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Inhibitors of SARS-CoV-2
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Abstract
The current strategy for treating the Covid-19 coronavirus disease involves the repurposing of existing drugs or the use of
convalescent plasma therapy, as no specific therapeutic intervention has yet received regulatory approval. However,
severe adverse effects have been reported for some of these repurposed drugs. Recently, several in silico studies have
identified compounds that are potential inhibitors of the main protease (3-chymotrypsin-like cysteine protease) and the
nucleocapsid protein of SARS-CoV-2. An essential step of drug development is the careful evaluation of toxicity, which has
a range of associated financial, temporal and ethical limitations. In this study, a number of in silico tools were used to predict
the toxicity of 19 experimental compounds. A range of web-based servers and applications were used to predict
hepatotoxicity, mutagenicity, acute oral toxicity, carcinogenicity, cardiotoxicity, and other potential adverse effects. The
compounds were assessed based on the consensus of results, and were labelled as positive or negative for a particular
toxicity endpoint. The compounds were then categorised into three classes, according to their predicted toxicity. Ten
compounds (52.6%) were predicted to be non-mutagenic and non-hERG inhibitors, and exhibited zero or low level
hepatotoxicity and carcinogenicity. Furthermore, from the consensus of results, all 19 compounds were predicted to be
non-mutagenic and negative for acute oral toxicity. Overall, most of the compounds displayed encouraging toxicity
profiles. These results can assist further lead optimisation studies and drug development efforts to combat Covid-19.
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Introduction

Since the first case was reported in Wuhan, China, in

December 2019,1 the Covid-19 coronavirus disease pan-

demic, caused by the severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2), has led to an unprecedented

120,383,919 cases across the globe as of 17 March 2021.2

This is the third coronavirus outbreak in approximately 17

years; the previous outbreaks occurred in China in 2002

(SARS) and Saudi Arabia in 2012 (Middle East Respiratory

Syndrome, MERS).3 Coronaviruses are enveloped, single-

stranded positive-sense RNA viruses belonging to the Beta-

coronavirus genus.4 Phylogenetic studies have shown that

SARS-CoV-2 is closely related to the bat SARS-like cor-

onavirus, but the intermediate hosts that ultimately led to its

transmission to humans have not yet been determined.4

However, a recent study suggested that pangolins may be

a potential intermediate host.5

The infection primarily causes pneumonia-like symp-

toms, including cough, fever, headache, fatigue and short-

ness of breath.6 Human-to-human transmission occurs by

close contact with an infected individual, mainly through the

spread of respiratory droplets during coughing or sneezing.

Currently, as no specific drugs have received approval,6

many existing antiviral and antimalarial drugs are being

repurposed for treatment. Antivirals (remdesivir, lopinavir/

ritonavir, ribavirin and favipiravir) and antimalarials (chlor-

oquine and hydroxychloroquine) have been recommended

for treatment; remdesivir, in particular, has shown promising

results.7 However, the safety and efficacy profiles of these

drugs for treating Covid-19 are still being evaluated in clin-

ical trials, and they have been associated with numerous

adverse effects, including gastrointestinal abnormalities

(such as diarrhoea and vomiting),8 higher risk of liver
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impairment and cardiac complications.9 Another treatment

option that is being studied is convalescent plasma ther-

apy, which involves the transfer of convalescent plasma

(containing high titres of antibodies against SARS-CoV-2

antigens) from individuals who have recovered from

Covid-19 to individuals at high risk (as a prophylactic)

or as a means of treatment. Although this therapy has been

shown to lead to an improvement in symptoms, the studies

performed up to now have involved small sample sizes,

and large scale studies are required to establish whether it

results in a significant reduction in mortality.7

Several in silico studies on the identification of experi-

mental compounds that can specifically target SARS-CoV-2

have been published.10,11 The experimental compounds

were docked with either the crystal structure or homology-

modelled structure of the main protease Mpro (also known as

3-chymotrypsin-like cysteine protease (3CLpro))10–12 or the

nucleocapsid protein (N protein)13 of the virus (Figure 1).

Many of the screened compounds exhibited high docking

scores and thus might represent promising treatments. How-

ever, toxicity has to be closely monitored during preclinical

studies before these compounds can be used. Drug

Figure 1. The structure and life cycle of SARS-CoV-2 and the biological targets for inhibition.

Note: The colour version of this image is available online.
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development generally can take around 12 years,14 and the

preclinical toxicity testing of compounds to evaluate adverse

effects and endpoints also has both financial and ethical

limitations. Computational toxicity prediction methods can

be used to carry out preliminary screening to predict appro-

priate toxicity endpoints, and thus guide further toxicity tests

and compound selection.15,16 This approach is particularly

helpful in speeding up drug development efforts, which is of

paramount importance during health crises such as the cur-

rent pandemic. A host of tools based on various in silico

modelling methods, such as structural alerts, read-across and

quantitative structure–activity relationships (QSARs), have

been developed and are widely used to facilitate the predic-

tion of toxicity.

In this study, a range of in silico toxicity prediction tools

were used to evaluate the toxicity of some experimental

compounds that have been recently reported in the litera-

ture as potentially targeting SARS-CoV-2. The results

obtained were used to categorise the compounds according

to their predicted toxicity profiles.

Material and methods

A literature search was performed with PubMed to find

papers that described the virtual screening of compounds

that could potentially target SARS-CoV-2. The keywords

used were: ‘Covid-19’, ‘SARS-CoV-2’, ‘docking’, ‘virtual

screening’, ‘inhibitors’, ‘treatment’ and ‘therapy’. Based

on the search results, 19 top-scoring experimental com-

pounds and their respective targets were identified from

four studies published online before 18 April 2020

(Table 1). Of these 19 compounds, 17 were selected from

docking studies screening for potential Mpro/3CLpro inhibi-

tors10–12 and two compounds were selected from a study

that screened potential N protein inhibitors.13 In addition,

molecular dynamics simulations and ADME (absorption,

distribution, metabolism and excretion) predictions had

been completed to assess the dynamic behaviour and

drug-likeness of the top hits, respectively, in three of

the chosen studies.11–13 Among the 19 compounds,

15 belonged to the ZINC15 database,17 and four were from

PubChem.18 The compound pairs ZINC000543523838 and

ZINC000543523837, and ZINC000544491494 and

ZINC000544491491, are stereoisomers (Table 1).

For all compounds, the predictions were performed by

using web-based servers and applications that had been

developed based on distinct approaches, and that had

shown considerably high accuracy (� 80%) and sensitivity.

It was ensured that compounds were within the applicabil-

ity domain of the respective prediction models of any tools

used. Some of the tools displayed a statement directly indi-

cating whether or not a compound was within the applic-

ability domain. In other cases, the applicability domain

index was used — with a score of zero indicating that a

compound fell outside the applicability domain of that tool.

The compounds were primarily assessed based on the fol-

lowing parameters: hepatotoxicity, mutagenicity, acute

oral toxicity and carcinogenicity. Hepatotoxicity is one of

the leading causes of withdrawal of drugs from the market,

and is a key toxicity endpoint that is often assessed during

preclinical evaluation.19 Mutagenicity and acute oral toxi-

city testing (as a part of genotoxicity testing) are routinely

recommended for pharmaceuticals by regulatory agencies

such as the US Food and Drug Administration (FDA).20,21

Although FDA guidelines recommend carcinogenicity test-

ing for pharmaceuticals whose expected clinical use is for a

minimum of six months,22 we performed carcinogenicity

predictions to obtain an in-depth toxicity profile for each

compound. Qamar et al.11 performed toxicity predictions

for the compound with PubChem ID 11610052; although

their results had predicted that the compound was non-toxic

for mutagenicity and carcinogenicity, only one web-based

server was utilised in their study. In this study, three dif-

ferent applications/web-based servers were used for toxi-

city prediction for each of the listed parameters, and a

consensus prediction was obtained based on specific para-

meters, such as probability and the applicability domain of

each application, to acquire a more reliable prediction.15,16

In addition to the above effects, cardiotoxicity was also

assessed. However, as only one web-based server was used,

a consensus prediction was not necessary.

Hepatotoxicity

Hepatotoxicity (referred to as drug-induced liver injury

(DILI) in the case of drugs) is a relatively common side

effect of numerous medications, in part because the liver

Table 1. The 19 compounds selected for toxicity prediction.

Compound Reference

ZINC000541677852 10
ZINC000636416501 10
ZINC000543523838a 10
ZINC000544491494b 10
ZINC000544491491b 10
ZINC000541676760 10
ZINC000543523837a 10
ZINC000152979101 10
ZINC000152975931 10
ZINC001627499877 10
ZINC001362111980 10
ZINC000003118440 12
ZINC000000146942 12
PubChem CID: 444603 11
PubChem CID: 444743 11
PubChem CID: 444745 11
ZINC001014061081 11
ZINC001014061061 11
PubChem CID: 11610052 13

Stereoisomer pairs are indicated by a and b, respectively.
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receives a relatively high dose of orally dosed drugs from

the gastrointestinal tract and acts as the chief site of drug

metabolism, potentially resulting in reactive (toxic) meta-

bolites. Alternatively, the first-hand exposure of the liver to

toxic drugs that can be metabolised in situ to non-toxic

derivatives before reaching other organs, also makes the

liver a highly vulnerable organ. Adverse hepatic effects can

lead to the discontinuation of a drug — in extreme cases,

patients might experience acute liver failure and even

require liver transplantation.23 Three toxicity prediction

servers/applications were employed in the current study for

the assessment of hepatotoxicity, namely: ProTox-II (ver-

sion last updated in March 2020);24 DL-DILI Prediction

Server;25 and the VEGA platform (version 1.1.5).26,27

ProTox-II and DL-DILI are based on a random forest

machine learning algorithm and deep learning algorithm,

respectively. On the other hand, the VEGA platform imple-

ments a rule-based model based on the determination of

structural alerts in the input compound; the alerts are

labelled as either toxic or non-toxic.

For the prediction, the canonical SMILES representa-

tions of the compounds were provided as input to both

ProTox-II and VEGA, while the SDF files of the com-

pounds were provided as the input to the DL-DILI server.

The DL-DILI server offers a choice between two models:

the DL-Combined model and the DL-Liew model. In this

study, the DL-Combined model was selected for the pre-

diction process, due to its higher accuracy, sensitivity and

specificity. Both ProTox-II and DL-DILI display whether

the compound is positive or negative for hepatotoxicity, as

well as the probability associated with the result. VEGA

displays the positive/negative result, the applicability

domain index, similarity and accuracy indices, and the

structural alerts found in the compound. If the compound

showed a positive result for hepatotoxicity on two or more

servers/applications, it was classified as ‘possibly hepato-

toxic’; if not, it was labelled as ‘non-hepatotoxic’. The

compounds labelled as ‘possibly hepatotoxic’ were then

categorised according to the structural alerts found in the

respective compound and the degree of hepatotoxicity

associated with similar compounds (for read-across evalua-

tion). Among these, compounds with > 0.8 similarity to

previously withdrawn drugs or well-known hepatotoxic

compounds/drugs, or with relevant structural alerts (that

is, the alerts associated with such hepatotoxic compounds)

were additionally labelled as ‘high possibility of hepato-

toxicity’. The rest of the compounds were labelled as ‘low

possibility of hepatotoxicity’. The hepatotoxicity informa-

tion about similar compounds was obtained from the Liver-

Tox database.28

Mutagenicity

Mutagenicity testing is primarily based on in vitro bacterial

and mammalian assays,29 such as the Ames assay, where

the mutagenicity of a substance is tested with Salmonella

typhimurium.30 ProTox-II, Toxtree31 and the CONSEN-

SUS mutagenicity (Ames assay) model, as well as four

distinct QSAR models of VEGA (namely, CAESAR, ISS

(as implemented in Toxtree), SarPy and KNN), were used

for the prediction. Toxtree employs a ‘rule-based’ predic-

tion built on the Benigni/Bossa rulebase for mutagenicity

prediction;32 on selection of the relevant decision tree, it

displays the structural alerts found in each compound. The

CONSENSUS model displays a consensus result of the

four models — CAESAR, ISS (as implemented in Tox-

tree), SarPy and KNN.

All three applications were provided with the canonical

SMILES representation of the compounds as the input.

Toxtree displayed the presence/absence of structural alerts

for mutagenicity, while ProTox-II and the VEGA models

showed whether a compound is positive or negative for

mutagenicity and the associated parameters, such as the

corresponding probability on ProTox-II. The consensus

approach was also used here for labelling the compounds

as ‘possibly mutagenic’ or ‘non-mutagenic’.

Acute oral toxicity

Acute oral toxicity testing involves the testing of sub-

stances to identify any health hazards that might occur upon

oral administration, usually after exposure to a single dose

or multiple doses within 24 hours. In the past, the rodent

acute oral toxicity test was based on LD50 determination.

However, alternative testing approaches have replaced this

traditional LD50 testing, due to limitations posed by inter-

species variability and various ethical issues.33,34

Three web-based servers were used in the current study

for the prediction of acute oral toxicity: ProTox-II;

DL-AOT Prediction Server;35 and admetSAR 2.0.36 All

three servers employ machine learning-based models and

have been trained with large datasets; ProTox-II follows

the Globally Harmonised System (GHS) classification

scheme, while DL-AOT and admetSAR follow the US

Environmental Protection Agency (EPA) classification cri-

teria. The GHS system and the US EPA criteria classify the

compounds into five and four categories, respectively.35,37

The canonical SMILES representations of the com-

pounds were provided as input for admetSAR and

ProTox-II, and the SDF files as input for the DL-AOT

server. In addition to the substance’s predicted category,

the LD50 values are also displayed as part of the results for

each compound. While ProTox-II displays the prediction

accuracy of the results, DL-AOT and admetSAR show the

associated probability. Both DL-AOT and admetSAR use

two deep learning models, namely regression and classifi-

cation, for the prediction of the LD50 values and the cate-

gory, respectively. The classification category and the

LD50 values were noted for each compound. LD50 values

vary between different drugs — the LD50 of aspirin is
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200 mg/kg,38 whereas that of acyclovir is greater than

20,000 mg/kg,39 when the test organism is the rat. Also,

the classification criteria are usually applicable for chemi-

cals other than pharmaceuticals.37 Thus, we categorised the

compounds as ‘low probability for acute toxicity’ if the

LD50 values (from the classification category as well) were

above 50 mg/kg on two or more servers, which is the upper

threshold for high toxicity according to the GHS classifi-

cation scheme,37 and the Loomis and Hayes criteria.40

Carcinogenicity

Carcinogenicity refers to the ability of substances (carcino-

gens) to induce cancer in humans and experimental ani-

mals, through genotoxic or non-genotoxic means.41 In

this study, we utilised the ProTox-II server, Toxtree’s

rule-based model based on the Benigni/Bossa rules,32 and

VEGA for carcinogenicity predictions. VEGA offers four

carcinogenicity models — CAESAR (neural network-

based model), ISS (based on the Benigni/Bossa rule-base,

as implemented in Toxtree), IRFMN/ANTARES and

IRFMN/ISSCAN-CGX (two distinct rule-based models).

Hence, CAESAR, IRFMN/ANTARES and IRFMN/

ISSCAN-CGX models were selected for prediction on

VEGA.

The carcinogenicity predictions were performed in a

manner similar to the mutagenicity predictions, with the

same input format for all three applications/servers.

ProTox-II and the CAESAR model of VEGA predict

whether or not a compound is carcinogenic, and the corre-

sponding probability; CAESAR also shows the applicabil-

ity domain, similarity, and the accuracy indices of the

prediction, along with other parameters that were not used

in this study. Toxtree shows the structural alerts for geno-

toxic and non-genotoxic carcinogenicity, if present in the

input compound. The other two rule-based models of

VEGA display whether a compound is a potential carcino-

gen or non-carcinogen, the corresponding applicability

domain index, structural alerts and other parameters. The

consensus of results obtained for the three VEGA models

was taken as the result obtained from VEGA for each com-

pound, provided that all three models had values greater

than zero for the applicability domain index. In the case of a

model’s applicability domain being zero, its result was not

considered, and the result was based on the model whose

applicability domain index was highest. If there were dis-

parities between the consensus and the result of the VEGA

model with the highest applicability domain index, both

were noted in order to later compare them with the results

from ProTox-II (the probability) and Toxtree (the signifi-

cance of the structural alerts).

For the overall evaluation, the consensus of all the

results was considered; if two or more of the applica-

tions/servers predicted a positive result for carcinogenicity,

then the compound was labelled as ‘possibly carcinogenic’.

On the other hand, if two or more applications/servers

showed a negative result for carcinogenicity, the compound

was labelled as ‘non-carcinogenic’. Furthermore, if a com-

pound exhibited > 0.8 similarity to previously withdrawn or

well-known carcinogenic drugs/compounds, or had rele-

vant structural alerts, it was additionally labelled as ‘high

possibility of carcinogenicity’. Information about similar

compounds and drugs was obtained from PubChem and a

PubMed literature search.

Other toxicity targets and endpoints

Some of the applications/servers used24,27,36 also displayed

information on the potential binding of a compound to a

few well-known toxicity targets, such as the androgen

receptor, aryl hydrocarbon receptor and oestrogen receptor.

However, a consensus was not obtained as the results were

mostly unreliable. This was because of low applicability

domain indices and/or poor prediction accuracy of the

models. Hence, the results for binding to the targets were

considered only if at least two servers displayed a high

probability of binding to a particular toxicity target, and

the compound was in the applicability domain.

In addition to hepatotoxicity, cardiotoxicity is a com-

monly observed adverse event that has led to the with-

drawal of drugs; one of the causes of drug-induced

cardiotoxicity is the blockage of hERG (human Ether-à-

go-go-Related Gene) Kþ channels, resulting in arrhyth-

mia.42 In comparison to the number of web-based servers

for the prediction of other toxicity endpoints, very few

publicly available servers currently exist for cardiotoxicity

prediction. Hence, this prediction was performed solely

with the Pred-hERG 4.2 server, as it had been trained on

a large dataset, displayed the potency of cardiotoxicity, and

had shown relatively high accuracy values in earlier stud-

ies.43 The SMILES representations of the compounds were

provided as input to this server; the output displayed the

prediction and potency (if found to be positive for cardio-

toxicity), along with their respective confidence levels,

applicability domain and similar compounds in the dataset.

Figure 2 illustrates the main steps followed in the predic-

tion of toxicity. The complete results obtained with all the

tools used are shown in Supplementary Material Table S1.

Results and discussion

Hepatotoxicity

The experimental compounds were categorised according to

the results obtained for each parameter. The compounds that

were stereoisomers displayed the same results for all the

toxicity predictions performed. Most of the compounds were

predicted to be possibly hepatotoxic; around 42.1% (8 out of

19) compounds were predicted to be hepatotoxic on all three

servers. Only one compound (ZINC000003118440) was

Bhat and Chatterjee 5



negative for hepatotoxicity on two out of the three servers

and displayed an unreliable result on VEGA. The compound

ZINC000000146942 did not show any result for hepatotoxi-

city on VEGA. An examination of the hepatotoxicity prob-

ability, structural alerts and similar compounds revealed that

11 out of the 19 compounds (57.9%) were similar to a num-

ber of sulphonamides that are known to be hepatotoxic.

However, the experimental compounds did not possess any

sulphur-containing relevant structural alerts. Three out of the

19 compounds (15.8%) were similar to and had a structural

alert found in flutamide, a nonsteroidal anti-androgen with a

likelihood score of A (i.e. a well-known cause of clinically

apparent liver injury) on LiverTox.44 Three out of the 19

(15.8%) compounds were similar to, or had the structural

alert present in, ximelagatran (Exanta), which is a discon-

tinued anticoagulant.45

Mutagenicity

For the mutagenicity predictions, all the compounds were

labelled as ‘non-mutagenic’ from the consensus of results.

Only one compound (ZINC001014061061) was predicted

to be mutagenic on ProTox-II, while Toxtree showed struc-

tural alerts for S. typhimurium mutagenicity for two com-

pounds (PubChem CID: 444745 and PubChem CID:

11610052). The structural alerts reported for the com-

pounds were primary aromatic amine, hydroxyl amine and

its derived esters, and alkenylbenzene, respectively. How-

ever, the results on VEGA varied from low to moderate

reliability for almost all of the compounds; the consensus

scores reported by the CONSENSUS model ranged from

0.1 to 0.6. Although VEGA reported a result of mutageni-

city for 9 out of the 19 compounds (47.4%) by the CON-

SENSUS model, the consensus scores for both

mutagenicity and non-mutagenicity were found to be equal

for 7 out of the 9 compounds (77.8% of such cases).

Acute oral toxicity

For acute oral toxicity, 18 out of the 19 compounds (94.7%)

were predicted to have an LD50 value above 50 mg/kg on

all three servers. The mean prediction accuracy of the

results was 63.1% on ProTox-II, and the accuracy ranged

from 23% to 69.3%. Notably, only one compound, 444745,

was predicted to have an extremely low LD50 value of

1 mg/kg on ProTox-II, but the prediction accuracy for this

result was only 23%. However, the other two servers, DL-

AOT and admetSAR, displayed favourable results, predict-

ing a relatively high LD50 value for the same compound.

Carcinogenicity

Among the compounds considered, 12 out of the 19 com-

pounds (63.2%) were predicted to be carcinogenic on

ProTox-II, with probability values ranging from 0.5 to

0.63. Toxtree displayed structural alerts for carcinogenicity

for 12 out of the 19 compounds (63.2%); halogenated ben-

zene was the most commonly observed structural alert,

appearing in 9 out of the 19 compounds (47.4%). However,

it has a positive predictive value of only 31%;46 hence, it

was not considered a relevant structural alert. On the other

hand, the primary aromatic amine, hydroxyl amine, and its

derived esters alert, associated with genotoxic carcinogeni-

city, has a positive predictive power of 81% and was, there-

fore, labelled a relevant structural alert. Although there was

no information on the positive predictive value of the alke-

nylbenzene and imidazole alerts, numerous alkenylbenzene

derivatives are well-known carcinogens. Hence, this was

also labelled as a relevant structural alert.47 The VEGA

results had relatively lower levels of reliability for some

compounds — around 68.4% of the compounds showed an

applicability domain index value of less than 0.6 for all

three models. For 3 out of the 19 compounds (15.8%), the

consensus result on VEGA was not equal to the result of the

model whose applicability domain index was highest.

Around 11 out of the 19 compounds (57.9%) exhibited

some degree of similarity to, and/or contained the structural

alerts present in, lavoltidine (previously known as loxti-

dine), which is a histamine 2 receptor antagonist that can

induce gastric carcinoid tumours.48,49

Figure 2. The major steps followed in the prediction of toxicity.
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Cardiotoxicity and other potential adverse effects

The cardiotoxicity prediction results displayed positive

results for potential cardiotoxicity for 3 of the 19 com-

pounds (15.8%), with the potency of the cardiotoxicity

being ‘weak or moderate’. Of the 19 compounds, 18

(94.7%) were in the applicability domain of the model;

however, the average confidence level was 53.3%. With

reference to the toxicity targets, compound 11610052, a

7-hydroxyisoflavone,50 showed a high probability of

binding to the oestrogen receptor on both admetSAR

and VEGA. This compound also exhibited a high prob-

ability (0.74) of causing perturbations in mitochondrial

membrane potential and a weak probability (0.51, on

ProTox-II) of binding to the aryl hydrocarbon receptor.

Furthermore, probable aromatase, thyroid receptor, glu-

cocorticoid receptor and androgen receptor binding was

predicted by admetSAR, but these results could not be

correlated with results from the other tools. Interest-

ingly, previous findings have reported that isoflavones

stimulate mitochondrial biogenesis.51 This class of com-

pounds is also known to exhibit anti-oestrogenic activity,52

which supports the prediction shown here. For some of the

compounds, admetSAR predicted a positive result for aro-

matase, androgen receptor and thyroid receptor binding,

but these results were not confirmed with the other tools.

Similarly, ZINC000003118440 was predicted on ProTox-II

to bind to amine oxidase A and ZINC001014061061 to

bind to prostaglandin synthase G/H synthase 1; however,

none of the other tools utilised comprised features for

binding prediction to these targets, and so a consensus was

not obtained.

Classification

Two tables were created to display the results obtained.

Table 3 shows the classification of each compound,

based on the in-depth toxicity profiles with all the toxi-

city endpoints. In this table, each compound is classified

into one of three categories according to its predicted

toxicity, with Category 1 being ‘least likely to be toxic’

and Category 3 being ‘most likely to be toxic’. The

compounds were grouped into these categories based

on the criteria shown in Table 2. As all the compounds

displayed the same consensus results for acute oral toxi-

city and mutagenicity, the criteria were defined based on

the differences between the other toxicity endpoints

(Table 3). Negative results that were associated with the

acute oral toxicity and mutagenicity testing, which are

part of the safety studies (general toxicity and genotoxi-

city) recommended by the FDA for pharmaceuticals,53

are displayed in Table 4.

In Table 3, Category 1 comprises 10 compounds (10/19;

52.6%). The compounds in this category exhibited rela-

tively high (0.75–0.8) similarity to compounds/drugs such

as sulphaphenazole, celecoxib, lavoltidine and granisetron,

but did not have any relevant structural alerts that are pres-

ent in these compounds/drugs. In addition, these com-

pounds were non-mutagenic and non-cardiotoxic.

Overall, the toxicity profiles of all the compounds in this

category were largely promising.

Category 2 consists of five compounds (5/19; 26.3%),

which were ranked primarily due to their high degree of

similarity to, or the presence of structural alerts commonly

found in, flutamide, celecoxib (likelihood score of B on

LiverTox54), ximelagatran and lavoltidine. Compound

11610052 was also placed in this category due to its poten-

tial binding to the oestrogen receptor; such binding to

nuclear hormone receptors can elicit serious off-target

effects in other physiological processes.55

Lastly, three compounds (3/19; 15.8%) were classified

under Category 3; all three such compounds had been

labelled as possibly cardiotoxic. ZINC000636416501 dis-

played some of the structural alerts found in oxypheni-

satin acetate and lumiracoxib, which were previously

withdrawn from the market due to cases of hepatotoxicity.56,57

Compound 444603 exhibited similarity with and had the

structural alert present in ximelagatran. Similarly, com-

pound 444745 had more than four structural alerts for

carcinogenicity on VEGA and Toxtree combined, and

a moderate probability of 0.58 for carcinogenicity on

ProTox-II.

Lastly, compound ZINC000000146942 was not classi-

fied due to insufficient data to determine the hepatotoxicity

prediction; while DL-DILI predicted positively for hepato-

toxicity, ProTox-II indicated a negative result, and there

was no result on VEGA (note that VEGA does not display

any results, if the compound has none of the structural

alerts used in the prediction model).

As the general consensus of results indicated mostly

negative results for acute oral toxicity and mutagenicity

testing, Table 4 lists the red flags identified with respect

to these toxicity endpoints, along with the server/applica-

tion utilised and the level of reliability, if available. Those

compounds not listed in Table 4 showed negative results

for these toxicity endpoints.

Table 2. The criteria for classification of the compounds.

Category Criteria

1 No or low possibility of hepatotoxicity; no or low
possibility of carcinogenicity; non-mutagenic; non-
cardiotoxic

2 High possibility of hepatotoxicity; high possibility of
carcinogenicity; non-mutagenic; possibly cardiotoxic
(any one of these criteria)

3 High possibility of hepatotoxicity; high possibility of
carcinogenicity; non-mutagenic; possibly cardiotoxic
(two or more of these criteria)
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Limitations of the study

Although we were able to gain a detailed toxicity profile

for the 19 compounds, based on multiple significant

toxicity endpoints, our study has a few limitations. Since

we utilised only one tool for the prediction of hERG

inhibition, these results may not be as reliable as those

obtained with three tools and by applying the consensus

approach. Moreover, due to the unavailability of web-

based servers/applications or unreliability of results, we

were unable to appropriately evaluate reproductive toxi-

city, which is also recommended by regulatory agencies

such as the FDA.53 Further in vitro and in vivo studies

with respect to these endpoints will help to obtain the

complete toxicity profiles of these compounds, and fur-

ther the understanding of any adverse effects that they

may exhibit.

Table 3. Classification of the 19 compounds, based on their toxicity profiles.

Category Compound Key resultsa

1 ZINC000152979101 Similar to sulphaphenazole, celecoxib and lavoltidine; no relevant structural alerts
1 ZINC001627499877 Similar to sulphaphenazole and celecoxib; no relevant structural alerts
1 ZINC000544491494 Similar to celecoxib, gliclazide, rosiglitazone, lavoltidine, granisetron and pirinixil; no

relevant structural alerts
1 ZINC000544491491 Similar to celecoxib, granisetron, sulphaphenazole, lavoltidine, granisetron and

pirinixil; no relevant structural alerts
1 ZINC000543523838 Similar to sulphaphenazole, rosiglitazone, celecoxib, lavoltidine and granisetron; no

relevant structural alerts
1 ZINC000543523837 Similar to sulphaphenazole, rosiglitazone, celecoxib, lavoltidine and granisetron; no

relevant structural alerts
1 PubChem CID: 444743 Similar to ximelagatran; no relevant structural alerts
1 ZINC001014061061 Similar to perindopril, enalapril and ximelagatran; no relevant structural alerts
1 ZINC001362111980 Similar to sulphaphenazole, celecoxib and pirinixil; no relevant structural alerts
1 ZINC000003118440 Similar to dacarbazine; has relevant structural alert (dacarbazine)
2 ZINC000541676760 Similar to celecoxib; has relevant structural alert (flutamide, similarity ¼ 0.742)
2 ZINC000541677852 Similar to celecoxib and lavoltidine; has relevant structural alert (flutamide,

similarity ¼ 0.732)
2 ZINC000152975931 Similar to celecoxib (0.802) and flutamide; no relevant structural alerts
2 ZINC001014061081 Similar to lavoltidine and granisetron; has relevant structural alert (lavoltidine)
2 PubChem CID: 11610052 Similar to dicumarol, acenocoumarol, flavopiridol, cianidanol, sterigmatocystin and

quercetin; has relevant structural alert; binding to oestrogen receptor
3 PubChem CID: 444603 Similar to amprenavir and ximelagatran; has relevant structural alert (ximelagatran);

possibly cardiotoxic
3 ZINC000636416501 Similar to oxyphenisatin acetate, phenisatin, celecoxib, ezetimibe and aripiprazole;

has relevant structural alerts; possibly cardiotoxic
3 PubChem CID: 444745 Similar to lopinavir; has relevant structural alert; was positive for carcinogenicity on

all the three servers; possibly cardiotoxic
— ZINC000000146942 Similar to phenobarbital and primidone; has relevant structural alerts; insufficient

information to determine hepatotoxicity, so category prediction was not made

aSimilar compounds listed in the ‘Key results’ column have > 0.75 similarity to the experimental compounds.
Category 1 means ‘least likely to be toxic’, while Category 3 means ‘most likely to be toxic’.

Table 4. The negative results for acute oral toxicity and mutagenicity.

Compound Result Server/application Reliability

ZINC000636416501 Mutagenic VEGA Moderate
ZINC001362111980 Mutagenic VEGA Low
PubChem CID: 444745 Fatal if swallowed;

LD50 1 mg/kg
ProTox-II Low

Structural alert for mutagenicity (primary aromatic amine,
hydroxyl amine and its derived esters)

Toxtree N/A

ZINC001014061061 Mutagenic ProTox-II N/A;
probability ¼ 0.52

PubChem CID: 11610052 Structural alert for mutagenicity (alkenylbenzene) Toxtree N/A

N/A ¼ not applicable.
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Conclusions

While new drug development requires more time and

investment in contrast to existing drug repurposing,58 the

results obtained through the in silico prediction of toxicity

can accelerate the process of development, reduce costs,59

and pave the way for drugs that exhibit favourable safety

and efficacy to combat Covid-19. Overall, the results of the

current study indicate that a number of potentially useful

experimental compounds have promising toxicity profiles,

when compared to existing drugs currently being repur-

posed for Covid-19 treatment, including remdesivir, chlor-

oquine and favipiravir.9

In this study, in silico tools were used to obtain toxicity

predictions for a number of experimental compounds that

can potentially bind to proteins in SARS-CoV-2. A range of

web-based servers were used to evaluate different toxicity

endpoints, obtain consensus results, and categorise the

compounds according to a set of defined criteria. A major-

ity of the compounds exhibited encouraging toxicity pro-

files with respect to the studied endpoints; 10 out of the 19

compounds were associated with low probabilities of hepa-

totoxicity and carcinogenicity, and were predicted to be

non-mutagenic and non-cardiotoxic. As efforts are ramped

up to find SARS-CoV-2-specific therapies, these results

can hopefully assist lead optimisation by providing an indi-

cation of how the compounds may fare during in vitro and

in vivo toxicity testing, and their potential to be safe and

effective drugs against Covid-19.
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