-way interactions between expo-
sures in a putative mixture will consist of immense number of
combinations, increasing the power burden. We claim that with
current cohort sample sizes (i.e., hundreds to low thousands), it
may be impossible to reproducibly find interactions between
more than a few exposures in a phenotype.

Second, how does one interpret a mixture? Interpretation of
pairwise variables is often conveyed through stratified analy-
ses, whereby risk or correlations in a phenotype (¥) of one
exposure (e.g., X7) are displayed for different levels of another
exposure (e.g., X>) [35, 36]. In a simple regression setting, this
can be written as the following

Y =a+ 31 X1 + B,X2 + 83X 1 X X, (3)

However, testing a three-way interaction between a mix-
ture of three exposures (X, X5, and Xj3) is analytically more
complex. For example, in a simple regression setting, the
three-way interaction model is written as follows

Y:a+ﬂ1X1+52X2+ﬂ3X3 +54X1 XXerﬂSXl
X X3+ BeXo X X3+ 37X 1 X X3+ BsX1 X X2
XX3 (4)

This model is much more difficult to interpret than one that
contains only pairwise interaction terms (e.g., do all interac-
tion coefficients, s, s, 37, Bs, have to be non-zero to infer a
mixture?—the answer to this question is not an easy one to
answer). Third, and relatedly, replicating a single exposure-
phenotype association can be reduced to a simple heuristic:
the effect sizes must be concordant in independent cohorts or
datasets. But how does one replicate a set of exposures asso-
ciated with a phenotype? There are numerous coefficients to
verify consistency when attempting to replicating associations
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between mixtures in phenotype, increasing the possibility of a
false negative or positive finding. Model choice, or what mix-
ture configurations (e.g., two-way, three-way, or N-way give
example) are input into the model, will influence associations
and inference [37].

Conclusions

It is hypothesized that environmental factors act in concert, or
as mixtures, to induce changes in phenotype and risk for dis-
ease. The sheer number of possible combinations of exposures
makes the identification of mixture-phenotype associations an
analytic challenge. Specifically, identifying mixtures (i.e., in-
teraction between exposures in a phenotype) is resource inten-
sive and requires large sample sizes and power. Second, inter-
pretation and replication of synergistic relationships between
exposures associated to a phenotype are not as straightforward
as interpreting single exposure-phenotype associations.

However, going forward in the coming high-throughput
exposome era, we claim that methods such as EWAS, may
help prioritize single agents which can then be tested system-
atically to identify mixtures. Secondly, narrowing down the
potential mixtures by searching for naturally co-occurring ex-
posures in databases such as NHANES may also enhance the
search for prevalent mixtures associated with phenotypes
(e.g., examples in Fig. 1 and Table 1); however, this will come
at the cost of not identifying rare mixtures that contain rare
exposures. Third, there is promise in extending statistical ma-
chine learning methods, such as regularized regression and
tree-based methods, to identify dependent exposures. We sug-
gest that more research effort be devoted in developing new
analytic methods. In fact, as of this writing, the National
Institute of Environmental Health Sciences (NIEHS) has is-
sued a request for application (i.e., https://grants.nih.
gov/grants/guide/rfa-files/RFA-ES-17-001.html) and
sponsored a workshop [9¢] to promote the development of
new methods to identify mixtures. Ultimately, high-
throughput measurement of exposure indicators (e.g., the
exposome) will enable environmental health researchers to
dissect comprehensive environmental burden of disease.
However, new methods and larger datasets must be built to
address the vast complexity of a large number of potential
mixtures that could exist in phenotypic variability.
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