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Abstract: The productivity of agricultural produce is fairly dependent on the availability of nutrients
and efficient use. Magnesium (Mg2+) is an essential macronutrient of living cells and is the second
most prevalent free divalent cation in plants. Mg2+ plays a role in several physiological processes
that support plant growth and development. However, it has been largely forgotten in fertilization
management strategies to increase crop production, which leads to severe reductions in plant growth
and yield. In this review, we discuss how the Mg2+ shortage induces several responses in plants at
different levels: morphological, physiological, biochemical and molecular. Additionally, the Mg2+

uptake and transport mechanisms in different cellular organelles and the role of Mg2+ transporters
in regulating Mg2+ homeostasis are also discussed. Overall, in this review, we critically summarize
the available information about the responses of Mg deficiency on plant growth and development,
which would facilitate plant scientists to create Mg2+-deficiency-resilient crops through agronomic
and genetic biofortification.
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1. Introduction

Magnesium (Mg) is one of the nine essential macronutrients that is used in large
quantity by plants for their growth and reproduction [1,2]. In plant cells, Mg performs
several physiological functions (Figure 1). Mg serves as the key atom of chlorophyll,
where it acts in pigment-protein complexes to gather photons in photosystem I (PSI) and
photosystem II (PSII) [3–5]. Apart from light absorption in the chlorophyll tetrapyrrole
ring, Mg is also involved in CO2 assimilation reactions in the chloroplast [6]. Ribosomes
are the macromolecular structures that are responsible for protein biosynthesis [7]. A large
proportion of the Mg (about 75%) in leaf cells is associated either directly or indirectly with
protein biosynthesis via its role in the ribosomal structure and function [8]. The dexterous
type of ribosomes requires the blend of two subunits, compelling Mg to frame a bridge
between these subunits; otherwise, these ribosomal subunits are unstable at low Mg2+

concentration (<10 mM) [9].
Mg has several other functions; particularly, it acts as a cofactor and allosteric modu-

lator for more than 300 enzymes, including carboxylases, phosphatases, protein kinases,
RNA polymerases, and ATPases [10]. Moreover, Mg is also involved in photophosphoryla-
tion, photosynthetic CO2 fixation and metabolism, and photoassimilates partitioning and
utilization [2,11]. As it has well-known roles, Mg is important to plants. The “metabolic Mg
pool” is mainly positioned in the cytoplasm and chloroplast; it is subject to strict regulatory
processes and is specifically adapted to the actual metabolic needs while the vacuole acts
as the storage compartment. The demand for “metabolic” Mg can thereby be satisfied and
sustained through the import or export of Mg from the vacuole [12].
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Figure 1. Physiological and morphological growth-dependent Mg functions in plants.

Mg deficiency is a common nutritional disorder in plants and a widespread problem
affecting crop productivity and quality [13]. About 90%–98% of the soil Mg is combined in
the crystal lattice structure of minerals and not directly available to plants [14]. The only
existing form of Mg for uptake is Mg2+, which has the lowest ionic radius and the biggest
hydrated radius among different cations [15]. This unique chemical property creates a weak
bond between Mg2+ and negatively charged soil colloids as well as root cell borders, which
favor the deficiency of interchangeable Mg from the soil. Over the last two decades, several
studies were conducted to investigate the impact of Mg deficiency on plant growth and
development, whereas few recent reports have focused on the Mg transport mechanism in
plant cells, and it is still largely unknown. More effort should be paid to the shortage of Mg
in soil and its impact on plants. In this review, we aim to recapitulate current knowledge
about the causes of Mg deficiency, physiological and biochemical changes, and the response
of Mg transporters, Mg uptake and distribution, and the possible solutions for improving
Mg2+ utilization in plants to provide a better understanding of the Mg homeostasis in
plants and, ultimately, to improve plant growth and development.

2. Causes of Mg Deficiency and Symptoms in Plants

Mg deficiency is a common nutritional disorder in plants that inhibits plant growth
and development and eventually affects the yield and quality [2,16,17]. Mg scarcity is
becoming an important concern in an intensive cropping system in which the soils are only
fertilized with N, P, and K. It is also a critical issue in highly weathered soils, where it is
subjected to potential leaching and interaction with aluminum (Al) [2].

Since Mg has a large hydrated radius, it is weakly absorbed by highly weathered,
acidic, and coarse soils. Therefore, these soils are found to be Mg deficit soils due to excess
leaching of Mg nutrient, specifically in acidic soil with low cation exchange capacity [1,13].
In soils with limited fertility, leaching of Mg can be as high as 25 kg ha−1, while it can
be increased up to 40–70 kg ha−1, depending upon numerous variables such as soil and
crop type, environmental conditions, and drainage volume [1,18]. In calcareous soils, the
existence of Ca and bicarbonates (HCO3

−) in higher aggregates affects the uptake of Mg
and results in Mg depletion [19], whereas in alkaline soils, Mg availability is reduced due
to the formation of magnesium carbonate and gypsum [20].
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The common symptoms of Mg deficiency are growth retardation and interveinal
chlorosis on older leaves [2]. Normally, chlorosis begins in older leaves and then progresses
to younger leaves [21,22]. Due to the fair mobility of elements, plants remobilize Mg from
older leaves to younger leaves; that is the reason why the first visual deficiency symptoms
usually appear on older leaves and then on newly expanded leaves. Normally, Mg concen-
tration under 1–2 mg g−1 dry leaf weight is related to the initiation of chlorosis [23–25].

Several studies have identified constraints related to plant growth and development
that vary among plant species due to the intensity of Mg deficiency. Initially, the effects
of Mg deficiency comprise of impedance in sugar accumulation, which leads to starch
accumulation and ignition of antioxidant mechanism before any noticeable effect on the
activity of photosynthesis [21,24].

3. Changes Induced by Mg Deficiency in Plants
3.1. Plant Growth and Biomass Allocation

Dwarf architecture and necrotic spots are the general symptoms of Mg deficiency in
plants, which in result cause a decline of chlorophyll content and CO2 fixation, as well as
impairment in carbon metabolism (Figure 2) [11,26]. Mg deficiency symptoms are well
observed on aerial parts of plants, while the symptoms on root development and biomass
distribution between root and shoot are variable [27]. Mg deficiency at germination or a
young stage results in the severe reduction of root growth. In such circumstances, reduction
in dry matter production was first detected in roots, then shoots, of clover [28], pepper [29],
pine [30], and bean [31,32].

Figure 2. Physiological Impacts of Mg deficiency in plants.

A transcriptome study in Arabidopsis indicated a far greater change in the number of
genes in roots than that in leaves under Mg scarcity [27]. After 24 h of Mg supplementation,
transcript patterns of one-fifth of the differentially expressed genes in leaves and half of
genes in roots returned to normal levels. Moreover, Mg-deficiency responsive genes in
leaves changed gradually after 8 h and changed even more after one week [27]. The results
obtained from this study create a better understanding of changes in Mg availability that is
translated into adaptive responses in the plants.
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3.2. Photosynthetic Activity

Mg depletion was found to affect the activity of rubisco, which results in the reduction
of the photosynthesis rate (Figure 2) [25,30,33]. In several plant species, decreases in photo-
synthetic capacity and net CO2 assimilation have been noticed [17,24,25,33–37]. Moreover,
the structure and the partial photochemical activities of PSI, PSII, and Fv/Fm ratio (greatest
quantum efficiency of PSII) were also found to be affected by Mg deficiency [17,35,38].
These reports concluded that the decline of PSII activity is due to a deprivation of PSII
antenna or an alteration in photosystem stoichiometry in favor of PSI, which results in an
enhanced chlorophyll a/b ratio. Henceforth, an increased chlorophyll a/b proportion is
quite often seen under Mg deficit conditions. However, the Fv/Fm and other fluorescence
parameters were not influenced in Mg-deficient Helianthus annus plants [39].

3.3. Chlorophyll Degradation

Mg occupies the key position in the chlorophyll, expectedly the effect of Mg in-
sufficiency on overall chlorophyll concentration in several plant species, as reported
in [11,17,24,40–42]. Chlorophyll catabolism can be considered as a strategy of Mg-deficient
plants to dechelate Mg from pigment molecules [43]. In Arabidopsis and other plant species,
NYE1 was found to encode a chloroplast-confined protein that can initiate chlorophyll
deterioration through senescence [44,45], and MRP3 encodes an ABC carrier that has
chlorophyll catabolites and glutathione conjugates transfer activity [46]. Later, global tran-
scriptome studies showed that NYE1 and MRP3 were upregulated upon Mg scarcity [27].

3.4. Photosynthates Partitioning from Source to Sink

Accumulation of sugars and amino acids in the source organs usually inhibit their
growth by causing a reduction in photosynthetic rate and chlorotic appearance (Figure 2).
Photosynthate accumulation in source leaves maybe because of (i) structural impairment
and destabilization in the phloem tissues [47], (ii) a decline in sink strength [7], or (iii) im-
paired phloem loading [11,32,48].

The inhibition of sucrose supply from Mg deficient leaves is primarily caused by the
decline in Mg-ATP concentration at the phloem loading sites [21]. Mg-ATP is critical for
the proper operation of H+-ATPase, and the growing evidence indicates that Mg-ATP is
the chief complex of ATP in the cells [49]. H+/sucrose co-transporter is responsible for
the catalyzation of sucrose loading into the phloem, whose activity necessitates a proton
gradient maintained by an H+-ATPase situated in the plasma membrane of the sieve tube
cells [21]. Under long-term deficient conditions, lower leaves also accumulate higher
starch contents, which results in the restricted growth of root and taproot. Hence, carbon
accumulation in source leaves is the major change induced by Mg deficiency in plants.

3.5. Ultrastructure Alteration and Oxidative Damage

The appearance of the chlorosis and necrosis symptoms in plants referred to the
damage in chloroplast ultrastructure. A connection between carbohydrate accumulation
and necrosis appearance was often endorsed because of a gathering of bigger starch grains
with disintegrated thylakoids [22,50]. Under Mg shortage, chlorosis starts to progress due
to the reduction in electron transport, which results in the impairment of CO2 fixation and
induction of ROS generation (Figure 2) [51]. Damage of cell elements, such as membrane
lipids, proteins, and nucleic acids, can be caused by these ROS, resulting in metabolism
disruption [52]. Meanwhile, the antioxidative defense system is activated to scavenge ROS,
which protects cells from oxidative damages [17,29,53]. For example, accumulation of mal-
ondialdehyde was reported in citrus [17,54], coffee [55], Mentha pulegium [56], maize [57],
rice [58], and Sulla carnosa [34] under Mg depletion conditions. Moreover, an induction
in the activity of SOD has been reported in mulberry [53], rice [58], and bean [59]. Under
Mg scarcity conditions, the activities of other enzymes such as CAT and POD may also be
increased. In some cases, it was noticed that the activity of CAT was decreased or remained
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constant [53,57], which indicates that the antioxidant system in plants can be destroyed by
severe deficiency.

4. Mg Uptake and Transport in Plants

The attainment of Mg in plants from soil is generally governed by two fundamental
processes: the abundant flow, which involves the passive movement of Mg2+, and diffusion,
which involves the movement of Mg2+ from higher concentration to lower concentration.
Plants have developed high-efficiency transport frameworks for Mg uptake, storage ca-
pacity, and movement to maintain a higher concentration (typically mM) in a given tissue.
Mg is mostly transported into the cell for various biological processes. The accumulation
of Mg2+ is higher in the chloroplast (0.5–2 mM [60]) and the mitochondria (2–4 mM [61]),
followed by the cytosol (0.2–0.4 mM [49]). Therefore, Mg transporters are required to assist
the accumulation of Mg in the corresponding parts of the cell. In addition, the vacuole is
an enormous Mg pool to keep the cytosolic Mg equilibrium. Additionally, it needs carriers
to encourage the Mg trade with cytosol.

4.1. Identification, Characterization, and Physiological Significance of Mg2+ Transporters
Gene Families

Specific transporters are believed to function in Mg2+ transport across the membrane,
which maintains homeostasis in the plant cell. CorA is the dominant transport system
that was first identified in bacteria [62]. The movement of Mg2+ in and out of the cell is
controlled by the members of the CorA family by utilizing a range of divalent cations as sub-
strates [63]. Five CorA family genes arbitrate uptake across the plasma membrane, uptake
into the mitochondria, and efflux from vacuoles. Namely, aluminum Resistance 1 (ALR1)
and aluminum resistance 2 (ALR2) function for the Mg uptake across the plasma membrane
into the cell [64,65]. A mitochondrial Mg transporter, named MRS2, was identified due to
its capability of correcting a defect in RNA splicing, demonstrating the important role of
Mg in cellular biochemistry [66,67]. Another mitochondrial Mg transporter, named LPE10,
was identified based on the sequence similarity with CorA [66]. The fifth CorA homolog,
named MNR2, has been characterized to acquire Mg that is stored in the vacuole [68].

Largely known plant Mg2+ carriers MGT (Mg transporter)/MRS2 genes [65,69] be-
long to the superfamily of CorA-type membrane transporters [70]. The first Arabidopsis
CorA homologs were identified in expressed sequence tag by homology to yeast MRS2.
Arabidopsis MRS2-1 (AtMRS2-1) functionally complemented the yeast MRS2 mutant [71].
The MGT family contains the diversity in functions throughout the plant life cycles, such as
in root growth, pollen development, leaf photosynthesis, and defensive response to abiotic
stress [72–77]. In Arabidopsis, ten CorA superfamily AtMGT genes were found; among
them, AtMGT8 is a pseudogene, and some are classified into high affinity (AtMGT1 and
AtMGT10), low-affinity (AtMGT3, AtMGT7, and AtMGT9), and dual-affinity (AtMGT5)
individuals by their affinities for Mg2+ [65,71]. Li and Tutone [65] stated that MGT family
members may likewise transfer divalent cations other than Mg2+, such as Ni2+, Co2+, Fe2+,
Mn2+, and Cu2+. However, a conserved Gly-Met-Asn (GMN) tripeptide motif at the end of
the first transmembrane domain has a higher affinity for Mg2+ than that of other cations,
and the mutation for this motif abates the transportation of Mg2+ [78].

Additional gene families, other than CorA homologs, are also involved in Mg transport
such as MgtA, MgtB, and MgtE [79,80]. Typically, MgtA and MgtB are P-type ATPases
that have 10 transmembrane segments [81–84], whereas MgtE is a distinct Mg transporter
that has five transmembrane helices [85]. MgtA and MgtB are highly induced by low Mg
conditions through the Mg2+ regulated PhoP/PhoQ two-component systems [86]. Unlike
the CorA, MgtA and MgtB actively mediate Mg influx. Moreover, the expression of the
MgtE-encoded gene is controlled by an Mg2+ sensing riboswitch [87]. MgtE can transport
Mg2+ and Co2+ [85] whereas MgtA and MgtB transport only Mg2+ and Ni2+ [83].

In recent years, the participation of Mg transporters has been identified in the de-
velopment of pollen and male fertility. AtMGT5, the mitochondrial membrane-localized
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protein and two ER target proteins, AtMGT9 and AtMGT4 are vital for normal production
of pollen. In Arabidopsis, the disruption of AtMGT4, AtMGT5, or AtMGT9 considerably
downshifted the pollen development, whereas high expressions of both AtMGT5 and
AtMGT9 resulted in bicellular pollen [79,88,89]. Disruption of expression of these genes
results in the insufficient supply for pollen mitosis and intine formation, which at last
prompts the diminished number of mature pollen grains. AtMGT5 and AtMGT9 may act
coordinately to transfer Mg from tapetum to the microspore, as both the AtMGT5 and
AtMGT9 are plasma-membrane-localized Mg transporters, while AtMGT4 is primarily
expressed in pollen grains from the bicellular to the developed pollen grain, as it is confined
to the endoplasmic reticulum. The involvement of AtMGT4 in pollen development is still
unclear, but the pollen production by AtMGT4-RNAi transgenic lines is just about half
sterile [77].

4.2. Mg Uptake, Distribution, and Homeostasis in Plants

To resolve the mystery of Mg behavior, Mg transport and distribution in some plant
parts was visualized using the radioisotope 28Mg (with half-life 21 h). According to
Kobayashi, Iwata [90], a better accumulation of 28Mg was observed in rice root soon after
the absorption from the external solution. In Arabidopsis, within 15 h of root uptake, 28Mg
was gradually transported to the upper part of the shoot with steady accumulation in the
lower part of the inflorescence. This behavior suggests that hours after the root uptake,
Mg2+ reaches the upper part of the inflorescence. With the discoveries of Mg transporters,
knowledge about Mg uptake, distribution, and homeostasis has been advanced. AtMGT1
localizes to the plasma membrane; it is predominantly expressed in the root and vascular
tissues, and in the trichomes of newly grown leaves [72]. Plasma-membrane-embedded
subcellular localization of AtMGT6 appeared in the root cells, while the localization either
at the chloroplast or the mitochondria was indicated in the shoot tissue. In rice, MGT family
protein, OsMGT1, meditated Mg uptake by roots [91]; in addition, AtMGT6 in Arabidopsis
was found to mediate Mg uptake by roots and tolerance to low Mg [92]. Nonetheless,
knockout of MGT1 in rice and silencing MGT6 in Arabidopsis failed to prevent the accumu-
lation of Mg in roots of both plants, indicating that, in addition to these carriers, other Mg
carriers act in roots to encourage the Mg uptake [73].

4.2.1. Mg Transporters Involved in Xylem Loading

Transfer of Mg from roots to shoots is performed through xylem loading. Moreover,
the transporters that are responsible for the translocation of Mg from root to shoot have
not been studied to a deeper extent. In Arabidopsis, Mg2+/H+ exchanger (MHX) was
highly expressed in vascular tissues, which propose the role of MHX in xylem loading
or recovery of Mg [93]. Two CorA-like homologs (OsMGT2 and OsMGT6) in rice and
AtMGT9 in Arabidopsis [72] are likely to be involved in the xylem loading, mainly expressed
in the vascular tissues of root elongation and maturation zones. After the translocation of
Mg from root to shoot, it is delivered to different tissues of a plant with the preferential
distribution to developing tissues [94].

4.2.2. Chloroplast Localized Mg Transporters

As discussed earlier, Mg plays a key role in photosynthesis; thus, Mg is preferentially
transported into the chloroplast. MGT10, also named MRS2-11, was identified during the
complementation screen of the yeast ALR1/ALR2 mutant [65]. AtMGT10 is localized to
the chloroplast envelope membrane and is enriched in leaf [95]. The expression pattern
of AtMGT10 showed a circadian rhythm, which suggests its involvement in diurnal Mg
homeostasis in chloroplast stroma where the photosynthetic enzyme action is directed
by AtMGT10.
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4.2.3. Tonoplast Localized Mg Transporters

Part of the cellular Mg2+ is bound to the cell wall or sequestered in vacuoles, whereas
free Mg2+ concentration in the cytosol might be lowered because Mg2+ is complexed with
various molecules such as ATP. The free levels of Mg2+ in the cytosol must be strictly
regulated due to Mg2+ effect on photosynthesis and membrane ionic currents. Thus, the
ionic balance is required to continue the cellular processes.

Vacuole is the main organelle that determines Mg2+ homeostasis in the cytosol and
the chloroplast [96]. It has been reviewed by Shaul [97] that vacuolar Mg2+ is important
for the cation-anion balance and turgor regulation of cells. MHX (Mg2+/H+) is the first
cloned Mg2+ transporter in plants, AtMHX, encoded by a single gene in Arabidopsis. MHX
is confined in the vacuolar membrane of xylem parenchyma cells [93] that improve xylem
loading in the roots and Mg2+ distribution at sink organs [97]. Surprisingly, tobacco (Nico-
tiana tabacum L.) plants indicated necrotic injuries and apical burnings upon development
under raised Mg2+ or Zn2+ conditions, and the expression of AtMHX was accordingly
inhibited by high Mg2+, although no change was observed in the mineral content between
transgenic and normal plants treated with elevated levels of Mg2+ or Zn2+ [98,99]. These
results indicated that the necrotic lesions in transgenic tobacco are not due to high Mg2+

and Zn2+, but because of an imbalance of proton in the cell.
In Arabidopsis, MGT2 and MGT3 are mesophyll-abundant and tonoplast-confined

transporters, which aid in more Mg accumulation in the vacuole. Knockout of either MGT2
or MGT3 lowered the mesophyll-specific Mg accumulation, while the triple knockout
lines of MGT1/2/3 showed severe developmental downshift under Mg-deficient condi-
tions [100].

4.3. Factors Influencing Mg Homeostasis

The availability of Mg2+ to plants depends on various factors: distribution and chemi-
cal properties of source rock material, and its grade of weathering and site-specific climatic
and anthropogenic factors. Mg2+ is exceptionally sensitive to discharging, which is consid-
ered as a crucial factor affecting Mg2+ availability for roots. Mg2+ leaching occurs usually in
acidic soils (pH < 4.5, high H+/proton) with reduced cation-exchange capacity, and about
70% of the arable land on Earth is acidic. MgCO3 development and excess accumulation of
Ca2+, K+, and Na+ in soluble soils likewise decreases Mg2+ accessibility to crops. Drought
affected soil and some Al toxic soils likewise hinder Mg2+ retention by roots. Among a
few contending elements in soils, such as K, Ca, Al, and NH4, Mg2+ is the least taken-up
nutrient. Raised temperature and high precipitation in tropical areas also lead to Mg2+

leaching and lessens the balance between plant Mg2+ concentration and Mg2+ availability.
Moreover, acidic soils impede Mg2+ uptake in plants by allowing higher leaching rates of
Mg2+ and higher concentrations of Al and Mn.

5. Mg Stresses Signaling in Plants

There has been little research on signal transduction responding to the Mg deficiency
in plants. In general, the signaling process may be related to respiration block [101], leaves
to root transport of sugar via the phloem; this improves starch accumulation in leaves
and resulting in the inhibition of photosynthesis, increase the cellular ROS level, and
consequently restraining the plant growth [24]. However, those findings are too ambiguous
to disclose the signaling in plants response to Mg deficiency.

In plants treated with Mg deficiency, no change in ABA content was observed, al-
though half of the ABA-responsive genes were upregulated in the leaves [26], suggesting
that the factors responding to ABA are involved in the ABA-independent signaling pro-
cess [102], and according to Hermans and Vuylsteke [27], those ABA-responsive genes
oscillate following the circadian clock. ABA and auxin are also involved in the regula-
tion of AtMHX. This might be due to the following two reasons: first, the presence of an
ABA response element (ACGTGTC) and the auxin response element (ACTTTA) in the
promoter region, and second, the existence of a repetitive genomic element of 530 bp that
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functions as an enhancer in its leader intron [103–105]. Ethylene also plays a key role in
Mg deficiency, as plants treated with Mg deficiency produced twice as much ethylene
as compared to those treated with Mg sufficiency treatment, and the mRNA levels of
the 1-aminocyclopropane-1-carboxylic-acid-synthase (ACS)-encoding genes (ASC2, ASC7,
ASC8, and ASC11) in the biosynthetic pathway were enhanced accordingly [27]. Similar
to ABA-responsive genes, ethylene production also follows a circadian rhythm, and the
expression of ACS8 is regulated by CCA1 (circadian clock associated 1) and TOC1 (timing
of cab 1) [16]. Here, the phase of CCA1 and late elongated hypocotyl (LHY) expression was
delayed in Mg deficient plants grown in light/dark cycles. The effects of Mg deficiency on
circadian clock genes expression might be due to impaired sugar production or partitioning,
and sugar plays some roles in circadian entrainment [106]. Moreover, it might be due to
other energy-dependent processes.

CKX (cytokinin-degrading cytokinin oxidase/dehydrogenase) gene is a negative
regulator of root growth. Upon Mg-deficient conditions for both long and short time,
transgenic plants (W6:CKX1) retained 15%–60% more chlorophyll as compared to the
corresponding wild types leaves. However, the MGT genes exhibited a significantly
decreased expression level in transgenic roots as compared with control, suggesting that
the increased content of Mg2+ in transgenic leaves and their higher chlorophyll content may
not have caused by the known Mg2+ transporters [102,107]. Reactive oxygen species (ROS)
and cytosolic Ca2+ were confirmed as signaling factors responding to Mg deficiency [108],
in agreement with a previous hypothesis that antioxidation is an early response to Mg
deficiency induced by ROS [21,27].

6. Effects of Mg on Other Nutrients Uptake Behavior

Mg2+ and other ions have two kinds of interactions with each other. If two or more
nutrients participate together to create an overall improved and well-developed physiolog-
ical state, it is known as synergism, while the excess of one nutrient inhibiting or reducing
the uptake of other nutrients is known as antagonism. Both synergistic and antagonistic
interactions depend on soil type, soil physical properties, soil pH, ambient temperature,
and the proportion of participating nutrients. In addition, there is an involvement of a
highly controlled selective process in the uptake of nutrients by plants, which is the reason
behind the different ratios of nutrients inside the plants [109].

The excessive application of K and ammonium (NH4
+), especially in sandy soils, often

increases the chances of Mg scarcity [20]. Under Mg-deficient conditions, other nutrients
(Ca, K) have strong antagonistic uptake behavior, which results in relative or absolute
excess of Ca2+, H+, NH4

+, and Al3+ [110]. Mg concentration and uptake was reduced in
roots and leaves of rice plants when K concentration was increased in plants, but under the
low supply of K, there was no effect on Mg concentration and uptake, which recommends
that the opposing impact of K on Mg uptake was clearer than that of Mg on K uptake [23].
Similar effects were also observed by Farhat and Rabhi [111] that Mg and Ca concentrations
were significantly decreased in all parts of safflower when plants were supplied with a
higher amount of K (60 mM KCl), while under Mg scarcity, no effect on K concentration was
noticed. Gransee and Führs [1] revealed that the blockage of unspecific Mg transporters
can be brought about by the high accessibility of K in soil or rhizosphere. Thereby, two
procedures were proposed for the uptake of K: the high-affinity transport system and the
low-affinity transport system [112].

The availability of Mg can modify the uptake of Ca and K, while Ca and K can restrict
the translocation of Mg from roots to shoots under insufficient Mg supply [113]. According
to Lasa and Frechilla [39], when sunflower plants were grown under the Mg-deficient condi-
tions, greater uptake of Ca and K was observed. A similar phenomenon was also found by
Hermans and Johnson [24]; they noticed a marked boost of Ca in roots and petioles and K
in all parts of sugar beet plants. In onion [114] and citrus [115–117], the antagonistic effects
of Mg on Ca and K have also been reported. Moreover, Ye and Chen [117] also observed
the most striking effects in the form of a large increase in Mn and Zn concentrations in the
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leaf blades of Citrus sinensis, proposed the existence of antagonistic interaction between
Mg, Mn, and Zn. However, in Medicago sativa, the antagonistic action of Mg on Mn uptake
hardly existed [118], which suggests that the antagonistic interaction and competitive
effects of Mg on Mn vary depending on plant species, the nutrient concentration of the
medium, and the cultivation type.

The synergetic effects of Mg2+ on K+ ions were noticed in rice plants [23]. It was
further found that biomass yield and the photosynthetic rate were improved in plants
due to Mg supply and low feed of K. An improvement of K uptake and its movement
from roots to shoots was associated with the Mg supply. It is thought that Mg substitutes
K in plant cells for a few of its roles that support the hypothesis proposed by Bedi and
Sekhon [119], who suggested that absence of one cation can be compromised by another
cation (Ca2+, K+, Mg2+).

7. Strategies to Enhance the Mg Use Efficiency in Plants

In agricultural production systems, Mg availability to crops depends upon the var-
ious factors such as soil texture, cation exchangeable capacity, site-specific climatic and
anthropogenic factors, agronomic management practices, and the crop species itself [120].
Sufficient concentration of Mg in the soil is a key to ensure the vigorous crop growth and
production, while the Mg deficient soils dramatically reduce the Mg absorption by crop
roots, which is mainly because of low Mg content in source rocks, Mg losses by mobiliza-
tion and leaching in the soil, Mg depletion due to the intensive crop production, and the
cationic competition [121,122]. There is another important factor determining the crop
productivity is soil acidity [123], closely associated with the nutrient deficiency such as K,
Ca, Mn, P, and Zn, while the toxicity of Al and Mn [124–126] antagonizes the availability of
Mg. In addition to this, the highly mobile nature of Mg2+ makes it vulnerable to discharge
it from the root-zone due to the heavy rainfall [1], particularly in the acidic soils, resulting
in reduced nutrient use efficiency and crop yield.

Two strategies are considered to increase the Mg2+ use efficiency in plants [127]. The
first most used strategy is the agronomic biofortification, while the second one, today’s
fast-accepted strategy, is the genetic biofortification that includes the breeding crops with
higher Mg2+ contents and genetic modification of some genes related to Mg deficiency
tolerance or Mg2+ uptake (Table 1).



Int. J. Mol. Sci. 2021, 22, 1819 10 of 18

Table 1. Strategies to improve the Mg use efficiencies.

Agronomic Biofortification-Fertilization

Crops Fertilizer Used Plant Parts Used
Improvement in Mg
and Other Nutrient

Concentration

Improvement in
Yield/Biomass References

Blueberry MgSO4 Leaves, Fruits X X [128]

Banana MgSO4 Leaves X Not examined [129,130]

Citrus NPK + MgSO4 Leaves, Fruits X X [131]

Pumelo MgSO4 Leaves, Fruit X X [132]

Watermelon Sulfate-Potassium-
Magnesium Fruit X X [133]

Cabbage MgSO4 Fruit X Not examined [134]

Capsicum annum L. H3BO3 +
MgSO4.7H2O

Leaves, Stem, Flower,
Fruit X X [135]

Carrot MgO Roots X X [136]

Kale MgSO4 Shoot X X [137]

Potato
MgSO4, Calcined

Magnesite,
Kieserite

Tuber X X [137–141]

Sugarbeet
MgSO4, Calcined

Magnesite,
Kieserite

Fruits/Roots X X [137,141]

Onion MgSO4.7H2O Leaves, Bulbs X X [114]

Panicum maximum MgSO4.7H2O Shoot X X [142]

Pakchoi Sulfate-Potassium-
Magnesium Leaves X X [133]

Oolong Tea MgSO4 Leaves X X [143]

Wheat MgSO4.7H2O Leaves, Stem, Husk X X [144]

Barley
MgSO4, Calcined

Magnesite,
Kieserite

Aerial parts of the
plant X X [137]

Maize K2O + MgO Shoot, Grain X X [145]

Rice MgSO4 Leaves, Grain X X [146]

Sugarcane MgSO4 Leaves, Stem X X [147]

Sunflower K2O + MgO Leaves, Seeds/Grain,
Stem X X [148]

Silybum marianum (L.) MgSO4, MgSO4 +
Boron Flowers X X [149]

Lentil MgSO4 Seeds X X [150]

Peanut MgSO4 Leaves, Fruit X X [151]

Tobacco MgSO4 Leaves X X [152–154]

Agronomic Biofortification—Mycorrhizal Fungai (Glomus versiforme)

Citrus MgSO4 Leaves, Roots X Not examined [30]

Agronomic Biofortification-Grafting

Watermelon MgSO4 Leaves, Roots, Stem X Not examined [31]

Genetic Biofortification

Tobacco MgSO4 Leaves, Roots X Not examined [155]
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Agronomic biofortification deals with sustaining plant growth and maintaining high
Mg concentrations by applying Mg fertilizers, usually supplied as its sulfate, carbonate,
or oxide slats. In addition, the use of magnesium ammonium phosphate (struvite) has
recently received attention, as it has potential for sustainable P source for agriculture, and
magnesium sulfate provides readily available Mg2+, where MgO behave as a slow-release
fertilizer [156]. In some crops, the application of MgSO4 is common and Mg-deficient
symptoms could be alleviated by foliar application of MgSO4 [157,158]. From a broader
point of view, Mg fertilization improves the tomato yield (7.7–17.9 t ha−1) [159], grain
yield in barley (8.6%) [160], fruit yield of hazelnut (51%) and total oil content (4.8%) [161].
In addition, the meta-analysis showed the increased yield of fruit, grass, tobacco, tuber,
vegetable, cereal, oil crop, tea, and other crops with an average of 8.5%, when the reasonable
amount of Mg (i.e., 94.1, 46.9, 54.1, 58.3, 43.5, 27.8, 47.2, 34.1, and 76.8 kg MgO ha−1,
respectively) was applied [122]. Hence, the application of Mg2+ through fertilization and
the foliar sprays may be useful to manage and correct the nutrient deficiency during the
growing season.

Agronomic biofortification approaches can increase the content of bioavailable miner-
als to humans and livestock [158]. However, the agronomic efficiencies are dependent on
the uptake or utilization of Mg across crop species [122]. Therefore, the future of sustainable
farming demands optimized application methods to minimize environmental pollution
and to save the economic margins. Thus, in the coming years, genetic biofortification
may be a demanding and attractive strategy. Once an Mg2+ homeostasis target gene(s) is
identified in some plants, it would be used for genetic biofortification by using forward
genetics, reverse genetics, and screening of biparental crosses progeny in variety of crop
species [127]. An early attempt was made by Deng and Luo [155] to modify the expressions
of annotated Mg2+ transporters in plants. They were succeeded in increasing the Mg2+

content in the transgenic lines by 30% (Table 1). Furthermore, the utilization and absorption
of Mg2+ can also be improved by modifying some factors in biosynthesis pathways of phy-
tohormones, their responsive genes and QTL may also be valuable regarding discovering
gene clusters responding to Mg stresses [127,162].

For maximum or optimal economic yield, farmers should ensure the adequate Mg
supply, which at the same time will ensure optimal crop quality in virtually all cases.
Recently, Guo [104] reviewed an article on Mg homeostasis and utilization and emphasized
that manures and crop biofortification techniques need consideration of other ecological
variables, including the adverse impacts due to dry season, warmth, and high radiation,
low pH, and metal toxicity, and the genetic biofortification approaches might be extremely
useful to feature the communication systems and find new avenues associated with the
usage of Mg2+.

8. Conclusions and Future Prospects

With the development of the agriculture industry and the increase in the human
population, Mg deficiency in plants is becoming a severe problem. Due to low sensitivity,
the toxicity of Mg in plants is focused less than its deficiency. Additionally, plants have
developed many physiological changes that make them less vulnerable to Mg toxicity, such
as vacuolar compartmentation of Mg in plant cells [10], uptake of specific Ca at the root
and transfer to shoot, and limitation of core Mg sequestration at the root level [163,164].

Over the last two decades, work has been performed to understand the response of Mg
deficiency on plant growth and development. A recent review suggested that the discovery
of Mg transporter might help in understanding Mg uptake and transport mechanisms [97];
however, it remains unclear. Moreover, Mg regulates the carbohydrate portioning via
Mg-ATP complex. Apart from the role of Mg-ATP in phloem loading, Mg may play a direct
or indirect vital role in the phloem loading [21], but it is not yet fully understood. Moreover,
there is a need to identify the novel transcription factors, responsible for regulating Mg
accumulation in plant cells.
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