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Abstract 

Epithelial injury calls for a regenerative response from a coordinated network of epithelial stem cells and 

immune cells. Defining this network is key to preserving the repair process for acute resolution, but also 

for preventing a remodeling process with chronic dysfunction. We recently identified an immune niche for 

basal-epithelial stem cells using mouse models of injury after respiratory viral infection. Niche function 

depended on an early sentinel population of monocyte-derived dendritic cells (moDCs) that provided ligand 

GPNMB to basal-ESC receptor CD44 for reprogramming towards chronic lung disease. These same cell 

and molecular control points worked directly in mouse and human basal-ESC organoids, but the findings 

were not yet validated in vivo in human disease. Further, persistence of GPNMB expression in moDCs and 

M2-macrophages in mouse models suggested utility as a long-term disease biomarker in humans. Here we 

show increased expression of GPNMB localized to moDC-macrophage populations in lung tissue samples 

from long-term Covid, asthma, and COPD. The findings thereby provide initial evidence of a persistent and 

correctable pathway from acute injury to chronic disease with implications for cellular reprogramming and 

inflammatory memory.  

 

New and noteworthy 

Recent work indicates that a sentinel immune niche provides GPNMB to epithelial stem cells to drive 

structural remodeling and disease as exemplified by the response to respiratory viral injury. The present 

study provides initial evidence that this niche can be detected in humans in the context of comparable 

diseases (long-term Covid, asthma, and COPD) also linked to viral infection. The results support a 

persistent mechanism for inflammatory disease that might be correctable with GPNMB blockade directly 

or indirectly through related signaling pathways.   
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Introduction 

Epithelial barriers are carefully programmed for primordial defense and repair in response to injuries from 

infectious and other toxic agents. In that context, one of the most common forms of epithelial injury derives 

from respiratory viral infection, including childhood outbreaks of RSV and HEV-D68 and pandemics of 

influenza virus and coronavirus (1, 2). In each case, the host goal is to wall off infection and restore integrity 

at the barrier site. A key step in this repair process is the growth and differentiation of epithelial stem cells 

and the coordinated actions of immune cells designed to clear infectious agents. However, based on viral 

and host factors, the normal program for recovery can be skewed to an ongoing response that results in 

structural remodeling and long-term post-viral lung disease (PVLD) that can manifest as long-Covid, post-

influenza sequelae and related virus-triggered diseases such as asthma and COPD (3-6). In fact, basal-

epithelial stem cells (basal-ESCs) represent a stereotyped feature of the epithelial barrier program. In 

experimental models, this cell population can be reprogrammed for hyperplasia and metaplasia that disrupts 

lung function after native Sendai virus (SeV)  or adapted influenza A virus (IAV) infections (7-9). Similar 

activation of basal cell growth is found in Covid-19 (6, 10) that might be linked to asthma exacerbation 

(11). Defining and correcting a renewable stem cell component with the capacity for inflammatory memory 

is entry point for a disease-modifying therapy. However, the molecular basis for excess growth and immune 

activation still needed to be defined as a basis for precisely targeted correction.  

To address these issues, we recently identified a sentinel immune niche for basal-ESC reprogramming in 

mouse models of epithelial injury after respiratory viral infection. Niche function depended on monocyte-

derived dendritic cell (moDC) recruitment and then production of ligand glycoprotein nometastatic 

melanoma B (GPNMB) for delivery to receptor CD44 on basal-ESCs. This ligand-receptor interaction 

could be antibody-blocked early after infection (5-12 d) to prevent the subsequent reprogramming and 

PVLD that developed later after infection (49 d). These same moDC and GPNMB-CD44 control points 

worked directly in mouse and human basal-ESC organoids, but the findings were not yet extended to studies 

of human disease conditions. Further, persistence of GPNMB expression in moDCs and then M2-

macrophages after clearance of infection suggested utility as a long-term biomarker for chronic lung 

disease. In line with these concepts, we show here that expression of GPNMB can also be localized to lung 

moDCs and macrophages in situ in humans using post-mortem tissues from long-term Covid, asthma, and 

COPD. The results thereby provide initial evidence of methods to stratify and modify post-injury disease 

in the lung and perhaps other sites of epithelial injury.  

Results and Discussion 

To determine whether findings in experimental animal and human models translate to similar characteristics 

in human lung disease, we engaged a tissue registry of human lung samples constructed and validated as 
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described previously (3, 6, 12, 13). For long-term Covid samples, human lung tissue was obtained from a 

series of consecutive autopsies performed from April-August 2020 at 27-51 d after onset of infectious 

illness (6). For asthma, COPD, and non-disease control samples, lung tissue was obtained from a Tissue 

Registry for Advanced Lung Disease that contains whole lung explants harvested but not used for lung 

transplantation and from a tissue procurement service (IIAM, Edison, NJ) (3, 12, 13). For the present 

experiments, the clinical characteristics of lung tissue donors is summarized in Table 1, recognizing that 

full characteristics were unavailable for some donors that provided tissues collected post-mortem.  

The primary endpoints for study were the site and level of expression for GPNMB in disease versus non-

disease control conditions. Detection methods were the same those applied to studies of GPNMB expression 

in mouse models of PVLD (14) to allow for comparison across experimental and clinical conditions. Using 

this approach, immunostaining of lung tissue sections showed expression of GPNMB localized to CD11c+ 

and CD68+ cells with moDC and macrophage morphology in long-term Covid, asthma, and COPD (Figure 

1A). Quantitative morphology demonstrated that levels of GPNMB expression were significantly increased 

in each disease condition compared to non-disease control (Figure 1B). In concert with GPNMB 

expression, immunostaining for CD44 was also localized (although not exclusively) to basal epithelial cells 

under disease and control conditions (Figure 1A).  

Together, the present findings provide initial validation for comparable cell and molecular components in 

experimental models and clinical samples of chronic lung disease. In the experimental setting, GPNMB 

expression is significantly increased and localized to moDCs and macrophages in concert with basal-ESC 

hyperplasia/metaplasia and immune activation that feed-forward to promote additional immune cell 

infiltration. The relatively prolonged time course predicted a comparable GPNMB+ moDC and macrophage 

signature in chronic lung disease even long after any previous injury. Indeed, that appears to be the case 

given the prominence of GPNMB+CD68+ macrophages found in clinical samples of lung tissue in long-

term Covid-19, asthma, and COPD. Thus, the present findings are comparable to the later phase (21-49 d 

after infection) of the viral mouse model wherein similar GPNMB expression can be localized to M2 

macrophages  (14).  

The present data suggests the presence of a persistent GPNMB signal in disease, raising the question of 

mechanism for how this signal remains active. Certainly having the signal in long-lived cells (in this case 

moDCs and macrophages but in other cases basal-ESCs) is a contributing factor, but this might not be 

sufficient to explain long-term persistence over years. In that regard, beneficial instructions for host defense, 

repair, and inflammatory memory after viral infection (15) or other injuries might instead manifest as long-

term, epigenetic reprogramming for inflammatory disease. Passing these instructions in renewable cell 

populations would provide even longer reprogramming towards disease. In this case, GPNMB and related 
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biomarkers could provide guidance for detecting and correcting this type of disease. Thus, correlation with 

GPNMB signaling partners as recently identified (14, 16, 17) will also be instructive. Extending the present 

studies of post-mortem tissues to the clinical precision of a planned patient enrollment and comprehensive 

survey study will also better define the differences between non-disease and disease conditions. The present 

and pending information should provide significant practical value given the potential for correcting 

GPNMB and related signaling activities as a mechanism to modify post-injury disease.  

Materials and Methods 

Human clinical samples 

For Covid-19 samples, human lung tissue was obtained from a series of consecutive autopsies performed from April-

August 2020 at Barnes-Jewish Hospital as described previously (6). For asthma, COPD, and non-disease control 

samples, lung tissue was obtained from a Tissue Registry for Advanced Lung Disease that contains whole lung 

explants harvested but not used for lung transplantation and from a tissue procurement service (IIAM, Edison, NJ) as 

described previously (3, 6, 12, 13). Human studies were conducted with protocols approved by the Washington 

University (St. Louis, MO) Institutional Review Board and U.S. Army Medical Research and Development Command 

(USAMRDC) Office of Research Protections.  

Histology and immunostaining 

Lung tissue was fixed with 10% formalin, embedded in paraffin, cut into 5-μm sections and adhered to charged slides. 

Sections were stained with PAS and hematoxylin as described previously (9, 18). For immunostaining, sections were 

deparaffinized in Fisherbrand® CitriSolv® (Fisher), hydrated, and heat-treated with antigen unmasking solution 

(Vector Laboratories, Inc). Immunostaining was performed with the commercially available primary antibodies as 

listed in Table 2. Primary Abs were detected with secondary Abs labeled with Alexa Fluor 488 (Thermo Fisher 

Scientific) or Alexa Fluor 594 (Thermo Fisher Scientific) followed by DAPI counterstaining. Slides were imaged by 

light microscopy using a Leica DM5000 B and by immunofluorescent microscopy using an Olympus BX51, and 

staining was quantified in whole lung sections using a NanoZoomer S60 slide scanner (Hamamatsu) and ImageJ 

software as described previously (9, 18).  

Statistical analysis 

All data presented in bar-graph formats were expressed as mean ± SEM or SD as indicated. For this data, statistical 

differences between means for sample conditions were assessed using one-way analysis of variance (ANOVA) with 

Tukey correction for multiple comparisons. For all data, significance threshold was set at P<0.05. The number of 

human subjects for each condition is defined in the legend for Figure 1. These subjects were selected at random from 

the total group of subjects shown in Table 1.  
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Figure 1. GPNMB and CD44 expression in chronic lung disease. A, Representative immunostaining for GPNMB 

plus CD11c or CD68 and KRT5 plus CD44 with DAPI counterstaining in lung sections from non-disease control (n=5-

6), Covid (n=5), asthma (n=8-9), and COPD (n=9-10) subjects. B, Quantitation of immunostaining from (A). Values 
represent mean ± SEM. *P <0.05 by ANOVA and Tukey correction for multiple comparisons. No significant differences 

were found among disease conditions.  
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Table 1: Clinical characteristics of tissue sample groups.  

Characteristic Non-disease control 
(n=7) 

Covid-19 
(n=5) 

Asthma 
(n=9) 

COPD 
(n=14) 

Age 41.7 ± 19.8 52.0 ± 6.5 47.0 ± 15.2 59.9 ± 6.2 

Sex (M/F) 5/2 3/2 4/5 10/4 

Race (W/B/H) 3/0/02 1/4/0 4/3/2 13/1/0 

Pack-year ND3 ND None4 57.0 ± 27.2 

Years quit ND ND ND 4.4 ± 3.4 

FVC % pred 

 

ND ND ND 62.7 ± 15.2 

FEV1 % pred ND ND ND 17.7 ± 3.5 

FEV1/FVC ratio ND ND ND 0.22 ± 0.04 

1Data provided for the entire group of deceased subjects. The number of subjects used in 
analyses are included in the figures. Values represent mean ± SD. 
2Race data missing for some non-disease control subjects. 
3Two deceased non-disease control subjects had a history of tobacco smoking 10 pack-years 
and 15 pack-years, but smoking data was not available for all subjects. 
4Two deceased asthmatics had less than a 5 pack-year history of tobacco smoking. 

Abbreviations: ND, not determined.  
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Table 2. Antibodies for human tissue immunostaining. 

Target Protein Antibody Type Vendor Catalogue # 

CD11c Rabbit mAb Cell Signaling 97585/45581 

CD44  Rabbit mAb Abcam Ab189524 

CD68 Rabbit mAb Cell Signaling 76437 

GPNMB Mouse mAb Proteintech 66926 

KRT5 Rabbit pAb Abcam Ab53121 
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