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Abstract
The detection of genetic loci associated with Alzheimer’s disease (AD) requires large numbers of cases and controls because
variant effect sizes are mostly small. We hypothesized that variant effect sizes should increase when individuals who
represent the extreme ends of a disease spectrum are considered, as their genomes are assumed to be maximally enriched or
depleted with disease-associated genetic variants. We used 1,073 extensively phenotyped AD cases with relatively young
age at onset as extreme cases (66.3 ± 7.9 years), 1,664 age-matched controls (66.0 ± 6.5 years) and 255 cognitively healthy
centenarians as extreme controls (101.4 ± 1.3 years). We estimated the effect size of 29 variants that were previously
associated with AD in genome-wide association studies. Comparing extreme AD cases with centenarian controls increased
the variant effect size relative to published effect sizes by on average 1.90-fold (SE= 0.29, p= 9.0 × 10−4). The effect size
increase was largest for the rare high-impact TREM2 (R74H) variant (6.5-fold), and significant for variants in/near ECHDC3
(4.6-fold), SLC24A4-RIN3 (4.5-fold), NME8 (3.8-fold), PLCG2 (3.3-fold), APOE-ε2 (2.2-fold), and APOE-ε4 (twofold).
Comparing extreme phenotypes enabled us to replicate the AD association for 10 variants (p < 0.05) in relatively small
samples. The increase in effect sizes depended mainly on using centenarians as extreme controls: the average variant effect
size was not increased in a comparison of extreme AD cases and age-matched controls (0.94-fold, p= 6.8 × 10−1),
suggesting that on average the tested genetic variants did not explain the extremity of the AD cases. Concluding, using
centenarians as extreme controls in AD case–control studies boosts the variant effect size by on average twofold, allowing
the replication of disease-association in relatively small samples.

Introduction

Alzheimer’s disease (AD) is often characterized by a
slow but progressive loss of cognitive functions, leading
to loss of autonomy. [1] AD is rare at the age of 65 years,
but its incidence increases exponentially to 40% at the
age of 100 years. [2] It is currently the most prevalent
cause of death at old age and one of the major health
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threats of the 21st century. [1] Better understanding of the
etiological factors that determine AD is warranted as no
treatment is currently available. Heritability plays an
important role, as genetic factors are estimated to deter-
mine 60–80% of the risk of AD. [3] About 30% of the
genetic risk is attributable to the ε4 allele of APOE gene,
and large collaborative efforts have identified over two
dozen additional genetic loci that are associated with a
slight modification of the risk of AD. [4–17] The design
of these association studies relies on the comparison of
very large numbers of cases with age-matched controls,
such that detected associations can be attributed specifi-
cally to the disease. [18] However, given the prevalence
of AD in the aging population, it is likely that a significant
fraction of the controls will develop the disease at a later
age. Therefore, as the AD risk for future cases likely
involves the same genetic variants, using age-matched
controls may quench variant association signals. This
may, in part, explain the mostly small variant effect sizes
associated with common variants. Also, GWAS studies
mostly compare common genetic variants that are widely
propagated in the population; as a consequence, these
have mostly small effects on AD risk. [19] Rare
genetic variants often have larger effect sizes than com-
mon variants, but as there are fewer carriers available in
the population, the requirement for large sample sizes
stands. [20]

The power of genetic analyses is determined by the
variant frequency, the effect size of the variant, the sample
size, and significance threshold set to be obtained. [21]
Therefore, instead of increasing sample sizes of genetic
studies to detect novel disease-associated genetic loci, an
alternative strategy is to increase variant effect sizes by
sampling individuals with extreme phenotypes. [20, 22,
23] For AD and other age-related diseases, extreme cases
may be defined by having a relatively early age at disease
onset, and having the phenotypic features characteristic
for the disease, as defined by diagnostic assessment.
Extreme controls are represented by individuals who
reach extreme ages without the disease. [22, 24, 25]
Indeed, in a case–control study of type 2 diabetes, the
effect sizes for variants that were previously associated
with the disease were increased when using centenarians
as extreme controls. [24] The effect of using extreme
phenotypes in other age-related diseases has not been
studied.

Here, we explored the potential of using extreme phe-
notypes for genetic studies of AD by investigating the
change in effect size of known AD-associated variants.
Furthermore, using an age- and population-matched refer-
ence group, we investigated the contribution of each
extreme phenotype.

Methods

Cohort description

As extreme AD cases group (denoted by EA), we used
1,149 AD cases from the Amsterdam Dementia Cohort
(ADC). The ADC comprises patients who visit the memory
clinic of the VU University Medical Center, The Nether-
lands. [26, 27] This cohort of AD patients is extensively
characterized and comprises 503 early-onset cases (denoted
by eEA) with an age at onset < 65 years, and 646 late-onset
cases (denoted by lEA). Of the 503 early-onset cases, 255
had an age at onset < 60 years (i.e., young early onset,
denoted by yEA). The diagnosis of probable AD was based
on the clinical criteria formulated by the National Institute
of Neurological and Communicative Disorders and Stroke
—Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) and based on National Institute of
Aging–Alzheimer association (NIA-AA). [26–29] At base-
line, all subjects underwent a standard clinical diagnostic
assessment including neurological examination and stan-
dard blood tests. In addition, all subjects underwent mag-
netic resonance imaging, an electroencephalogram, and
cerebrospinal fluid (CSF) [30] was analyzed for most
patients. Clinical diagnosis is made in consensus-based,
multidisciplinary meetings. Together, this elaborate diag-
nostic procedure reduces the chance of misdiagnosis. The
extensive phenotyping in combination with the early dis-
ease onset generates an AD cohort that can be regarded
“extreme”.

As extreme control group (denoted by EC), we used
268 self-reported cognitively healthy centenarians from
the 100-plus Study cohort. [31] This study includes
Dutch-speaking individuals who (i) can provide official
evidence for being aged 100 years or older, (ii) self-report
to be cognitively healthy, which is confirmed by a proxy,
(iii) consent to donation of a blood sample, (iv) consent to
(at least) two home visits from a researcher, and (v)
consent to undergo an interview and neuropsychological
test battery.

As “normal controls” (denoted by NC) we used 1,717
middle-aged (55–85 year-old) individuals from a repre-
sentative sample of Dutch individuals from the Longitudinal
Aging Study Amsterdam (LASA) cohort. [32, 33] LASA is
an ongoing longitudinal study of older adults initiated in
1991, with the main objective to determine predictors and
consequences of aging.

The Medical Ethics Committee of the VU University
Medical Center (METC) approved the ADC cohort, the
LASA study and the 100-plus Study. All participants and/or
their legal guardians gave written informed consent for
participation in clinical and genetic studies.
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Genotyping and imputation of 29 selected
AD-associated genetic variants

We selected 29 single-nucleotide variants for which evi-
dence for a genome-wide significant association with AD
was found in previous studies (Table S1, Table S2). [4–17]
Genetic variants were determined by standard genotyping or
imputation methods. In brief, we genotyped all individuals
using the Illumina Global Screening Array (GSAshar-
edCUSTOM_20018389_A2) and applied established qual-
ity control methods. [34] We used high-quality genotyping
in all individuals (individual call rate > 98%, variant call
rate > 98%), individuals with sex mismatches were exclu-
ded and Hardy–Weinberg equilibrium-departure was con-
sidered significant at p < 1 × 10−6. Genotypes were prepared
for imputation using provided scripts (HRC-1000G-check-
bim.pl). [35] This script compares variant ID, strand and
allele frequencies to the haplotype reference panel (HRC
v1.1, April 2016). [35] Finally, all autosomal variants were
submitted to the Michigan imputation server (https://imputa
tionserver.sph.umich.edu). [34] The server uses SHAPEIT2
(v2.r790) to phase data and imputation to the reference
panel (v1.1) was performed with Minimac3. [34, 36] A total
of 1,149 extreme AD cases, 1,717 normal controls and 268
extreme (centenarian) controls passed quality control. Prior
to analysis, we excluded individuals of non-European
ancestry (NEA= 67, based on 1000Genomes [37] cluster-
ing) and individuals with a family relation (NEA= 9, NEC=
13, NNC= 53, identity-by-descent ≥ 0.3), [38] leaving 1,073
extreme AD cases (NeEA= 464 and NlEA= 609), 1,664
normal controls and 255 centenarian controls for the
analysis.

Statistical analysis

For each AD-associated variant, we explored the change in
effect size (E) relative to reported effect sizes when (1)
comparing extreme AD cases with extreme (centenarian)
controls (EA vs EC); (2) comparing extreme AD cases with
normal controls (EA vs NC); and (3) comparing normal AD
cases with extreme (centenarian) controls (NA vs EC). To
calculate variant effect sizes, we used logistic regression
models correcting for population stratification (principal
components 1–6). [39, 40] We calculated odds ratios rela-
tive to the Haplotype Reference Consortium (HRC) alter-
native allele assuming additive genetic effects, and
estimated 95% confidence intervals (CIs).

We estimated the change in effect size relative to
reported effect sizes (E) as follows:

Ek
1�2 ¼

logORk
1�2

logORk
l

ð1Þ

where Ek
1�2 indicates the effect size change for variant k

in a comparison of cohort 1 and cohort 2, e.g, EAPOE ε4
EA�EC

indicates the effect size change for the APOE ε4 variant
when extreme AD cases (EA) are compared with cognitive
healthy centenarians (EC). The logORk

1�2denotes the effect
size of variant k when comparing cohort 1 and cohort 2. The
effect size of variant k reported in literature (Table S1) is
denoted by logORk

l .
We estimated the added value of using extreme

(centenarian) controls rather than “normal age-matched
controls” in a case–control analysis. For this, we wanted
to compute the change in effect size when comparing
non-extreme AD cases with extreme controls (NA vs EC).
As we do not have direct access to “normal AD cases”,
we estimated the effect size for the NA-EC comparison
by summing (1) the effect size from the comparison
of “normal AD cases” and “normal controls”, as
reported in literature (logORk

l ), and (2) the effect size
from the comparison of normal controls (NC)
with extreme (centenarian) controls (NC vs EC), i.e.,
logORk

NA�EC ¼ logORk
l þ logORk

NC�EC. The added value
of using extreme controls in a case–control analysis then
becomes:

Ek
NA�EC ¼ logORk

l þ logORk
NC�EC

logORk
l

ð2Þ

To assess whether age at disease onset had an impact
on the change in effect size due to the extreme cases
(EEA�NC), we estimated the logORk

eEA�NC (early-onset
extreme AD cases vs normal controls), logORk

lEA�NC

(late-onset extreme AD cases vs normal controls) and the
logORk

yEA�NC (younger early-onset AD cases vs normal
controls), and their 95% CI. Then, we computed the
probability that the effect size changes Ek

eEA�NC and
Ek
lEA�NCdiffered using a two-samples z-test (two-tailed

p value).

Determining significance of change in effect size

For each variant, we estimated Ek
1�2 and a 95% CI by

sampling (S= 10,000) from the logORk
1�2 and logORk

l

based on their respective standard errors. The probability of
divergence between the distributions of the logORk

1�2and
the logORk

l was determined using a two-sample z-test (two-
tailed p value).

The probability of observing Ek
1�2>1, i.e., an increased

effect size for variant k, is considered to be a Bernoulli
variable with p= 0.5 (equal chance of having an increased/
decreased effect). The number of variants that show an
increase in effect (Ek

1�2>1) then follows a binomial
distribution.
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The average change in effect size across all K= 29 tested
variants is calculated as follows:

E1�2 ¼ 1
K

XK

k

Ek
1�2 ð3Þ

Confidence intervals and probability of divergence
between E1�2 and previously reported effect sizes were
estimated by sampling (S= 10,000, two-tailed p value).

Quality control of genotype data, population stratification
analysis, and relatedness analyses were performed with
PLINK (v1.90b4.6), whereas association analysis, downstream
analyses, and plots were performed with R (v3.3.2). [41, 42]

Results

After quality control of the genetic data, we included 1,073
extreme AD cases (with mean age at onset 66.4 ± 7.8 and
52.7% females), 1,664 normal (age-matched) controls
(mean age at inclusion 66.0 ± 6.5, 53.7% females), and 255
cognitive healthy centenarians as extreme controls (mean
age at inclusion 101.4 ± 1.3, 74.7% females) (Table 1).
Within the extreme AD cases group, there were 464 early-
onset cases (mean age at onset 59.1 ± 4.1, 54% females),
and 609 late-onset cases (mean age at onset 72.1 ± 4.8, 51%
females). The age at onset of the extreme AD cases was on
average 8.2 years earlier compared with previous GWA
studies; the age at disease onset was on average 15.4 years
earlier in early-onset cases and 2.5 years earlier in late-onset
cases, whereas the age at study inclusion of our centenarian
controls was on average 29.5 years higher than for pre-
viously published controls (Fig. 1).

Effect of comparing extreme cases and centenarian
controls

In a genetic comparison of extreme AD cases and cen-
tenarian controls (EA–EC comparison) the average effect

size over all 29 genetic variants was 1.90-fold increased
relative to the effect sizes reported in published studies
(EEA�EC = 1.90 ± 0.29; p= 9.0 × 10−4) (Fig. 3). For 21 out
of 29 variants, we observed an increased effect size
(Ek

EA�EC > 1), which is significantly more than expected by
chance (p= 1.2 × 10−2) (Fig. 2 and Table 2). The increase
in effect size ranged from 1.06 (variant near CASS4) to 6.46
(variant in TREM2 [R47H]) and was observed both in
common variants (MAF > 1%, n= 19) and rare variants
(MAF < 1%; TREM2 [R47H] and ABI3) (Table 2). For
variants near or in the genes TREM2 (R47H), SLC24A4-
RIN3, and ECHDC3, the increase was more than fourfold
compared with previously reported effect sizes. For nine
variants the effect size increase was two- to fourfold (in or
near the genes NME8, PLCG2, HLA-DRB1, CD2AP,
ZCWPW1, ABCA7 [A > G], APOE [ε2], HS3ST1, and
ABI3, in order from high to low effect size increases). For
nine variants the increase was between one- and twofold (in
or near genes, APOE ε4, EPHA1, CELF1, PTK2B,
MS4A6A, SORL1, BIN1, PICALM, and CASS4) (Fig. 2).
The effect sizes for six genetic variants were not increased
in our extreme phenotype analysis compared with pre-
viously reported effect sizes (Ek

EA�EC between 0 and 1): in
or near TREM2 (R62H), KANSL1, CR1, ABCA7 (G > C),
CLU, and INPP5D. At last, the effect sizes of two variants
were in the opposite direction compared to previously
reported effects (Ek

EA�EC < 0). Specifically, for the variant in
FERMT2 we found an inverted direction of effect size and a
lower magnitude of effect as compared with previous

Table 1 Population characteristics

Extreme AD
Cases (EA)

Centenarian
controls (EC)

Normal
controls (NC)

Number of
individuals

1,073 255 1,664

Females (%) 564 (52.6) 191 (74.9) 893 (53.7)

Age (SD)a 66.4 (7.8) 101.4 (1.3) 66.0 (6.5)

ApoE ε4 (%) 981 (42.7) 44 (8.6) 533 (16.0)

ApoE ε2 (%) 76 (3.5) 78 (15.3) 304 (9.1)

aAge at onset for extreme Alzheimer’s disease cases, age at study
inclusion for extreme controls and normal controls; SD, standard
deviation; ApoE,Apolipoprotein E allele count for ε4 and ε2, respectively.
Reference to the cohorts reported in this table are: [26, 27, 31, 32]

Fig. 1 Comparison of age at disease-onset and age at inclusion for cases
and controls in previously reported case-control comparisons, and in our
extreme phenotypes comparison. Weighted mean and (combined)
standard deviation of the age at onset for AD cases and age at inclusion
for controls. As weights, we used the sample sizes of each GWA study.
Note that previous case-control studies of AD included samples from
multiple cohorts, sometimes overlapping across studies. References to
the cohorts reported in this figure are: [7, 8, 13, 25, 26, 30]

Centenarian controls increase variant effect sizes by an average twofold in an extreme. . . 247



studies (EFERMT2
EA�EC between 0 and − 1). For the variant near

MEF2C we observed a larger effect size as compared with
those previously published, but in the opposite direction
(EMEF2C

EA�EC<− 1).
Overall, for seven common variants (MAF > 1%), the

effect size was significantly increased relatively to the
previously reported effect sizes (Table 2), in or near genes
APOE ε2 (2.2-fold, p= 1.4 × 10−7), APOE ε4 (2.0-fold,
p= 1.5 × 10−9), SLC24A4-RIN3 (4.5-fold, p= 2.8 × 10−3),
ECHDC3 (4.6-fold, p= 1.8 × 10−2), PLCG2 (3.3-fold p=
2.8 × 10−2), NME8 (3.9-fold, p= 3.3 × 10−2), and MEF2C
(−1.9-fold, p= 3.3 × 10−2). Variants with significant effect
size changes were also more likely to be associated with AD
in a comparison of extreme cases and centenarians. The
association with AD reached nominal significance (p <
0.05) in 10 out of 21 variants with a changed effect size
(Table 2). Next to APOE ε4 (logORAPOE ε4

EA�EC = 2.1, SE=
0.17, p= 1.3 × 10−33) and APOE ε2 (logORAPOE ε2

EA�EC =−1.8,
p= 3.2 × 10−21), variants in or near these genes were sig-
nificantly associated with AD: SCL24A4-RIN3, PLCG2,
ECHDC3, NME8, BIN1, ZCWPW1, ABCA7 (A >G), and
HLA-DRB1 (Table 2).

Effect of using extreme AD cases

The average effect size in a comparison of extreme AD
cases with normal controls (EA vs NC) did not significantly

change relative to the previously reported effect sizes
(EEA�NC= 0.94 ± 0.12, p= 6.8 × 10−1) (Fig. 3). The effect
size was significantly increased for APOE ε4 variant
(1.3-fold, p= 1.4 × 10−5), and nominally significant for
APOE-ε2 (1.4-fold, p= 1.7 × 10−2). For 14 individual var-
iants, we observed an increased effect size, but this was not
more than what could be expected by chance (p= 0.5,
Figure S1 and Table S3).

We then separated AD cases into early-onset extreme
AD cases (NeEA= 464, age at onset < 65 years) and late-
onset extreme AD cases (NlEA= 609), and estimated the
change in effect sizes. Unexpectedly, the average effect size
in the early-onset cases was lower relative to previously
published effect sizes (EeEA�NC was 0.86 ± 0.16, p= 7.9 ×
10−1), whereas for late-onset cases the effect size was
similar to published effect sizes (ElEA�NC was 1.01 ± 0.14,
p= 4.6 × 10−1) (Figure S3 and Table S4). We found sig-
nificant differences between the effect sizes in early-onset
and late-onset AD cases (logORk

eEA�NC and logORk
lEA�NC,

respectively) for the variants in or near APOE ε2
(− 0.41 vs − 0.89; p= 5.0 × 10−2), ZCWPW1 (0.01 vs
0.24: p= 1.6 × 10−2) and MS4A6A (0.12 vs − 0.13;
p= 7.9 × 10−3). When we extended the comparison with
only the youngest early-onset AD cases (NyEA= 255, age at
onset < 60 years) and normal controls, the average effect
size was still lower than previously published effect sizes
(EyEA�NC was 0.87 ± 0.20, p= 7.4 × 10−1) (Table S4).

Fig. 2 Change in variant effect-size using extreme cases and cen-
tenarian controls relative to published effect-sizes, for 29 AD associated
genetic variants. Dashed red line at Ek

EA−EC= 1 indicates same effect-
size as reported in literature. Orange bars indicate nominal statistical

significance for the association with AD (p < 0.05). Stars indicate sig-
nificant changes of effect-size relative to previously reported effect-
sizes (p < 0.05, two-sample z-test)
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Effect of extreme controls

In a comparison of normal AD cases and extreme (cen-
tenarian) controls (NA vs EC), the effect size was on
average 1.88-fold higher relative to previously reported
effect sizes (ENA�EC = 1.88 ± 0.24, p= 1.0 × 10−4) (Fig. 3).
This was almost identical to the average increase in effect
size when we compared the extreme cases with centenarian
controls (EEA�EC = 1.90 ± 0.29; p= 9.0 × 10−4) (Fig. 3). At
the variant level, the change in effect sizes was similar in
both analyses (Figure S4-A). In fact, in a comparison of
normal AD cases with extreme controls, we observed an
increased effect size for 24/29 variants relative to published
variant effect sizes (Ek

NA�EC > 1), which is more than
expected by chance (p= 2.7 × 10−4) (Figure S2 and
Table S3). As in the comparison of the extremes, we found
a significant increase in effect size for variants in or near
APOE-ε2 (1.7-fold, p < 5 × 10−5), APOE-ε4 (1.7-fold, p <
5 × 10−5), NME8 (4.5-fold, p= 3.5 × 10−3), SLC24A4-RIN3
(3.9-fold, p= 4.5 × 10−3) and PLCG2 (2.9-fold, p= 1.9 ×
10−2). The main exception to this was the increased effect
size of the rare TREM2 (R47H) variant (allele frequency=
0.001), which was increased more when using extreme AD
cases than when using normal AD cases in a comparison with
extreme controls (6.46-fold vs 3.42-fold) (Figure S4-A). For
this rare variant we identified seven carriers in 1,073
extreme cases, and none in 255 centenarian controls. The
effect size increase did not reach significance as CIs were
large, which is according to expectations for very rare
variants in small sample sizes. However, overall, the
extreme controls contributed more to the effect size change
than the extreme cases in a comparison of the extremes
(Figure S4-B).

Discussion

In this study, we found that the effect sizes of 29 variants
previously identified in genetic case–control analyses for
AD were increased in a case–control analysis of extreme
phenotypes. The use of extreme AD cases and cognitively
healthy centenarians as extreme controls increased effect
sizes for association with AD up to sixfold, relative to
previously published effect sizes. On average, the use of
extreme phenotypes almost doubled the variant effect size.
Although changes in effect size were different per variant,
the effect size increase was driven mainly by the cen-
tenarian controls.

This profound increase enabled us to replicate the asso-
ciation with AD of 10 common variants in relatively small
samples. In a comparison of AD cases (either normal or
extreme) with centenarian controls, we observed significant
effect size increases for variants in or near PLCG2, NME8,
ECHDC3, SLC24A4-RIN3, APOE-ε2, and APOE-ε4. We
also found a large effect size increase for the rare TREM2
(R47H) risk variant, which did not reach significance owing
to variant rareness. This suggests that the tested variants or
loci might (positively or negatively) contribute to the long-
term preservation of cognitive health and/or to longevity in
general. PLCG2, NME8, and TREM2 are implicated in
immunological processes, [8, 43] whereas SLC24A4,
ECHDC3, and APOE are involved in lipid and cholesterol
metabolism (Table S5). [17, 44, 45] Both these processes
were previously associated with longevity, [46, 47] such
that an overlapping etiology of maintained cognitive health
and maintained overall health may contribute to the
observed increase in effect size. However, with the excep-
tion of the APOE locus, these loci were thus far not asso-
ciated with longevity in GWA studies. [48–51] We
speculate that the association might be dependent on the
maintained cognitive health in the centenarians of the 100-
plus Study cohort. [31] Alternatively, longevity studies may
have been underpowered to detect the association of these
loci with extreme survival. Future studies will have to
establish the mechanism behind the association of these
genes with preserved cognitive health. Next to APOE, the
HLA-DRB1 locus has been associated with both AD [13]
and longevity. [48] However, its most informative variants,
rs9271192 for AD and rs34831921 for longevity, are not in
linkage disequilibrium (r2= 0.04), suggesting that these are
independent signals.

Interestingly, the variants for which the effect size did
not significantly increase when using extreme cases and
centenarian controls are also involved in immunity (variants
in/near TREM2, CR1, ABCA7, CLU, INPP5D, and MEF2C)
and lipid/cholesterol metabolism (variants in/near ABCA7
and CLU) (Table S5). We speculate that variants with an
increased effect size might influence changes in cognitive

Fig. 3 Average increase in effect-size for the different comparisons.
Average increase in effect sizes for: Extreme AD cases (NEA = 1,073),
of which early onset cases (NeEA = 464), late onset cases (NlEA = 609);
centenarian controls (NEC = 255); normal controls (NNC = 1,664).
95% confidence intervals were estimated by random sampling
(S = 10,000)
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health during aging while variants with no increased effect
size do not influence these processes.

Using extreme cases did not increase the variant effect
sizes relative to published effect sizes, even though most of
the extreme cases were biomarker confirmed and their mean
age at onset was 8.2 years younger than the mean age at
onset in other studies. [7, 8, 13] The only exception to this
was the (non-significant) effect size increase for the rare
TREM2 (R47H) risk variant, which was driven in part by
using extreme AD cases. This suggests that based on the
tested genetic variants, the “phenotypically extreme” cases
presented in this study were not genetically more extreme
than cases presented in other studies. In fact, the variant
effect sizes of early-onset AD cases were on average lower
than the variant effect size of late-onset AD cases, and this
persists even when selecting only the youngest early-onset
cases. One explanation for this observation may be that an
early age at onset may be driven by rare, high-impact var-
iants, [19] whereas the disease onset at later ages may depend
to a greater extent on more common risk variants. Further-
more, we found significant differences at the variant level,
between the effect sizes in early-onset and late-onset cases
for common variants in/near ZCWPW1 and APOE ε2, and
also in —opposite directions— for the variant in MS4A6A.
These results are a first indication that these variants may
differentially influence age of disease onset, however, future
experiments will have to confirm this finding.

Our main finding is that, in a genetic case–control study
of extreme phenotypes, the majority of the observed
increase in effect size is attributable to the extreme controls,
implicating that collecting cohorts of extreme controls is
profitable. We note that the centenarians used in this study
were selected for their preserved cognitive health, which
might have further enlarged the effect size increase for
genetic variants that were previously identified for their AD
association. We acknowledge that using centenarians as
controls in genetic studies of AD could result in the
detection of variants associated with extreme longevity,
such that newly detected AD-associations need to be ver-
ified in an age-matched AD case–control setting. Never-
theless, the effect sizes for all but two variants are in the
same direction as previously reported, which suggests that
the tested AD variants do not have significant pleiotropic
activities that counteract their AD-related survival effects.
Notably, the two variants with an opposite effect, in or near
MEF2C and FERMT2, also did not associate with AD in
our age-matched case–control analysis. This suggests that
the AD association of these variants is not consistent across
studies. This is in line with results from unpublished
GWASs of AD in which AD-associations of variants near
theMEF2C and FERMT2 genes were not replicated [52, 53]
(p= 5.4 × 10−3, [52] p= 3.0 × 10−4 for MEF2C [53] and
p= 1.6 × 10−5 for FERMT2 [53] variant, with 5.0 × 10−8

being the genome-wide significance threshold). A strength
of our study is that our cohorts of AD patients and controls,
were not previously used in the discovery of any of the
known AD-associated variants; [4–17] we thus provide
independent replication in a genetically homogeneous
group of individuals, as they all came from one specific
population (Dutch).

Concluding, in our comparison of cases and controls
with extreme phenotypes we found that on average, the
effect of AD-related variants in genetic association studies
almost doubled, whereas at the variant level effect sizes
increased up to sixfold. The observed increment in effect
size was driven by the centenarians as extreme controls,
identifying centenarians as a valuable resource for genetic
studies, with possible applications for other age-related
diseases.
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