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Abstract

Spherical fuzzy set (SES) is also one of the fundamental concepts for address more uncertainties in decision problems than
the existing structures of fuzzy sets, and thus its implementation was more substantial. The well-known sine trigonometric
function maintains the periodicity and symmetry of the origin in nature and thus satisfies the expectations of the experts
over the multi parameters. Taking this feature and the significance of the SFSs into the consideration, the main objective of
the article is to describe some reliable sine trigonometric laws for SFSs. Associated with these laws, we develop new
average and geometric aggregation operators to aggregate the Spherical fuzzy numbers. Then, we presented a group
decision-making strategy to address the multi-attribute group decision-making problem using the developed aggregation
operators. To verify the value of the defined operators, a MAGDM strategy is provided along with an application for the
selection of an authentic COVID-19 laboratory. Moreover, a comparative study is also performed to present the effec-

tiveness of the developed approach.

Keywords Spherical fuzzy sets - Sine trigonometric spherical fuzzy aggregation operators - Decision making

1 Introduction

Multi-attribute group decision-making (MAGDM) method
is one of the most relevant and evolving topics explaining
how to choose the finest alternative with a community of
experts with some attributes. There are two relevant tasks
in this system. The first is to define the context in which the
values of the various parameters are effectively calculated,
while the second is to summarize the defined information.
Generally, the information describing the objects is taken
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mostly in the form of deterministic or crisp in nature. With
the increasing complexity of a system on a daily basis,
however, it is difficult to aggregate the data, from the
logbook, resources and experts, in the crisp form. There-
fore, Zadeh (1965) developed the core concept of fuzzy set
(FS), and also Atanassov (1986) work on it and further
develop a new idea of intuitionistic fuzzy set (IFS). Chen
and Chang (2016a) proposed a fuzzy multi-attribute deci-
sion making based on transformation techniques of intu-
itionistic fuzzy values and intuitionistic fuzzy geometric
averaging operators.

Chen et al. (2016b) developed a multi-criteria decision
making based on the TOPSIS method and similarity mea-
sures between intuitionistic fuzzy values. Chen et al.
(2016c¢) defined a novel similarity measure between intu-
itionistic fuzzy sets based on the centroid points of trans-
formed fuzzy numbers with applications to pattern
recognition. Chen et al. (2016d) introduced fuzzy multi-
attribute group decision making based on intuitionistic
fuzzy sets and evidential reasoning methodology. Zeng
et al. (2019a) developed a multi-attribute decision making
based on novel score function of intuitionistic fuzzy values
and modified VIKOR method. Yager (2013) developed the
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Pythagorean fuzzy sets (PyFSs), Torra (2010) was defined
the idea of a hesitant fuzzy sets, which are used by scholars
to communicate the information clearly. In IFS, it is
observed that each object has two membership grades,
positive u and the negative v, which satisfying the condi-
tion 0<pu+v<1, and for all u,v are lying in closed
interval 0 and 1. However, in the Pythagorean fuzzy sets,
this constraint is relaxed from p +v <1, to p> + v> <1 for
U, v € [0,1]. Using this concept, many researchers have
strongly addressed the define two critical tasks and dis-
cretion the techniques under the different aspects. The
basic results of IFSs and Pythagorean fuzzy sets, such as
operational laws De et al. (2000) and Gou et al. (2016),
exponential operational laws Gou and Xu (2017), distance
or similarity measures (Garg and Kumar 2018a; Hwang
et al. 2018), and information entropy Grag (2019a). Many
researchers (Xu and Yager 2006; Xu 2007; Garg
2016a, 2017a; Liu 2013; Liu et al. 2019), under IFS,
defined some basic aggregation operators (AOs), like as
average and geometric, interactive AOs, Hamacher AOs.
While for Pythagorean fuzzy sets, some basic operators are
proposed by Peng and Yang (2015). To solve the MAGDM
problems, Garg (2016b, 2017b), presented some basic
concept of Einstein aggregation operators. Some extended
aggregation operators dependent on the intuitionistic and
Pythagorean fuzzy information, including the TOPSIS
technique based on intuitionistic fuzzy Garg and Kumar
(2018a) and Pythagorean fuzzy Zhang and Xu (2014);
partitioned Bonferroni mean Nie et al. (2019); Maclaurin
symmetric mean (Qin and Liu 2014; Gao 2018a). Apart
from this, Yager (2016), intuitively developed the idea of
g-rung orthopair fuzzy sets (q-ROFSs). Gao et al. (2018a),
developed the basic idea of the continuities and differential
of q-ROFSs. Peng et al. (2018) presented exponential |,
logarithmic operation laws for g-ROFNs. Liu and Wang
(2018b) developed weighted average and geometric
aggregation operators for g-ROFNs. Liu and Wang (2018a)
developed a MAGDM method based on Archimedean
Bonferroni Operators of g-rung orthopair fuzzy numbers.
Liu et al. (2018) defined a MAGD method based on g-rung
orthopair fuzzy Heronian mean operators. Liu and Liu
(2019a) proposed a MAGDM method based on power
Bonferroni operators of linguistic q-rung orthopair fuzzy
numbers. Liu and Liu (2019b) introduced a MAGDM
method of linguistic q-rung orthopair fuzzy power Muir-
head mean operators based on entropy weight. Wei et al.
(2019), defined the idea of some q-ROF Maclaurin sym-
metric mean operators. Wang et al. (2019c), introduced
similarity measure of q-ROFSs. Liu and Wang (2020)
defined a MADM method based on g-rung orthopair fuzzy
generalized Maclaurin symmetric mean operators.

@ Springer

While, the idea of IFSs and Pythagorean FSs are widely
studied and implemented in various fields. But their ability
to express the information is still limited. Thus, it was still
difficult for the experts and their corresponding informa-
tion to convey the information in such sets. To overcome
this information, the notion of the picture fuzzy sets
(PFSs), which is defined by Cuong and Kreinovich (2013).
Thus, it was clearly noticed that PFS is the extended form
of the IFSs, to accommodate some more ambiguities. In
picture fuzzy sets, each object observed by defining three
grades of the member named as membership p, neutral 5
and non-membership v with constraint that u+n+v<1,
for u,n,v € [0,1]. The definition of the PFS will convey
the opinions of experts like “yes” “abstain” “no” and
“refusal” while avoiding missing evaluation details and
encouraging the reliability of the acquired data with the
actual environment for decision-making. Although the
concept of PFSs is widely studied and applied in different
fields. And their extension focus on the basic operational
laws, which is the important aspect of the PFS as well as
aggregation operators (AOs), which are an effective tool by
the help of these AOs, we obtain raking of the alternatives
by providing the comprehensive values to the alternatives.
Wei (2017), developed some operations of the PFS. Son
(2017), developed measuring analogousness in PFSs .
Apart from these, several other kinds of the AOs of the
PFSs have been developed such as logarithmic PF aggre-
gation operators, which are presented by Khan (2019),
Wang et. al. (2018) presented PF normalized projection-
based VIKOR method, Wang et al. (2019a), develop PF
Muirhead mean operators. Wei et al. (2019), developed
Bidirectional projection method for PFSs. Ashraf et al.
(2018, 2019a) and Zeng et al. (2019b) developed the idea
of different approaches to MAGDM problems, picture
fuzzy linguistic sets and exponential Jensen PF divergence
measure, respectively. Khan (2019), presented PF aggre-
gation based on FEinstein operation. Qiyas et al. (2019),
presented linguistic PF Dombi aggregation operators.
Cuong and Kreinovich (2013) defined some operations and
defined some picture fuzzy logic operators for fuzzy
derivation forms. The properties of PF t-norm & conorm
are examined by Cuong et al. (2016). Phong et al. (2014)
analyze some design of PF relations. Akram et al. (2020)
proposed a decision-making model under complex PF
Hamacher AOs. Ahmad et al. (2019) defined new opera-
tions on interval-valued picture fuzzy set, interval-valued
picture fuzzy soft set and their applications. Garg (2017¢)
developed some picture fuzzy aggregation operators and an
approach for multi-criteria decision making. Lin et al.
(2020) proposed a novel picture fuzzy MCDM model based
on the extended MULTIMOORA method to solve the site
selection of the car sharing station. Liu et al. (2019)
defined the similarity measures for interval-valued picture
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fuzzy sets and discussed their applications in decision
making. Recently, Khan et al. (2019) defined the new
concept about logarithmic operation laws for PFSs.

To address this limitation which PFN cannot handle,
Shahzaib et al. (2019b) defined the notion of the Spherical
fuzzy set (SFS) for the first time and identified some
aggregation operators with the Spherical fuzzy information
problem for MADM. In the SFS, all the membership
degrees are gratifying the condition

0< (,ul(r))z—k(r]f(r))z—i—(vf(r))z <1 rather than
0 <pui(r) +ni{r)+v{r) <1 as in PFSs. Gundogdu et al.
(2019) specified the TOPSIS method for SFS and give an
example of multi-attribute decision making problem.
Huanhuan et al. (2019) defined SLFS, which combines the
concept of LFS with SFS. Ashraf et al. (2019¢, 2019d)
using the Dombi method, described some SF aggregation
operators and discussed their decision-making application,
also studied the presentation of SF t-norm and conorm. Jin
et al. (2019) developed some Spherical fuzzy logarithmic
AOs based on entropy and their application in decision
support systems. Jin et al. (2019) proposed the linguistic
Spherical fuzzy AOs and discussed their applications in
MADM problems. Rafiq et al. (2019) introduced some
cosine similarity measures of Spherical fuzzy sets and their
applications in decision making. Zeng et al. (2019c)
developed a Covering-based Spherical fuzzy rough set
model hybrid with TOPSIS for MADM. Mahmood et al.
(2019) define a model for decision making and medical
diagnosis problems using the concept of SFSs.

Among the above aspects, it is very clear that opera-
tional laws play main role model for any aggregation
process. Besides these mathematical logarithmic functions
another important feature is the sine trigonometry feature,
which plays a main role during the fusion of the informa-
tion. In this way, taking into consideration the advantages
and usefulness of the sine trigonometric function, some
new sine trigonometric operational laws need to be
developed for SFSs and their behavior studied. Conse-
quently, the paper’s purpose is to develop some new
operation laws for SFSs and also give the MAGDM algo-
rithm for managing the information for SFSs evaluation.
Describe several more sophisticated operational laws for
SFSs as well as a novel entropy to remove the weight of the
attributes to prevent subjective , objective aspects. Some
more generalized functional aggregation operators are
presented with help of the defined sine trigonometric
operational laws (STOLs) for spherical fuzzy numbers
(SFNs), many basic relations between the developed AOs
are discussed and give a novel MAGDM technique
depending on the developed operators to solve the group
decision-making problems. And finally, the proposed

approach compared with the existing method. Therefore,
the goals and the motivations of this paper are as follows:

(1) To present some more advanced operational laws for
SFSs by combining the features of the ST and SFNs.

(2) A novel entropy is presented to extract the attributes’
weight for avoiding the influence of subjective and
objective aspects.

(3) To present some more generalized functional AOs
with the help of the defined STOLs for SFNs. Also,
the several fundamental relations between the pro-
posed AOs are derived to show its significance.

(4) To present a novel MAGDM method based on the
proposed operators to solve the group decision-
making problems. The consistency of the proposed
method is confirmed through these examples, and
their evaluations are carried out in detail.

In the second Section of the article, we can define some
related to SFS. In Section 3, we define the new SFS
operational laws based on sine trigonometric function and
their properties. In Section 4, we presented a series of AOs
along with their required properties, based on sine
trigonometric operational laws. Section 5, provides the
basic connection between the developed AOs. In Section 6,
using the new aggregation operators, we introduce a new
MAGDM approach and give detailed steps. An example in
the field of medical line using the SFNs information is
given in Section 7, and to validate the new method and
comparative study is carried out with the current methods
are also given. Finally, the work is concluded in Section 8.

2 Preliminaries

Some fundamental ideas about the Spherical fuzzy set
(SFS) on the universal set X are discussed in this portion.

Definition 1 Ashraf et al. (2019) Let X be the non-empty
fixed sets. Then, the following set

F'= (), (), i) fx € X). (1)

Are said to be Spherical fuzzy set (SFS), where
1(x), n(x), I(x) € [0,1] are called as the grade of mem-
bership, positive, neutral, and negative of the elements x €
X to the set I respectively, where the following constraint
has been fulfilled by u(x), n(x), I(x) for all x € X.

0< 12(x) + 72(x) + V¥ (x) < 1. 2)
m() = /1= (12(x) + 12(x) +v2(x)) s
referred as the refusal grade of x € X in I. For convenience,

(1(x), ni(x), v(x)) is called as an Spherical fuzzy number
(SEN).

Furthermore,
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Definition 2 Ashraf et al. (2019) Let the three SFNs are
I'= (10 m0),vy(0)) i = (s (), (), v () and
L= (,u,vz (x),mp, (%), vy, (x)) And also 4 > 0, is any scalar.
Then,

M = {0, m(x), m(x) };

@ f ady = {min (s (), (),

min (1, (x), 1, (+) ), max (v, (), v, (9)) )
() IV = {max(py, (), 1),

@ 6L
(

&) hob = { @0, i () + 0@ -
2

) }f:{ 1—(1—u}(x))i,(17f(x))iv (Vi(x)))}5

M ()=
1 (1 - v;(x)))'}.

Definition 3 Garg (2017b) Let I = (u(x), n;(x), v;(x)) be
the SFN. The score and accuracy function are then
described as, follows:

,STC(I\) =pi(x) — ni(x) — vi{x)
where STC(D €[-1,1],
He (Ij =p(x) +n(x) + vi(x)
where He(I) € [0, 1].

(3)

(4)

Definition 4 Garg (2017b) Let the two SFNs are I =
(5 015 (0, v () and T = (1 (), (1), v, ) ).

Then, the rules for comparison can be defined as if the
score function i.e.,

Sc(fi) > Sc(L), then I} > I, and if the score
function i.e.,

Se(l) = Sc(h), and He(I}) > He (D), then I} > b,
If I-fc(lul) = Hc(]vz), then I, = .

@ Springer

3 New sine trigonometric operational laws
(STOLs) for SFSs

We will define some operational laws for SFNs in this
portion.

Definition 5 Let the SFN is = (up{(x),n;(x),v;(x)).
Then, we define a STOLs of a Spherical fuzzy set as;

sinf:{sin (g (uf(x))) ,2sin’ (g 1’][(36)) )

2sin? (g v ,v(x)) }

From the above definition, it is clear that the sin[ is also
SFS, and also satisfied the following condition of the SF'S
as, the membership, neutral and nonmembership degrees of
SFS are define respectively

sin(g (ul{x))) : X — [0, 1],

T

such that 0 < sin(2 (,u,{x))) <I,

(5)

2 sin’ (g 11,~(x)> : X — [0, 1],
such that 0 <2 sin’ (g n,v(x)) <lI,
2 sin? (gvf(x)) X — [0, 1],
such that 0 < 2 sin’ (g vf(x)) <lI,
Therefore,
sin I :{sin (g (y,«(x))) ,2sin? (g rlf(x)> )

2sin? (g v ,v(X)) }

Definition 6 Let I = (1(x), n;(x),v;{(x)) be a SFN. Then,
sinf:{sin (g (uf(x))) ,2sin” (g n,v(x)) ,

2sin? (g v ,«(x)) },

is known as sine trigonometric (ST) operator and their
value is known as sine trigonometric SFN.

is SFS.

(7)

Definition 7 Let the collection of SFNs are I =

(1), (), v1() Ty = (1,20, (), v, () and. fy =
(,U,fz (x), 1y, (x), vy, (x)) Then, we define the following

operational laws where > 0 is any scalar.
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ey
(GG O E)
sinfy @sinh, = (2 sin? (g”lﬁ (x)))(z sin? (g”f (x)))
(2 sin? (g vy (x)))(Z sin’ (g vy (x)))
@)

(x))) . (2 sin? <g ’ﬁ} (x))) ;
(x)))- (25in? (g 7))

o ) 12 T 2
sin/; @ sinl, = \/1 <25m’(1n°«

_ :
\/ 1- (2 sin? (g v

(3) Asinl= {\/1 _ (1 _ sin(% (H%(x))))i,
;

(2sin® ()", (25in 5 vi(0)) s
@)wmt{@wwmmiJL(%wgﬁ@Di
\/1 - (2 sin’ (% v%(x)))i};

3.1 Some basic properties of STOLs of SFNs

Some fundamental properties of sine trigonometric SFN
are discussed in this portion, using the sine trigonometric
operational laws (STOLs).

collection of SFNs are I;=

(,u[vj(x),n[}(x), vlvf(x)), where J = 1,...,3. Then,

Theorem 1 Let a

(1) sinly @ sinly = sinl, @ sinl;
2) sinlul ® sinlvz =sin qu ® sinlvl
3) (sin[vl P sinlvz) ® sin1u3 = sinlul ® (sinluz ® sinI;)
“4) (sin[vl ® sinlvz) ® sin1v3 = sinlvl ® (sinlvz ® Sin[;)

Proof Here, we solve the first two parts using the STOLs
(sine trigonometric operation laws) define in Definition (7),
and the proof of the other two part are similar to the first
parts, so we omit here, we get

ey

sin Iul @ sin I;

()Y (3 )

= | 2sin g”h (x)), &) 251n2<g11,v2()c))7
2 sin’ g Vi (x)) 2sin’ (g Vi, (x))
GG -G )

40 Z '
(2 sin (% v, (%) ) (sin2 (% Vi (x)))
win (me))\ - fin (o (X)»J
= | 2sin® (gr],vz(x)), @ | 2sin? (g n; (x)),
2 sin’ G Vi, (x)) 2 sin’ (g Vi (x))

=sink @ sinl

therefore, from the above

sinl; @ sinl, = sinl, & sin

@

sinl; ® sinly

sin (ﬂ
‘ 2
= | 2sin?

5 109) 5 39). s o) s )

o (o) 2w o) )

3 109)) (3 <u,~;<x>>>-wsi-ﬁ(znm-zsm«:»ﬁw)
o (o) 2w (i)

=

1 (%)

—

®

—
@

) 2. 5
2 oz 5 3
g e
Pay = G5y
Laga— =
S -
= s X
~
~——

BN

53 =
E = =
— " =

N
2
=
—
!

S
[
B o
o
—

R
2
w, B
. —
(SR
—
=
E
RaZgNd

S

=sin/, ®sinl;
therefore, from the above solution

sin/; ® sinl, = sinl, ® sin [,

O
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Theorem 2 Let a collection of SFNs are

(,u,}(x)7 ’71}()5)7 v,}(x)), where J=1,2. And also
Ay A1, Ay > 0 be the real number. Then,

@)) }v(sinlul @sinfz) = Asinl; @ Asinl,

2) (sinlul ® sinluz)i: (sinlul)i®(sinlu2)i

(3) Jysinl @ dy.sinl = (L1 & 4) sinl’

4) (sin Iji'®(sin D) 2 (sin Iylob

5) ( (sin Ij & ) & = (sin Ij hdo

Proof Here, we will prove the first part of the above the-
orem only by using the STOLs define in Definition (7),
while rest can be proven similarly. As we know,

(D
sinl; 7{sm(2 (,u, (x ))),251112(%’71“1 (x)),
2sin® (E Vi (x))}
and

s {3 9)) 250 )
2 sin’ (g Vi (x)) }

using the STOLs, we have

~

| S (-G (50) (- (0))).
| e (Guw)) o (prw)),
(2600 (Zo, ) ) (25002 (B, ()

but it is given in statement of the Theorem that
n > 0, again we use the Definition (7), we have

@ Springer

A(sinfy @ sinb)

= Jsinly @ Asinl,

O

Corollary 1 Let a collection of two SFNs are I; =

(,u[;(x),n[}(x),vl}(x)) where J=1,2, such that

ty (x) > g (%), (x) <my(x) and vy (x) <vp(x). Then
show that sinlvl > sin Ivz

v

Proof Let I — (ﬂ,u] (), ;. (4), vy (x)) and b=
(,u,vz (x), 15, (x), vy, (x)) are the SFN with condition

f41(x) > w; (x), since in the closed interval [0,%], sin is an
increasing function, thus we have sin( ( ))
sm( (u,2( ))) But also given that 7, (x) <n;,(x) which

implies that (l —np(x ) > (1 -, (x))7 since in closed

] sine is an increasing function, thus we have

2sin® (anl )>2$1n <4 n, )) which implies that

interval [

- 2(x . . .
2sin an 2sin (4 1112 )), since in closed interval

[0,%], sin is an increasing function, thus we have
2 sin? (%Vvl (x)) > 2sin’ (% vi; (x)), which implies that
2 sin’ (% Vi (x)) < 2sin? (% v, (x)) , hence, we get
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sin (g ( 1 (x)>) 7 ST — SFWA(I, - -+, I,)
2 ) S )R
2 Smsfl( l((;lz) )) : an[l <2 " (g ’W)> ) j | ’
o { 2o (Zrgt), 11 (200" (3vs))

2 sin’ (4v1~( ))

therefore, we get the required result using the Definition

(N,

sin/; > sinl,

4 Sine trigonometric aggregation operators
We have described a number of aggregation operators in
this portion of the article on the basis of sine trigonometric

operational laws (STOLs).

4.1 Sine trigonometric averaging aggregation

operator
Definiton 8 Let a collection of SFNs are [;=
(,u,}(x)7nl}(x),vfj(x)), where J=1,---,n. Then, the

mapping ST — SFWA : ¥" — V¥, is known as the sine

trigonometric ~ Spherical fuzzy weighted average
(ST — SFWA) operator, if
ST — SFWA(I, - -+, I,)
.y . (8)
=w.sinl; @ --- D w,.sinl,.
Where the weighted vectors of sin IVJ(JA =1, ,n) are @,

which fulfilled the criteria of w; > 0, and >_7_, w; = 1.

Theorem 3 Let a collection of SFNs are I}:

(,ufi(x)7nl}(x),v,}(x)), where J=1,---,n. Then, the

aggregated value is also SFN by utilizing the ST — SFWA
operator, and is given by

Proof Using the process of mathematical induction, we

v

prove the said Theorem. Because, I; =

(u,;(x),n,}(x),v,}(x)) is SFN for each J, which implies
that (uij(x),nl}(x),v,}(x)) € [0,1] and also

(,u%j(x) + nf}(x) + vfj(x)) < 1. The following mathemati-

cal induction steps were then performed.

Step 1. Now for n=2, we get
ST — SFWA(IV],IVZ) = w;.sinl; ® wy.sinkh

where
(o3} sinI]

i (-snG (.0))) ™ (s o))"
(2 sin’ (g Vi (x)) ) “
and

s sinly

Y= (=G ()" (25 (Get) ™
(2 sin? (g Vi, (x)) ) ”
and hence, using the Definition in (7), we get

wp sinl; @ w, sinl,

Step 2. Now, say it is true for n = k.
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ST — SFWA(I1, )

1= 100G (50)))”
(2502 (Fn(9))”.
(2 sin’ (g vj(x)) ) o

Step 3. Now, we prove that this is true for n =k + 1
ST — SFWA(I1, -+, Ir11)

=wsinly - B w,sinl, B wpyq sinly

1= 100G (500)))”

o

Il
,
—~

<
I

e

~
Il

:j»

<,
Il

1

Il
g

11 (2sin(Grs))™
112 ()"

%

()
@ (25 (471k+1( )>)wk+17
(2 sin’ (g Vit (x)) ) o

again, using the Definition (7), we obtained

ai]/(-‘rl)

1= (=05 (500))”

| e
)"

[ (25" (ot

Hence, for the n = k + 1 holds. Then, the statement is valid
for all n through the principal of mathematical induction. [

ST — SFWA(IL, - --

L)

~ S
p|
LR

<,
Il

The ST — SFWA operators possess the following
properties.
Property 1 If all collection of SFNs I = Iu, where I is
another SFN(f =1, 7n), then
ST — SFWA(I,,---,I,) = sinT (10)

Proof Let I= (py(x),ni(x),v{x)) is SFN, such that

I} =1 Then, we get using Theorem (3),

@ Springer

ST — SFWA(I,- -+, I,)

1 110G (50)))
| fils )
i (s (o))"
1 fn G o))
| fifGa)”
fi 25 (5 00)”

=sin/

]
Property 2 If [ = (,ul}(x), ’11}()6)» vl}(x)> J;T =
(mindi )} man 0 max 30} ) ana

If= (mja}x{,uj(x)}, m}n{nj(x)}, m}n{w(x)}),
where J = 1,---,n, be SFNs, then
sinf~ <ST — SFWA(l, -+ ,I,) < sinl". (11)
Proof Since for any J,
min{1; ()} < () < max ()},
m}n{nj(x)} <ni(x) < mja}x{nj(x)} and
min{v;(x)} <v;(x) < max{v;(x)}. This implies that
J J

I §IuA§Iu+. Assume that,
ya ) =sinl = ( Iv(x),nf(x),v]v(x)),

sinf* = (g (x),np- (x),vp-(x))  and

ST — SFWA(I,, - --

sin/~ =
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(- (x),mj+ (x), v+ (x)). Then, by the monotonicity of the n o
silrlle triggnometric function, we i,lave ’ pix) = \ 1- H(l — sin (g (,ui(x)))) !
J=1
pwix) = 11— H 1 —sin(= 12(x) v n /n oy
j_]( (2 ( ))) § < |1 Jl_[l(l s1n<§mj'c}X{,u§(X)}))
> - “sin( X min i(x) J . "
ik Jl_[l(l <2 J {,u })> :\/1 — (1 —sin(Emax{,u%(x)}))ZJ:' !
_\/1 - (1 — sin (gmin{,u}(x) }) ) L =sin (g mjz}x{uj(x) })
=sin (g min{ z;(x) }) ::“1: (x)
= (x) nix) = H (2 sin’ (g n f(x)) ) v
ni(x) = 1:[ (2 sin (Z Wf(x)) ) < ﬁ (2 2 G m?x{mx) }) ) o
J=1
> H 2 sin’ EmiAn{r] (x)} S o
f—1< <4 ! ! >) :(2 sinz(gmax{flj(x)}))
= (2 sin’ (E min{;(x) }) ) = <2 sin’ (% mjglx{nf(x) }) )
= <2 sin’ (Z m}n{nf(x) }) ) :711: (x)
=y (x) vl = (250 (G i)™
n J=1
v(x) = sin?(Zv i(x ’ n P oy
*) H(Z (4 ( ))) > 1_[<25in2 (Zmlz}x{vf(x)})>
J=1
> H 2 sin’ EmiAn{vj()c)} i S o
f1< <4 / )> :(ZSinz(Zmax{vf(x)}))
- 251n2(2min{vj(x)})> —<23in2 (ij@x{vﬂ)c)}))
= <2 sin’ (Z Hljin{vj(x) }> > =V (x)
= (x) Based on score function Definition (3), we get
and also Se(sinl) =py(x) — ni(x) — vi(x)
<y (¥) = = () = v (x)
=Sc(sinI™)
Sc(sin I) =pi(x) — ni(x) — vx)
> gy () — e (3) — vy (3)
=Sc(sinl")
Hence, Sc(sin Iu’) < Sc(sin Ij < Sc(sin Iv+). O

Now, we have explain three cases:

Case 1 If Sc(sin IV’) < Sc(sin 13 < Sc(sin f*), then result

holds.
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Case 2 If Sc(sin/*) = Sc(sinI) then
(%) = n(x) = vi(x) = e (x) = mp (x) = v (x),
which implies that pix) = pp(x), n{x) = nx(x), and
vi(x) = v (x) and H(sinI") = H (sin[).
Case 3 If Sc(sini~) = Sc(sin[), then
pi(x) = np(x) = vi(x) = pp(x) = - (x) = v (),

which implies that pq(x) = pp (x),5n:(x) =5 (x), and
vi{x) =vp(x) and H (sinf_) =H (sin]j7 therefore, by
combining all these cases, we get

sinf~ <ST — SFWA(l, -+ ,1,) < sin*. (12)

Property 3 Let the collection of SFNs are fj:

(1 ()1, 2), v () ) and

9]

I}i = <‘LL;CJ(X), n}k}(x)a V;}(x))’
where J = 1,---,n. If
7, (%) < 415 (), (%) 2 117 (),

and v,}(x) >} (x), then
J

)

JI,) <ST — SFWA(IT, -, I;).  (13)

'tn

ST — SFWA(I, - --

Proof Follow from the above, so we omit here. O

Definition 9 A sine trigonometric SF ordered weighted
average operator (ST — SFOWA) is a mapping ST —
SFOWA : ¥" — ¥ such that
(w1, -, wn)T, which fulfilled the criteria of w; > 0 and

n o
j—1 Wj = 1.

ST — SFOWA = w; sinl, ) & -+ @ @, sin L. (14)

weighted vector =

Where (1,---,n) is the permutation o, such that

I(r(f—l) Zla(f) for any J.
Theorem 4 Let a collection of SFNs are 1} =

(ul;(x)m[}(x),v[f(x)), where J =1,---,n. Then, by uti-

lizing the operator i.e., ST — SFOWA the aggregated value
is also SFN and is given by,

@ Springer

ST — SFOWA(I, -+ -, I,)

(15)

Proof Proof is same to Theorem (3), so proof is ignore
here. O

Definition 10 A sine trigonometric SF hybrid average
operator (ST — SFHA) is a mapping ST — SFHA : V" —

Y such that the associate vectors ¢ = (51752,--75”)T7
which fulfilled the criteria of {; > 0 and Y7, &; = 1.
ST — SFHA = &y sinly ) @ -+ @ &, sinl ). (16)

Where (1,---,n) is the permutation of g, as 1:,(1;1) > I;(j)

for any J and IJ = nwj;l;

Theorem 5 Let a collection of SFNs are Iuj:

(,ulvj(x),nl}(x),vfj(x)), where J=1,---,n. Then, the

aggregated value is also SFN by utilized the operator ST —
SFHA and is given by,

ST — SFHA(I,- -, I)

110G (52 9)
(T (17)
S| HeeGigw) |
Vo)

11 (250 (370 ))

J=1

—_

Proof Proof is same to Theorem (3), so proof is ignore
here. O

4.2 Sine trigonometric geometric aggregation
operator

Definition 11 Let a collection of SFNs are Iuj:

(ul}(x),nff(x),v,;ﬁ(x)), where J=1,---,n. Then, the

mapping ST — SFWG : V" — ¥, is known as the sine
trigonometric  Spherical fuzzy weighted geometric
(ST — SFWG) operator, if
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ST — SFWG(Iy,- -+, 1)

v\ O] v\ 0] 13
= (sinll) ®...®(sin]n) . (18)

Where the weight vectors are o = (wy,--- ,wn)T of
sinf;(J = 1,--,n), which fulfilled the criteria of w; > 0,
and Y7, 0;=1.

Theorem 6 Let a collection of SFNs are I;=

(ul}(x),nff(x), vff(x)), where J=1,---,n. Then, the

aggregated value is also SFN by using the ST — SFWG
operator, and is given by,

ST — SFWG(Iy,- -, 1)
11 (sin (2 () )

(19)

Proof Proof is similar to Theorem (3), so procedure is
ignore here. O

The ST — SFWG operators possess
properties.

the following

Property 1 If all collection of SFNs 1} =1, where I is
another SFN(f =1, ,n), then

v

ST — SFWG(I,---,I,) = sinI (20)

Property 2 If [;= (ufj(x),n,}(x),v,vi(x)), where J =

17...,’17

iy = (i max{as .m0}

and

17 = (max{i (o)} min{o, )} min 30} )

be SFNs, then

sinf~ <ST — SFWG(Iy, -+ ,1I,) < sinl". (21)

Property 3 Let the collection of SFNs are fj:

(14 (), 20, v, () ) and

where J = 1,---,n. If

i () < 4 (). (3) > 7 (),
and vy (x) > v} (x). Then,

J

ST — SFWG(Iy,- -+ ,I,) <ST — SFWA(I},---,I}).  (22)

n

Definition 12 A ST — SFOWG is a mapping from ¥" to ¥
such that the weighted vector o = (wy, - - ~,wn)T7 which
fulfilled the criteria of w; >0 and )}, w; = 1.

ST — SFOWG = (sinl,(1))"' @~ @ (sin L))"

Where o is the permutation of (1,---,n) as I (i1) >I )

for any J.

Theorem 7 Let a family of SFNs are I;=

(ﬂl}(x)vnl}(x)7VI}‘(x>); where f: L. n Then, the

aggregated value is also SFN by using the ST — SFOWG
operator, and is given by

ST — SFOWG(Iy,- -+, 1)

11 (sn( (9 1)) ™
_ \/ - Jﬁl (2 sin? (Z T (x)) > (24)
-3
Proof Similar to Theorem (3) O

Definition 13 A sine trigonometric spherical fuzzy hybrid
geometric operator (ST — SFHG) is a mapping ST —
SFHG : " — ¥, such that the associate vectors are
E= (8,8, én)T, which fulfilled the condition £; > 0

and 7, &i=1.
ST — SFHG = (sini,))" @ ® (sinf,) ™" (25)

Where ¢ is the permutation of (1,---,n) as I;(J;l) >1 )

for any J and IJ = nw;l;

Theorem 8 Let a family of SFNs are Ivj:

J

(,U,fj(x)77’][{()6),\},}()(:)), where J=1,---,n. Then, by
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utilizing the operator i.e., ST — SFHG, the aggregated
value is also SFN and is given by

ST — SFHG(I,- -+, I,)

Proof Proof is same to Theorem: (3), so proof is ignore
here. ]

As similar to ST — SFWA,ST — SFOWA, ST —
SFHA,ST — SFWG, ST — SFOWG and ST — SFHG oper-
ators satisfy the properties such as Idempotency, Bound-
edness, Monotonicity.

5 Fundamental properties of the proposed
aggregation operators

In this section of the paper, we discuss many relation
between the proposed AOs and also studied their funda-
mental properties as given,

Theorem 9 For any two SFNs i.e., ﬂ and qu, we have
sinlul ® sinIvz > sin[ul ® sinluz
Proof Let the two SFNs are I, = (,uf] (x),mj (), vy (x))
and I, = (,uf2 (x), 7, (%), vy, (x)) Then, by using definition
(6), (7), we get
sinfl @ sinI}
,\/1 - (1 - sin(g (l‘f. (x)
= - o (T

(2 sin (an‘ (x)))

S——
S——
S——
/N
—
|
w
@,
=
/N
Qs
oy
=
S
Py
=
&
S——
S—
S——

[0 G )

~,
Il

and also

@ Springer

sin/; ®sinl

(sn G (1)) (sn Gy (1))

since for any two non-negative real number a and b, their
arithmetic mean is greater than or equal to their geometric
mean therefore, M >ab which follows that a+ b —

ab>ab. Thus by taking a-sm( (,u,( ))) and b =

sin(3 (i (1)), we have 1 (1=sing ().

(1= sing o) = (sng (1, (0) )-(sin (4, (9))
2

- TT( -0 () =TT ()

J=1 J=1

Similarly, we have obtained the other two as

[I(s (0)) <1 - TT(n )

~,
—_

and

f[ (2 sin (

))) <1- f[(z sin’ (g v,}(x))),

~,
—

Hence, using Definition (7), we get

sinIul ® sinlvz > sinlul ® Sil’liz

O
Theorem 10 For any SFNs i.e., I and positive real number
>0, ¢sinf  >(sin])’<=¢>1 and tsinl
< (sinf) = 0<i <.
Proof Proof is same to Theorem (9). O
Lemma 1 For a;>0 and b;>0, then we have
H aj b < Z bja; and the equality  holds  iff
J=1 J=1
ay =dady = - = ay.
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Lemma 2 Let 0<a,b<1, and 0<x<1, then
0<ax+b(1—x)<1.
Lemma 3 Let 0<a,b< 1, and

V1= (1 —a®)(1—0b?)>ab.

Theorem 11 For any SFNs I; = (,ufj()c),111~j()c),v,}()c))7
the operators ST — SFWA and ST — SFWG satisfy the
inequality

ST — SFWA(L,- -+ ,I,) > ST — SFWG(Iy,---,1,).  (27)

v

Where equality holds iff I; =5 = --- = I,.

Proof For n, SFNs I; = (,ul}(x),nl}(x),vl}(x)> and nor-
malized weight vector w; > 0, we have

ST — SFWA(L, -+, 1)

get

which implies that

For neutral and negative membership component, we have
n . T @y
f1(eso Gy 9)
n . v
< Z ;. (2 sin (Z n,;}(x)))
J=1
n . TC
<l- ij (2 sin (an}(x)))
J=1

n

1 (oo (Bn10))”

which implies that

ﬁ (2 sin? (g n I}(x)) ) v

n

<1- H(Z sin’ (2 n,;}(x)))wj.

similar the negative grade, as

ﬁ (2 sin G v,}(x)) )
< Jz’l; ;. (2 sin’ (g v,;(x)))
<1- Zn: ;. (2 sin’ (g v,;(x)))
J=1

n

<1-]] (2 sin? G vl}(x)) )

J=1

which implies that

[T Gry10))”
<1 -] (2sin (Guy )"

Hence, from all the above Equations, we get

ST — SFWA(L, -+ ,I,) > ST — SFWG(I},- -, 1,).
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Theorem 12 Let

I; = (,u,vj(x), . (%), v,;}(x)) (J=1,-,n)
and I = (u;(x), 1(x),
ST — SFWA(I, & - & 1)
>ST — SFWA(L, & - - -
ST — SFWG(L, & -~ & I,)
>ST — SFWG(L @ -~ ® 1)

vi(x)) are SFNs. Then,

® 1)

Proof Here, we prove only the first part, while the other

parts can be deduced similarly, for this, let Iuj:

(1 (), (20, v () ) and £ = (), 1y (0), (), sinee
both I; and I are SFNs.

ST — SFWA(L & - ® I, & 1)

1 1 G 0 () )))”

J=1

n Wy

H (2 sin? (% 1y (x).n,—(x))) o,

J=1

n

Il (2sin (5 v, (011))

and
ST — SFWA(L, ® -+ @ I, ®I)
1- Jfll (1 — sin (g ﬂ[}(x) -Ml{x)) ) “’f,
| s non”
ﬁ (2 sin (Z - (x )) .vf(x))wj

J=1
For p; (x (x), ui{x) € [0, 1] and Lemma (3), we have

T (1= 8. (0) (1= 18(0) = 1y (5).1y(0).

Since “sine” is an increasing function, we get

sin (3 (1= (1= 1(0) (1 = () ) = sinZ (1 (). (x) ).

which gives that

@ Springer

Similarly the neutral and negative grade, we get

ﬁ (2 sin® (g n ,vj(x) N ,~(x)> ) I
<H@m( () a,(x) ",
f[ (2 sin’ (g v,vj(x).vlv(x)) ) v

< ﬁ (2 sin’ (g Vi (x)) .v,~(x)> >
J=1

Therefore, from the above equation, we get

ST — SFWA(I, ® --- @ I,))

>ST — SFWA(L @ --- @ I,)

6 Decision-making approach

This section provides a strategy, preceded by an example,
to solve the DM problem. For this reason, let it be the m
alternative (7,,---,7,) that is evaluated by a group of

,G,). That
expert test 7; and é» and gives their preferences in terms of
SFNs oclg@ (,u[(j )7ﬂf;€)» l(j'c)) where i = 1(1)m; j = 1(1)n;

Kk = 1(1)d. Then, the value of every alternative }; with the

experts under the n different attribute (él, e

G, is shown as;

= [(C?l,oc,»l)7 (éz,aiz),"', (én7ain>]7 (29)

let @; > 0 be the normalized weights of attribute G;. The
following steps are taken to calculate the best choice.
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Step 1: In terms of decision matrix, summarize the

values of each alternative ﬁ<K) = ocl(j'{) with SFS

information.

(1)
/A
1,---,d into o; = (uy,n;,vy) utilizing either ST —
SFWA or ST — SFWG by operators.

Step 3: Establish the normalized decision matrix R =

Step 2: Aggregate the different preferences o K=

(rj) from D= (o), where ry; is computed as

ii» Mii» vij) if benefit type attributes
ry = { e . (30)

(vij, myj by7) if cost type attributes
Step 4: If the weights of the attributes are known as

before, then use them. Otherwise, we measure these
using the entropy principle. For this, the information

entropy of attribute éj is given as;
- 1 IS[ . (T
Ej :—2[5111(— (14 —my — Vu))
(V2= 1)mizt 4 (31)
. (T
+SIH(Z (1 — Ky + i + V,’j)) — 1:|,

1 . . —
<H: <.
where = is a constant for assuring 0 < =; <1

Based on the Equation (31), the weights of the attri-

butes are obtained as w = (wy, - - -, ®,), where
1-5
W=
! n— 2;1:1 Ej (32)

Step 5: With weight vector @ and using the proposed
ST-SFOWA or ST-SFOWG aggregation operators, the
collective values r; for each alternative 7; are calculated.
Step 6: Find the score values of r;(i = 1,...,m)

Step 7: Grade all the possible alternative j;,(i = 1, ...,m)
and select the most desirable alternative(s).

7 lllustrative example

In this section , the results of the established MAGDM
approach are reviewed with the example and their results
are compared with those of the current MAGDM
approaches.

7.1 Application of the proposed MAGDM
method

7.1.1 Selection of an authentic lab for the COVID - 19 test.
COVID—-19 is a pandemic disease. “CO” stands for Cor-

ona, “VI” stands for Virus, and “D” stands for Disease.
Simply, this disease is called “Corona Virus 2019”. Some

people infected with the COVID—19 virus suffer from
respiratory failure, and some recover without needing
special treatment. Older people and those with conditions
such as cardiovascular disease, diabetes, chronic respira-
tory disorders and cancer are more likely to experience
serious illnesses. In most cases, COVID—19 spreads via
the sneezing or coughing of an infected person. It is also
important to observe the respiratory protocol, for example,
by coughing into a flexed elbow. There are currently def-
inite vaccines or medications available for the treatment of
COVID—19 patients. Nevertheless, scientists and phar-
macists are working hard to test new therapies through
clinical trials.

Different countries are seeking to monitor and reduce
the spread of this virus by quarantining people, restricting
travel, monitoring and treating patients, performing contact
tracing and canceling large-scale gatherings. This pan-
demic is moving like a waveone that has quickly infected a
lot of people in a few months. We may say that COV-
ID—19 is much more than just a health issue. COVID—19
adversely affects the cultural , social and political envi-
ronments of any nation in the world.

For such a serious situation as COVID-19, it is
mandatory for people who have symptoms of this infection
to take a medical test. For this reason, an authentic lab was
needed. The main aim of this application is to choose an
authentic lab from various laboratories for the COVID—19
test by applying the ST-SFWA and ST-SFWG operators.

Assume that the five labs 7, 7,, 73,74, and J5 were
assessed by three experts E(j), E(zy and E3) for funding
focused on three attribute, which are given below,

él denoted time limits,

Gz denoted accurate results,

G5 denoted location flexibility for the client.

Assume that » = (0.33,0.37,0.30) is the experts weight
information and assessment of the decision matrices using
SFNs in the following Table 1, 2 and 3. Then, we proceed
to the selection of the appropriate alternative (lib).

Step 1: The evaluation of each expert is summarized in
Table 1, 2 and 3.

Step 2. By taking the weight of the experts i.e., w =
(0.33,0.37,0.30)" and utilize the ST — SFWA operator
to achieve the collective data on each alternative of the
expert. The result are shown in Table 4.

Step 3: Almost all the three attributes are just to be the
benefit types, then normalization are not needed.

Step 4: Since the attributes weight are completely
unknown. Thus, by utilizing the data of the Table 2 and
idea of the entropy Equ. (31). We obtain the values;
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Table 1 Decision matrix given by expert E(;)

Gi

G

G;

71
72
73
Va
¥s

(0.29, 0.54, 0.61)
(0.54, 0.4, 0.63)
(0.27, 0.65, 0.68)
(0.30, 0.22, 0.63)
(0.54, 0.55, 0.49)

(0.44, 0.59, 0.56)
(0.61, 0.48, 0.54)
(0.73, 0.43, 0.42)
(0.60, 0.47, 0.63)
(0.71, 0.54, 0.42)

(0.60, 0.31, 0.33)
(0.55, 0.34, 0.36)
(0.51, 0.55, 0.27)
(0.46, 0.47, 0.37)
(0.41, 0.53, 0.46)

Table 2 Decision matrix given by expert E(,)

G

G

G;

71
72
Vs

Vs

(0.42, 0.34, 0.68)
(0.78, 0.42, 0.44)
(0.59, 0.37, 0.51)
(0.47, 0.39, 0.54)
(0.56, 0.36, 0.48)

(0.56, 0.47, 0.37)
(0.67, 0.24, 0.49)
(0.44, 0.62, 0.34)
(0.49, 0.58, 0.42)
(0.50, 0.25, 0.55)

(0.74, 0.26, 0.30)
(0.81, 0.20, 0.29)
(0.46, 0.44, 0.53)
(0.34, 0.66, 0.40)
(0.52, 0.35, 0.53)

Table 3 Decision matrix given by expert E(3

G

G

G;

71
72
73
Va
Vs

(0.53, 0.27, 0.36)
(0.61, 0.38, 0.51)
(0.58, 0.45, 0.27)
(0.42, 0.39, 0.57)
(0.26, 0.64, 0.50)

(0.51, 0.31, 0.48)
(0.54, 0.47, 0.29)
(0.59, 0.33, 0.68)
(0.58, 0.26, 0.52)
(0.27, 0.59, 0.44)

(0.55, 0.33, 0.42)
(0.65, 0.29, 0.55)
(0.61, 0.42, 0.38)
(0.81, 0.23, 0.49)
(0.44, 0.39, 0.57)

Table 4 Aggregated values of

E; =0.9498, 5, = 0.9194, 53 = 0.8750.

By the help of this, we find the attribute weights w =
(0.3461,0.3351,0.3188)". In Fig. 1, we show graphi-
cally the weight vector of the attributes as;

Step 5: Based on o = (0.3461,0.3351,0.3188)" and
utilizing the ST — PFWA operator, the collective values
of each alternatives are gain as;

7, = (0.452,0.474,0.383),
7, = (0.552,0.361,0.284),
75 = (0.621,0.243,0.264),
74 = (0.398,0.528,0.424),
75 = (0.628,0.343,0.297).

Step 6: We can get the scores of each alternative by
using the Equ. (3);

Sc(y,) =0.543, Sc(y,) = 0.629, Sc(y3)
=0.600, Sc(7,) = 0.502, Sc(y5) = 0.674.

Step 7: According to the score values as
Sc(ys) > Sc(y,) > Sc(y3) > Sc(y,) > Sc(y,). Thus, the
ranking order is j5 >y, > 75 > 7, > 7,. Hence, 75 is the
best alternative.

During Step 5 of the established method, the complete
analysis by changing aggregation operators is analyzed and
their results are shown in Table 5.

We can, therefore, conclude from all the above-men-
tioned computational process that the alternative 7, is
really the best option amongst the other options and
therefore it is strongly recommended that the appropriate
option is 7,.

7.2 Comparative analysis

In this subsection, we give some brief discussion on the
comparison of the proposed method with some well know
related methods.

The comparison of the developed approach with the
existing approaches to examine the reliability and effec-
tiveness of the explored method. The established method
are compared with the some other methods based on SFS
was established by Ashraf et al. (2019a), Spherical fuzzy
Dombi aggregation operators and their application in group
DM problems, Ashraf et al. (2019b), Spherical fuzzy sets
and its representation of Spherical fuzzy t-norms and
t-conorms, Kutlu Gundogdu and Kahraman (2018),
Spherical fuzzy sets and Spherical fuzzy TOPSIS method,
Mahmood et al. (2019), An approach toward DM and
medical diagnosis problems using the concept of Spherical

experts using ST-SFWA G

operator

G

G;

(0.561,0.274,0.371)
(0.472,0.383,0.481)
7 (0.421,0.281,0.634)
(0.631,0.193,0.263)
(0.386,0.562,0.362)

(0.642,0.242,0.362)
(0.361,0.462,0.391)
(0.526,0.373,0.473)
(0.438,0.254,0.187)
(0.297,0.393,0.541)

(0.428,0.514,0.283)
(0.615,0.326,0.527)
(0.426,0.512,0.249)
(0.369,0.417,0.532)
(0.335,0.318,0.436)
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Table 6

Fig. 1 Graphical representation 0.9 —
of the score values of the 1 N
. _‘—.'—'—-—_
1

.
By,
Hy;
HYs

mys

Table 5 Impact of different

AOs and their ranking Operators Score values Ranking
7 7 73 2 ¥s

ST-SFOWA 0.543 0.629 0.600 0.502 0.674 Vs> Py >P3 > 9 > P,
ST-SFHA 0.484 0.573 0.542 0.425 0.591 Vs> Py >P3 > 9 > P,
ST-SFOWG 0.534 0.716 0.642 0.587 0.753 Vs > Py > V3 > P4 > 7
ST-SFHG 0.663 0.753 0.711 0.638 0.776 Vs >0y > 93>0 >4

.pr:(l;);; di?;;ir:rss; :)f(itsl:fng Methods Score values Ranking

methods 71 T 73 T4 7s
ST-SFOWA 0.543 0.629 0.600 0.502 0.674 95> 79, >P3>79 >
ST-SFHA 0484 0.573 0.542 0425 0591 P5s>9,>P3>79, >
ST-SFOWG 0.534 0.716 0.642 0.587 0.753 95> 79, > 73 > 9, > 7,
ST-SFHG 0.663 0.753 0.711 0.638 0.776 5> 7, > 73> 7, > 7,
Ashraf et al. (2019a) 0.761 0.832 0.804 0.746 0.855 P5>7P,>P;3 >, >V,
Ashraf et al. (2019b) 0.529 0.638 0.593 0.514 0.664 95> 79, >P3> 9, >,
Kutlu Gundogdu and Kahraman (2018) 0.669 0.746 0.707 0.653 0.773 5> 9, > 93> 9, > V4
Mahmood et al. (2019) 0.227 0311 0.274 0.158 0352 95> 9, > 93> 9, >
Rafiq et al. (2019) 0478 0.539 0.512 0464 0.587 95>79,>7P3>79 >
Zeng et al. (2019) 0421 0.515 0465 0388 0.532 J5>7,>7P3>7 >

fuzzy sets, Rafiq et al. (2019), The cosine similarity mea-

From the outcomes of the proposed operators and the

sures of Spherical fuzzy sets and their applications in DM,  other existing methods, we conclude that ranking lists
Zeng et al. (2019), Covering-based Spherical fuzzy rough  obtained from both the defined method and the compared
set model hybrid with TOPSIS for multiple attribute DM. methods are slightly different, but the best alternative from
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Fig. 2 Graphical representation
of the ranking of Table 6

ST-SFOWA

all the approaches is same. Thus, the sine trigonometric
aggregation operators with the Spherical fuzzy set envi-
ronment is a good idea to solve DM problems, and there
are many hindrances which can be solved by using our
proposed theory. The sine trigonometric aggregation
operators with the Spherical fuzzy set environment are
more flexible and easy approach and the best alternative
can be obtained by a short process. Thus, the result
obtained from the defined method are more accurate and
closest. In Fig. 2, we show graphically the ranking of the
alternatives based on their score values by using different
methods.

7.3 Verification

In this portion, the obtain results are verified by TOPSIS
and VIKOR methods.

7.3.1 By TOPSIS Method

Here, we verify the numerical problem given in Section 7
by TOPSIS method. We have the aggregated information
by ST-SFWA operator in Table 4. We will apply TOPSIS
method on the data given in Table 4.

To solve the mentioned problem in Sect. 7, we follow
the steps of TOPSIS method as follows.

Step 1 Normalize the decision matrix given in Table 4.
Here is no need of normalization as all the measure
values are of same type, i.e., benefit type.

Step 2 Identifying the PIS Rtand NIS R~, which are
defined as,

@ Springer
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ST-SFOWG
ST-SFHG

RT=(,....0),R =({7,...,05). (33)

Where

C;r =max{(;/1 <i<5} and {; = min{(;/1 <i<5}.
(34)

Which are calculated using the score function,

Se(l) = uy(x) + ny(x) — vix). (35)

Step 3 Calculate the distance for each alternative to R
and R~ using the proposed distance measures with

attribute weight vector o = (0.3461,0.3351,
0.3188).i.e.,
df = /2wl - )% (36)

(37)

Step 4 Calculate the closeness coefficients to the ideal
solution by each alternative by applying the Equation,

cci=d J(d +dP)(i=1,.,5). (38)

The overall closeness coefficients are obtained.

Step 5 Ranking the alternatives using the score function
of SFENs and select the best one. We have the ranking
result as

Vs > > 03 >0 > Uy
All the calculation results and the alternatives ranking is
given in Table 7. According to the calculations of overall

coefficients, the best one with largest closeness coeffi-
cient is 7s.



Granular Computing (2022) 7:141-162 159
Table 7 Calculation Results and Ranking of the Alternatives

Alternatives Distance for alternative to PIS  Distance for alternative to NIS Closeness coefficients to the ideal solution of Rank

@ ) alternative (cc;)

71 0.172 0.111 0.392 4

s 0.201 0.154 0.434 2

73 0.213 0.149 0.412 3

Pa 0.372 0.131 0.261 5

Vs 0.156 0.163 0.511 1

Hence, by TOPSIS method, it is again verified that js is the
most suitable robot to be selected by the manufacturing
unit.

7.3.2 By VIKOR ethod

Here, we solve the numerical problem given in Section 7
by VIKOR method. The aggregated values of all the
individual experts evaluation information based on ST-
SFWA operator is given in Table 4. For this purpose using
o = (0.3461,0.3351,0.3188)" as the attribute weight
vector, we will apply VIKOR method on the information
given in Table 4.

Now, to solve the problem using the VIKOR method,
the following steps are utilized.

Step 1 Normalize the decision matrix given in Table 4.
Here is no need of normalization as all the measure
values are of same type, i.e., benefit type.

Step 2 Identifying the PIS RTand NIS R~. The PIS
RTand NIS R~ are defined as follows:

RT = (.., ), R =(,....(5). (39)

Where

(" = max{({;/1 <i<5} and {; = min{(;/1 <i<5}.
(40)

Which are calculated wusing the score function

Sc (Ij = u(x) + n7x) — vi(x).

Table 8 Ranking of the Alternatives

Alternatives S; R; Qi Rank
ol 0.731 0.253 0.798 4
Vs 0.637 0.163 0.431 2
73 0.698 0.234 0.728 3
Vs 0.912 0.320 0.891 5
s 0.401 0.172 0.00 1

Step 3 Calculate the values S;, R; and Q; can be obtained
using equations,

Si = — T o 41
2 uTD) 4D
Rt e @
And
(S =S8 (1—v)(R —R")
Q= (S — 5 (R~ —RY) (43)

Assume v = 0.5, then the calculated results are shown in
the Table 8. Also,

S* =042,5 =0.76,R* = 0.33, R~ = 0.421.

Step 4 Rank the alternatives by sorting each S;, R;, and
Q; values in an decreasing order. The values of Q; are
ranked as

04> 01> 03> 0y > 0s.

Step S Propose a compromise solution, from the ranking
results, it can be seen that J5, which is ranked the best by
measure Qs, is the compromise solution. Thus, both the
methods (TOPSIS, VIKOR) have been successfully
applied for the verification of the results given by the
proposed ST-SFWA aggregation operators for the
bset alternative selection. Alternative 75 is the highest
ranked. Hence verified that j5 is the best alternative
among all.

8 Conclusion

A research relating to aggregation operators was investi-
gated in this study by establishing some new sine
trigonometric operation laws for SFSs. During decision-
making problems, the well-defined operation laws play a
major role. On the other hand, the sine trigonometric
function has both the characteristics of the periodicity and
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the symmetrical nature of the origin and, therefore, the
most likely to satisfy the experts preference over a multi-
time period. Therefore, we describe some sine trigono-
metric operation laws for SFNs and study their properties
to take these advantages and make a decision smoother and
more important. We have defined various average and
geometric AOs on the basis of these operators to club
decision makers preference. The different elementary
relations between the aggregation operators are discussed
and explained in detail. We developed a new MAGDM
approach for group DM problems in which goals are
classify in terms of SFNs to enforce the proposed laws on
decision-making problems. Furthermore, we compute the
weight of the attribute by combining the subjective and the
objective data in terms of measure. The functionality of the
proposed method is applied on an example of selection of
an authentic COVID-19 laboratory, and superiority and
feasibility of the approach are investigated in detail. A
comparative study is often carried out with current works
to verify its performance.

In the future, we will use the framework built on new
multiple attribute assessment models to tackle fuzziness
and ambiguity in a variety of DM parameters, such as
design choices, building options, site selection, DM prob-
lems, monarch butterfly optimization (MBO) (Feng et al.
2018; Wang et al. 2019d; Feng et al. 2019, 2020), earth-
worm optimization algorithm (EWA) (Wang et al. 2018a),
elephant herding optimization (EHO) (Law et al. 2004;
Wang et al. 2016; Li et al. 2020), moth search (MS)
algorithm (Wang 2018b), Slime mould algorithm (SMA),
and Harris hawks optimization (HHO).
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