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Background: We report here a unique approach to using multifunctional dendrimer/

combretastatin A4 (CA4) inclusion complexes for targeted cancer therapeutics.

Methods: Amine-terminated generation 5 polyamidoamine dendrimers were first partially 

acetylated to neutralize a significant portion of the terminal amines, and then the remaining 

dendrimer terminal amines were sequentially modified with fluorescein isothiocyanate as an 

imaging agent and folic acid as a targeting ligand. The multifunctional dendrimers formed 

(G5.NHAc-FI-FA) were utilized to encapsulate the anticancer drug, CA4, for targeted delivery 

into cancer cells overexpressing folic acid receptors.

Results: The inclusion complexes of G5.NHAc-FI-FA/CA4 formed were stable and are able 

to significantly improve the water solubility of CA4 from 11.8 to 240 µg/mL. In vitro release 

studies showed that the multifunctional dendrimers complexed with CA4 could be released 

in a sustained manner. Both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

colorimetric assay and morphological cell observation showed that the inhibitory effect of the 

G5.NHAc-FI-FA/CA4 complexes was similar to that of free CA4 at the same selected drug 

concentration. More importantly, the complexes were able to target selectively and display 

specific therapeutic efficacy to cancer cells overexpressing high-affinity folic acid receptors.

Conclusion: Multifunctional dendrimers may serve as a valuable carrier to form stable inclusion 

complexes with various hydrophobic anticancer drugs with improved water solubility, for target-

ing chemotherapy to different types of cancer.

Keywords: PAMAM dendrimers, combretastatin A4, inclusion complexes, targeted cancer 

therapy

Introduction
Combretastatin A4 (CA4) is a potent anticancer and antiangiogenesis substance isolated 

from the South African tree Combretum caffrum. It is an antimitotic agent that strongly 

inhibits the polymerization of tubulin by attaching to the colchicine-binding site of the 

β-tubulin subunit.1,2 CA4 can act as a vascular disrupting agent to elicit irreversible 

vascular shutdown within solid tumors and leave the normal vasculature intact because 

the endothelial cells in the immature vasculature of tumors are much more sensitive to 

the antimicrotubular effect of CA4.3 In addition, CA4 also exhibits strong cytotoxicity 

against a broad spectrum of cancer cell lines, such as murine melanoma, human ovarian 

and colon cancer cells, and even those with multidrug resistance,4–6 which makes CA4 a 

potent cancer drug. However, the poor water solubility of CA4 in biological media 

and the resulting limited bioavailability significantly impair its antitumor activity for 

clinical applications. These limitations have led to the development of water-soluble 
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structural analogs of CA4, eg, a phosphate CA4P prodrug.7,8 

Nonetheless, this is not the optimum approach for the appli-

cation of CA4 in chemotherapy, because the short half-life 

and wide distribution of the prodrug in vivo may reduce its 

therapeutic efficacy and cause undesirable side effects in 

normal tissues, such as cardiotoxicity and ataxia.9

To decrease the toxicity of CA4, it is necessary to develop 

a carrier system to improve the water solubility and bioavail-

ability of the drug and maintain the tumor inhibition effect. 

Commonly used drug delivery systems include liposomes,10,11 

polymeric nanoparticles,12–14 and peptide conjugates,15 which 

have been demonstrated to be able to load or conjugate CA4 

to enhance its water solubility and improve its therapeutic 

efficacy.16–20 For instance, in a recent study, Ho et al used 

methoxyl poly(ethylene glycol)-poly(lactic acid) copolymers 

to conjugate paclitaxel, followed by encapsulation of CA4 

to form self-assembled polymeric nanoparticles with both 

anticancer and antivasculature activity.19 In another study, 

Zhang et al synthesized Arg-Gly-Asp peptide-modified lipo-

somes to coencapsulate CA4 as a vascular disrupting agent 

and doxorubicin as a cytotoxic agent to enhance the tumor 

inhibition response.10 Both in vitro and in vivo experiments 

confirmed an effective inhibitory effect on human umbilical 

vein endothelial cells and a significant therapeutic effect on 

malignant tumors. However, in most of these studies, only 

the antiangiogenesis property of CA4 is exploited, while its 

cytotoxicity and inhibitory effect on cancer cells has rarely 

been studied. Moreover, although the delivery system used 

to encapsulate hydrophobic CA4 may increase its aqueous 

solubility, the release rate of CA4 from these carriers has 

been relatively high, and about 80% of the loaded drug can 

be released within 24 hours,10 which might limit its therapeu-

tic efficacy. Therefore, development of novel drug delivery 

systems for CA4 with a sustained-release profile remains a 

great challenge.

Polyamidoamine (PAMAM) dendrimers are a family 

of highly branched, monodispersed, synthetic macromole

cules with a well defined structure and composition.21,22 

Larger generation PAMAM dendrimers possess a uniform 

spherical shape with a suitable nanometer size, good water 

solubility, and biocompatibility after appropriate surface 

functionalization, making them an ideal carrier system 

for drug delivery.23,24 The internal hydrophobic cavities of 

dendrimers are able to encapsulate hydrophobic anticancer 

drugs, such as doxorubicin and 2-methoxyestradiol, and 

release the drug in a sustained manner.25–29 In the meantime, 

the abundant functional groups on the dendrimer surface 

can covalently link with imaging agents, targeting ligands, 

and therapeutic drugs for simultaneous imaging, target-

ing, and treatment of cancer cells.30–35 Therefore, for drug 

delivery applications, PAMAM dendrimers can be used 

either to encapsulate hydrophobic drugs physically within 

the dendrimer interior or as a platform to link drug molecules 

covalently on their surface.

In our previous work,26,27 we have shown that antitu-

mor agents (eg, 2-methoxyestradiol and doxorubicin) are 

able to be effectively encapsulated within multifunctional 

folic acid-targeted generation 5 (G5) PAMAM dendrimers 

terminated with acetamide groups, and the stable inclusion 

complexes formed are able to be specifically delivered into 

cancer cells overexpressing folic acid receptors to exert the 

therapeutic inhibition effect of the anticancer drug via the 

receptor-mediated endocytosis pathway. It is anticipated that 

using a similar approach, CA4 can be physically loaded into 

the interiors of the folic acid-targeted G5 PAMAM dendrim-

ers, allowing for targeted delivery of CA4 to cancer cells 

overexpressing the folic acid receptor.

In this present study, we utilized G5 PAMAM dendrimers 

modified with fluorescein isothiocyanate and folic acid and 

with acetyl terminal groups (G5.NHAc-FI-FA) to encapsu-

late the anticancer drug CA4. The encapsulation efficiency, 

release kinetics, and targeted inhibition of cancer cells over-

expressing high affinity folic acid receptors were investigated 

in detail. To the best of our knowledge, this is the first report 

of a new formulation for the anticancer drug, CA4, using 

dendrimer-based nanotechnology. Another important feature 

of our study is that, unlike most of the other studies that 

have merely demonstrated the antiangiogenesis activity of a 

carrier system, the antitumor efficacy of CA4 can be readily 

demonstrated by the multifunctional dendrimer-mediated 

delivery pathway.

Materials and methods
Ethylenediamine core amine-terminated PAMAM dendrimers 

of generation 5 (G5.NH
2
), with a polydispersity index less than 

1.08, were purchased from Dendritech (Midland, MI). 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 

(EDC), CA4 (molecular structure shown in Scheme 1), and 

fluorescein isothiocyanate were supplied by J and K Chemi-

cal Ltd (Shanghai, China). Regenerated cellulose dialysis 

membranes (molecular weight cutoff 10,000) were acquired 

from Fisher Scientific (Hudson, NH). KB cells were obtained 

from the Institute of Biochemistry and Cell Biology, Chinese 

Academy of Sciences (Shanghai, China) and 3-[4,5-dimethyl-

2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) was 

purchased from Sigma-Aldrich. Unless otherwise specified, 
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folic acid (3.11 mg, 7.05 × 10−6 mol, 3 mL) and EDC (13.5 mg, 

7.05 × 10−5 mol, 3 mL) at room temperature for 3 hours. The 

resulting solution of activated folic acid was added dropwise 

into the dimethyl sulfoxide solution of G5.NHAc-FI conju-

gates under vigorous magnetic stirring at room temperature 

for 2 days. Finally, the reaction mixture was dialyzed against 

phosphate-buffered saline buffer (three times, 4 L) and water 

(three times, 4 L) for 3 days, followed by lyophilization to 

obtain the G5.NHAc-FI-FA product.

Formation of G5.NHAc-FI-FA/CA4 
complexes
The G5.NHAc-FI-FA dendrimer (9.65 mg, 2.853 × 10−7 mol) 

was dissolved in 1.5 mL water. CA4 (0.92 mg, 2.853 × 10−6 mol) 

with 10-fold molar equivalents of the dendrimer was dis-

solved in 300 µL methanol and then mixed with the 1.5 mL 

dendrimer aqueous solution. This mixture was vigorously 

stirred overnight to evaporate the methanol solvent. The 

G5.NHAc-FI-FA/CA4 mixture was centrifuged (7000 rpm, 

10 minutes) to remove precipitates related to non-complexed 

free CA4, which is almost insoluble in water. The precipitate 

collected was dissolved into 1 mL of methanol for HPLC 

analysis. The supernatant was lyophilized for 3 days to obtain 

the G5.NHAc-FI-FA/CA4 inclusion complex.

Characterization techniques
1H NMR spectra of G5.NHAc-FI-FA conjugates were 

recorded on a Bruker AV400 nuclear magnetic resonance 

spectrometer. Samples were dissolved in D
2
O before 

NMR measurement. Ultraviolet-visible spectroscopy 

was performed using a Lambda 25 ultraviolet-visible 

spectrometer (Perkin Elmer, Boston, MA). Zeta potential 

measurements were carried out using a Zetasizer Nano 

ZS system (Malvern, Worcestershire, UK) equipped 

with a standard 633 nm laser. Dendrimer samples with a 

concentration of 1 mg/mL were measured under different 

pH conditions (pH 5.0, pH 7.0, and pH 10.0).

In vitro release kinetics study
To determine the release kinetics of CA4, free CA4 in ethanol 

or G5.NHAc-FI-FA/CA4  inclusion complex in water was 

placed in a dialysis bag with a molecular weight cutoff of 

10,000, hermetically tied, and suspended in 15 mL of aque-

ous phosphate buffer medium (20  mM, pH 7.4, pH 6.8, 

or pH 6.0). The entire system was kept in a vapor-bathing 

constant temperature vibrator at 37°C. Three milliliters of the 

buffer medium were taken out at each predetermined time 

interval and measured by HPLC (see below). The volume of 

OH

OCH3

OCH3

H3CO

H3CO

Scheme 1 Molecular structure of combretastatin A4.

all cell culture media and reagents were purchased from 

Hangzhou Jinuo Biomedical Technology Co Ltd, China. The 

water used in all the experiments was purified using a Milli-Q 

Plus 185 water purification system (Millipore, Bedford, MA) 

with a resistivity higher than 18  mΩ cm. Methanol and 

acetonitrile were of high-performance liquid chromatogra-

phy (HPLC) grade. All other solvents and reagents were of 

analytical grade and used as received.

Synthesis of G5.NHAc-FI-FA conjugates
The terminal amines of G5.NH

2
 PAMAM dendrimers were 

partially converted to acetyl groups by reaction with acetic 

anhydride, and then the remaining dendrimer terminal 

amines were sequentially modified by fluorescein isothio-

cyanate and folic acid following a method described in our 

previous reports.36,37 Briefly, G5.NH
2
 dendrimers (44.55 mg, 

1.713 × 10−6 mol) were dissolved in dimethyl sulfoxide (5 mL) 

and mixed with triethylamine (27.46 µL, 1.541 × 10−4 mol) 

under magnetic stirring for 30  minutes. Acetic anhydride 

(12.95 µL, 1.627 × 10−4 mol) dissolved in 5 mL dimethyl 

sulfoxide was then added dropwise into the dendrimer/

triethylamine mixture solution under vigorous magnetic 

stirring at room temperature. The reaction was continued for 

24 hours. The reaction mixture was then dialyzed through a 

10,000 molecular weight cutoff membrane against phosphate-

buffered saline (three times, 4 L) and water (three times, 4 L) 

for 3 days, followed by lyophilization to obtain the partially 

acetylated G5 dendrimers.

The partially acetylated G5 dendrimer obtained (40.78 mg, 

1.41 × 10−6 mol) was dissolved in dimethyl sulfoxide (5 mL) 

and reacted with fluorescein isothiocyanate (3.11  mg, 

7.05 × 10−6 mol) dissolved in 3 mL dimethyl sulfoxide at room 

temperature for 4 hours to obtain fluorescein isothiocyanate-

labeled G5.NHAc-FI conjugates. EDC-activated folic acid was 

first prepared by mixing the dimethyl sulfoxide solutions of 
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the outer phase buffer medium was maintained constant by 

replenishing 3 mL of the corresponding buffer solution.

HPLC analysis
An Agilent-1100 HPLC system was used for analysis of the 

CA4 drug concentration. A Jupiter C5 silica-based column 

(250 × 4.6 mm, 300 A) was purchased from Phenomenex 

(Torrance, CA). Two Phenomenex Widepore C5  safety 

guards (4  ×  3  mm) were installed ahead of the Jupiter 

column. The mobile phase was a mixture solution contain-

ing 55% water with 0.05 M sodium dihydrogen phosphate, 

10% methanol, and 35% acetonitrile. The flow rate was set at 

1 mL/minute and the injection volume was 35 µL. Detection 

of the eluted samples was performed at 294 nm. The concen-

tration of the noncomplexed or released CA4 was analyzed 

based on a free CA4 calibration curve, which showed a good 

linear relationship (A = 35.82971 C-10.69847, r = 0.9999) 

between the CA4 concentration (C) and the peak area (A), 

with a linear range of 3.125–200 µg/mL.

Cell biological evaluation
KB cells (a human epithelial carcinoma cell line) were con-

tinuously grown in two 50 mL culture flasks, one in folic 

acid-free media and the other in regular RPMI 1640 medium 

supplemented with 10% heat-inactivated fetal bovine serum, 

100 U/mL penicillin, 100 U/mL streptomycin, and 2.5 µM of 

folic acid. The cells grown in folic acid-free media expressed 

high folic acid receptor levels (denoted as KB-HFAR), while 

the cells grown in folic acid-containing media expressed low 

folic acid receptor levels (denoted as KB-LFAR).

To determine if the G5.NHAc-FI-FA/CA4 complex was 

therapeutically active, one day before the experiments, the 

cells were plated into a 96-well plate (1 × 104 cells per well) 

in complete medium at 37°C and 5% CO
2
. The next day, the 

medium was replaced with 200 µL of folic acid-free medium 

consisting of phosphate-buffered saline (10  µL), ethanol 

(1 µL), G5.NHAc-FI-FA in phosphate-buffered saline solution 

(10 µL), CA4 in ethanol solution (1 µL), and G5.NHAc-FI-FA/

CA4 complex in phosphate-buffered saline (10 µL). The final 

CA4 concentration in the drug-loaded and drug-free groups 

was 0.5 µM. The cells were then incubated for 48 hours at 37°C 

before MTT assay. After treatment with CA4 or dendrimer/

CA4 complexes for 48 hours, cell morphology was observed 

using a Leica DM IL LED inverted phase contrast microscope 

with a magnification of 200× for each sample.

To investigate the fate of the dendrimer/CA4 complexes, 

1.0  ×  105 KB-HFAR cells were plated 24  hours before 

the experiment. The next day, cells were incubated with 

G5.NHAc-FI-FA/CA4 complexes for one hour or 2 hours, 

and then with Lyso Tracker Red 50 nM for a further hour. 

The cells were washed three times in rapid succession 

with phosphate-buffered saline and observed by confocal 

microscopy (Carl Zeiss LSM 700 laser scanning confocal 

microscope, Jena, Germany). Fluorescein isothiocyanate 

and Lyso Tracker Red fluorescence was excited at 488 nm 

and 568  nm, respectively. Samples were imaged using a 

63× oil-immersion objective lens.

In order to confirm targeted inhibition of KB-HFAR cells, 

the G5.NHAc-FI-FA/CA4 complex with the same CA4 con-

centration (0.5 µM) was added to both KB-HFAR and KB-

LFAR cells. The medium in the wells containing dendrimer/

CA4 complexes was completely removed and replenished 

with the same volume of fresh medium without the dendrimer/

CA4 complexes after 3  hours of incubation. The control 

comprised KB-HFAR cells treated with the same volume of 

phosphate-buffered saline. The cells were then incubated for 

48 hours at 37°C before MTT assay. Parallel cell samples after 

3 hours of incubation of G5.NHAc-FI-FA/CA4 complex and 

subsequent change with fresh medium without the dendrimer/

CA4 complexes was observed by confocal microscopy to 

check the binding specificity of the G5.NHAc-FI-FA/CA4 

complex for KB cells. Fluorescein isothiocyanate fluorescence 

was excited with a 488 nm argon blue laser. The optical sec-

tion thickness was set at 5 µm. Samples were imaged using 

a 63× oil-immersion objective lens.

An MTT assay was used to quantify viability of the cells. 

To determine the therapeutic efficacy of the dendrimer/CA4 

complex, metabolically active cells were detected by adding 

MTT to each well after 48 hours of incubation with CA4 or 

dendrimer/CA4 complex. For the targeted cancer cell inhibition 

study, MTT assay was performed after the cells were treated 

with dendrimer/CA4 complexes for 3 hours, followed by chang-

ing the medium to fresh drug-free medium and culturing the 

cells for 48 hours. The plates were read at 570 nm. The means 

and standard deviation for the triplicate wells were reported.

Statistical analysis
One-way analysis of variance was used to evaluate the statistical 

significance of the therapeutic efficacy of the CA4 drug. A P 

value of <0.05 was considered to be statistically significant.

Results and discussion
Synthesis and characterization  
of G5.NHAc-FI-FA dendrimers
Because of its small size (diameter 5.4 nm) comparable with 

hemoglobin,38 an amine-terminated G5 PAMAM dendrimer 
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was selected to conjugate with fluorescein isothiocyanate 

as the imaging agent and folic acid as the targeting ligand. 

The relative small size of the dendrimers enables them to 

be cleared easily from the blood via the kidneys,39 obvi-

ating the need for biodegradability. G5.NH
2
 dendrimers 

have plenty of terminal amine groups at their periphery 

(theoretically 128 primary amine groups), enabling tunable 

modification with different functionalities. In this work, 

the multifunctional conjugate, G5.NHAc-FI-FA, was syn-

thesized in three steps. First, 95 amine groups on the G5 

dendrimer surface were acetylated to minimize nonspecific 

binding of the dendrimers to cell membranes and to improve 

the biocompatibility of the dendrimer species. Second, 

fluorescein isothiocyanate moieties were conjugated to the 

partially acetylated dendrimer by thiourea bonds in order 

to detect the intracellular uptake of the dendrimer carrier. 

Based on previous studies,27,40,41 linking only five fluores-

cein isothiocyanate moieties onto each partially acetylated 

G5 dendrimer is sufficient for fluorescent detection. Third, 

5 molar-equivalent folic acid molecules were conjugated to 

each G5.NHAc-FI dendrimer by amide bonds between the 

γ-carboxyl group of folic acid and the remaining primary 

amino group of the dendrimer, which is known to be suf-

ficient to target cancer cells overexpressing high-affinity 

folic acid receptors efficiently.42

The chemical structure of the G5.NHAc-FI-FA conjugate 

was characterized by 1H NMR (Figure 1). The emergence of a 

peak at 1.87 ppm is related to the -CH
3
 protons of the acetyl 

groups, and the peaks in aromatic proton region are assigned 

to the characteristic proton peaks from fluorescein isothio-

cyanate (peaks a, b, and c) and folic acid (peaks d, e, and f), 

in agreement with previous data reported in the literature.27 

Based on NMR integration, the average number of acetyl 

groups, fluorescein isothiocyanate, and folic acid coupled to 

each dendrimer was estimated to be 94.0, 4.5, and 5.0, respec-

tively, which is close to the initial molar feeding ratio.

The G5.NHAc-FI-FA conjugate formed was further char-

acterized using ultraviolet-visible spectroscopy (Figure 2). The 

pristine G5.NH
2
 dendrimer only shows ultraviolet absorbance 

at a wavelength below 250 nm, which is typical of the aliphatic 
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Figure 1 1H NMR spectrum of G5.NHAc-FI-FA dendrimers. 
Abbreviation: G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups.
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Table 1 Zeta potential values of G5.NHAc-FI-FA dendrimers and 
G5.NHAc-FI-FA/CA4 complexes under different pH conditions

Materials Zeta potential (mV)

pH 5.0 pH 7.0 pH 10.0

G5.NHAc-FI-FA dendrimer 14.8 ± 7.3 9.7 ± 5.9 -11.2 ± 5.0
G5.NHAc-FI-FA/CA4 complex 13.5 ± 10.1 7.2 ± 3.9 -17.3 ± 9.2

Abbreviations: G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and 
folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, 
combretastatin A4. 
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Figure 2 Ultraviolet-visible spectra of CA4 in ethanol, G5.NH2 dendrimers, 
G5.NHAc-FI-FA dendrimers, and G5.NHAc-FI-FA/CA4 complexes in aqueous 
solution. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-
modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal 
groups; CA4, combretastatin A4.

structure of dendrimers. After modification with both fluo-

rescein isothiocyanate and folic acid, two obvious absorption 

peaks at 280 nm and 500 nm appeared in the spectrum of 

the G5.NHAc-FI-FA conjugates, which are assigned to the 

characteristic absorption peak of folic acid and fluorescein 

isothiocyanate, respectively. Both 1H NMR and ultraviolet-

visible spectroscopy indicate the successful attachment of 

fluorescein isothiocyanate and folic acid moieties onto the 

dendrimer surface, in agreement with our previous study.27

Formation of G5.NHAc-FI-FA/
CA4 inclusion complexes
The poor water solubility of the antitumor drug CA4 facilitates 

its effective encapsulation within the relatively hydrophobic 

interior of the dendrimers. The dendrimer/CA4 complexes in 

this new formulation are expected to have improved water solu-

bility and thus enhanced bioavailability. The G5.NHAc-FI-FA/

CA4 complexes were characterized by ultraviolet-visible spec-

troscopy (Figure 2). It is clear that free CA4 dissolved in ethanol 

has a typical absorption peak at 294 nm. After encapsulation 

within the G5.NHAc-FI-FA dendrimers, the G5.NHAc-FI-FA/

CA4 complexes had an absorption enhancement at 294 nm, 

when compared with that of the G5.NHAc-FI-FA dendrim-

ers without CA4 encapsulation. This demonstrates effective 

encapsulation of CA4 within the dendrimer conjugate. The 

concentration of CA4 loaded into the multifunctional den-

drimer conjugate was determined to be 240 µg/mL by HPLC, 

which represents at least a 20-fold increase in the aqueous 

solubility of CA4 (11.8 µg/mL).12 Therefore, the application 

of G5.NHAc-FI-FA to load hydrophobic drug CA4 can 

significantly improve its aqueous solubility. From our calcula-

tions, we show that about 4.8 CA4 molecules are encapsulated 

within each multifunctional dendrimer.

The stability of the G5.NHAc-FI-FA/CA4 complexes 

formed under different conditions is of paramount impor-

tance for their biological applications. We showed that the 

lyophilized powder of the G5.NHAc-FI-FA/CA4 inclusion 

complexes could be completely dissolved in aqueous solu-

tion under different pH conditions (pH 5.0, 7.0, and 10.0, 

respectively), similar to the G5.NHAc-FI-FA dendrimers 

without CA4 (Figure S1). This suggests that the G5.NHAc-

FI-FA/CA4 complexes have similar colloidal stability to 

that of the G5.NHAc-FI-FA dendrimers without the drug 

complexed under the selected pH conditions. The zeta 

potentials of the G5.NHAc-FI-FA conjugates and G5.NHAc-

FI-FA/CA4 complexes under different pH conditions were 

measured and are listed in Table 1. The surface potentials 

of the G5.NHAc-FI-FA dendrimers before and after drug 

loading had approximately similar values, indicating that 

encapsulation of CA4 does not appreciably affect the surface 

charge properties of the dendrimers. The larger values at 

pH 5.0 for both dendrimers and complexes compared with 

those at pH 7.0 can be ascribed to protonation of the tertiary 

amines in the dendrimer.43 The change in surface potential 

of both the dendrimers and complexes with pH followed the 

same trend as that of the G5.NHAc dendrimers described 

in our previous work.25 In addition, the G5.NHAc-FI-FA/

CA4 complexes in aqueous solution (eg, water, phosphate-

buffered saline buffer with a pH value of 7.4, and cell culture 

medium) stored at 4°C were stable for at least 12 months 

(Figure S2), which is again essential for their further bio-

logical applications.

In vitro release kinetics of G5.NHAc- 
FI-FA/CA4 complexes
To evaluate the in vitro release kinetics of CA4 from the 

G5.NHAc-FI-FA/CA4 complexes under physiological 
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Figure 3 In vitro release profiles of CA4 from G5.NHAc-FI-FA/CA4 complexes 
in phosphate buffer (pH 7.4, pH 6.8, and pH 6.0) and from free CA4 dissolved in 
ethanol solution in phosphate buffer (pH 7.4) at 37°C. 
Abbreviations: G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and 
folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, 
combretastatin A4.

conditions, three kinds of phosphate buffer (20 mM) with 

different pHs (pH 7.4, pH 6.8, and pH 6.0) were selected 

as release media. pH 7.4 is the physiological pH, pH 6.8 

corresponds to the slight acidic environment of tumor tissue 

in vivo, and pH 6.0 is the endosomal pH. Figure 3 shows the 

release profiles of free CA4 and CA4 from the complexes 

at 37°C. It can be seen that within 2  hours about 21% 

(pH 7.4), 26% (pH 6.8), and 28% (pH 6.0) of loaded CA4 

is released from the complexes, while more than 95% of 

free CA4 in ethanol is released at pH 7.4. With inclusion 

in G5.NHAc-FI-FA dendrimers, only about 28% (pH 7.4), 

32% (pH 6.8), and 33% (pH 6.0) of CA4 is released from 

the complexes, even after 24 hours. This suggests that the 

relatively hydrophobic interior of the G5.NHAc-FI-FA 

conjugates can effectively retain hydrophobic CA4  mol-

ecules within the dendrimer interior and maintain a slow 

but constant release rate. It is worthwhile to note that the 

release rates of CA4 from the complexes at pH 6.8 and pH 

6.0 are more or less similar, but both are slightly higher than 

that at pH 7.4, probably because lower pH can render the 

dendrimer interior less hydrophobic due to a higher level 

of protonation of the internal dendrimer tertiary amines. 

Therefore, it can be expected that the designed system is 

able to prolong the release time of CA4, to release antican-

cer drug in the endosomal environment, and also to have 

a slightly faster release rate in weakly acidic tumor tissue 

than in normal tissue.

In vitro therapeutic efficacy  
of G5.NHAc-FI-FA/CA4 complexes
To determine if the encapsulated CA4 is pharmacologically 

active, in vitro cytotoxicity tests of the G5.NHAc-FI-FA/

CA4 complexes against KB cells were performed using a 

standard MTT colorimetric assay. To determine the dose 

of CA4 complexed with G5.NHAc-FI-FA dendrimers for 

targeted cancer cell therapy and for comparison with the 

free drug, we tested the dose-dependent cytotoxicity of free 

CA4 and G5.NHAc-FI-FA/CA4 complexes (Figure S3). We 

showed that the free drug at a concentration as low as 50 nM 

could have significant cytotoxicity in KB cells, whereas 

the G5.NHAc-FI-FA/CA4 complexes started to show the 

therapeutic activity of CA4 at around 0.5 µM. This would 

be due to the limited release of the drug from the complexes, 

resulting in lower bioavailability of the drug. Therefore, 

in our subsequent studies, we chose a CA4 concentration 

of 0.5 µM to demonstrate the therapeutic efficacy of CA4 

under different conditions. Figure 4 shows the viability of KB 

cells treated with phosphate-buffered saline (10 µL), ethanol 

(1 µL), CA4 in ethanol solution (1 µL), G5.NHAc-FI-FA in 

phosphate-buffered saline (10  µL), and G5.NHAc-FI-FA/

CA4 in phosphate-buffered saline (10 µL), respectively, for 

48 hours at 37°C. Ethanol (1 µL) and phosphate-buffered 

saline (10  µL) were used as solvents to dissolve the free 

CA4, the G5.NHAc-FI-FA dendrimer, and the G5.NHAc-

FI-FA/CA4 complexes, respectively. G5.NHAc-FI-FA 
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Figure 4 Viability of KB cells after treatment with 10 µL phosphate-buffered saline, 
1 µL ethanol, free CA4 (0.5 µM) in 1 µL ethanol, G5.NHAc-FI-FA/CA4 complexes 
with a CA4 concentration of 0.5 µM, and G5.NHAc-FI-FA. 
Note: The data are expressed as the mean ± standard deviation. 
Abbreviations: G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and folic acid-
modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, combretastatin 
A4; G5, generation 5.
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dendrimer with a concentration similar to that used for the 

preparation of dendrimer/drug complex was also tested. The 

results showed that the G5.NHAc-FI-FA/CA4 complexes 

had cytotoxic activity similar to that of free CA4 at a similar 

drug concentration of 0.5 µM, whereas added amounts of 

ethanol, phosphate-buffered saline, and G5.NHAc-FI-FA 

dendrimer in phosphate-buffered saline were found to have 

no cytotoxicity when compared with the untreated control 

group. Therefore, the G5.NHAc-FI-FA carrier is biocom-

patible at the given concentration, and the antitumor effect 

of G5.NHAc-FI-FA/CA4 complexes is related solely to the 

loaded CA4 drug.

The therapeutic activity of the G5.NHAc-FI-FA/CA4 

complexes was further confirmed by visual observation of the 

morphology of KB cells after treatment (Figure 5). The mor-

phology of KB cells treated with 1 µL ethanol (Figure 5B), 

10  µL phosphate-buffered saline (Figure  5D), and 10  µL 

G5.NHAc-FI-FA dendrimer in phosphate-buffered saline 

(Figure 5E) is similar to that of the control group (Figure 5A), 

indicating that the added ethanol, phosphate-buffered saline, 

and G5.NHAc-FI-FA dendrimer at a concentration similar 

to that used to encapsulate CA4 (0.5 µM) are nontoxic. In 

contrast, a significant proportion of KB cells treated with 

the G5.NHAc-FI-FA/CA4 complexes (Figure 5F) or free 

CA4  in ethanol solution (Figure  5C) with a similar drug 

concentration (0.5 µM) became detached from the bottom 

of the plate and were rounded in shape, indicative of cells 

that have undergone apoptosis. These results are consistent 

with the MTT assay data.

Targeted antitumor efficacy  
of G5.NHAc-FI-FA/CA4 complexes
We next explored the targeted antitumor efficacy of the 

G5.NHAc-FI-FA/CA4 complexes. The folic acid receptor 

is known to be overexpressed in many types of cancer cells, 

including in the ovary, kidney, uterus, testis, brain, colon, 

lung, and myelocytic leukemia, whereas its expression in 

normal tissues and organs is quite limited.44 Therefore, in 

this study, folic acid was covalently linked to the surface of 

the dendrimer for targeted delivery of the CA4 drug to tumor 

cells overexpressing high-affinity folic acid receptors via 

the receptor-mediated endocytosis pathway. KB cells with 

both low levels and high levels of folic acid receptors were 

cultured in order to test the targeted antitumor efficacy of the 

CA4 drug encapsulated within the multifunctional G5.NHAc-

FI-FA dendrimers. The difference between KB-HFAR and 

KB-LFAR cells in terms of their surface expression of folic 

acid receptors has been quantified and demonstrated in our 

previous work by flow cytometry, confocal microscopy, and 

other imaging techniques.40,41

Prior to exploring the targeted antitumor efficacy of 

the G5.NHAc-FI-FA/CA4 complexes, it was necessary to 

confirm the targeting specificity of the complexes to folic 

acid receptor-overexpressing KB cells. The fluorescein 

isothiocyanate moieties linked onto the G5 dendrimers 

enabled confocal microscopic imaging of cellular uptake 

and internalization of the G5.NHAc-FI-FA/CA4 complexes. 

Figure 6 shows the confocal microscopic images of the KB-

HFAR cells and KB-LFAR cells after 3 hours of incubation 

A B C

D E F
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100 µm 100 µm

100 µm 100 µm

100 µm

Figure 5 Phase contrast microscopic images of (A) KB cells without treatment and KB cells treated with (B) 1 µL ethanol, (C) free CA4 in 1 µL ethanol (0.5 µM), (D) 10 µL 
phosphate-buffered saline buffer, (E) G5.NHAc-FI-FA dendrimers in 10 µL phosphate-buffered saline, and (F) G5.NHAc-FI-FA/CA4 complexes with a CA4 concentration of 
0.5 µM in 10 µL phosphate-buffered saline, respectively. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, 
combretastatin A4.
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Figure 6 Confocal microscopic images of KB-HFAR cells incubated with phosphate-buffered saline buffer (A, B, and C), KB-LFAR cells (D, E, and F), and KB-HFAR cells 
(G, H, and I) treated with G5.NHAc-FI-FA/CA4 complexes. Differential interference contrast images (left panels), fluorescent images (middle panels), and merged images 
with the above two modes (right panels) were collected under similar instrumental conditions. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, 
combretastatin A4; HFAR, high folic acid receptor levels; LFAR, low folic acid receptor levels.

with G5.NHAc-FI-FA/CA4 complexes. It is clear that only 

KB-HFAR cells displayed significant fluorescence signals, 

which were associated with specific internalization of the 

G5.NHAc-FI-FA/CA4 complexes into the cytoplasm of the 

cells (Figure 6G–I). In contrast, under similar microscopic 

conditions, KB-LFAR cells treated with the same complexes 

did not show detectable green fluorescence signals in the 

confocal microscopic images (Figure 6D–F), which is similar 

to the KB-HFAR cells treated with phosphate-buffered saline 

(Figure  6A–C). This result suggests that complexation of 

CA4 within the G5.NHAc-FI-FA dendrimers does not com-

promise the targeting specificity of the folic acid-modified 

dendrimers, in agreement with our previous results.27

To explore further the fate of the G5.NHAc-FI-FA/CA4 

complexes after internalization into KB-HFAR cells, the lyso-

somal compartment of the cells was stained with Lyso Tracker 

Red probes after treatment with G5.NHAc-FI-FA/CA4 

complexes for one hour or 2 hours. It was clear that a significant 

portion of the complexes (labeled with fluorescein isothiocya-

nate, green) merged with the red color, which is the location 

of the lysosomes in KB-HFAR cells, indicating that the com-

plexes are able to enter into the lysosomes of cells (Figure S4). 

In contrast, the control cells did not show any fluorescence 

signals (Figure S4A). The complexes may be able to escape the 

lysosomes, but it is hard to make a definitive statement in this 

regard based on confocal microscopic observation alone.

Targeted inhibition of folic acid receptor-overexpressing 

KB cells using the G5.NHAc-FI-FA/CA4 complexes was 

confirmed by MTT assay. After incubation of the cells with 

the complexes for 3  hours, the medium in the wells was 

replaced with the same volume of fresh medium not contain-

ing dendrimer/CA4 complexes. The cells were then incubated 

for 48 hours at 37°C, and an MTT assay was performed to 

detect cell viability. Figure 7 shows the viability of untreated 
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Figure 7 The viability of KB-HFAR and KB-LFAR cells after treatment with 
G5.NHAc-FI-FA/CA4 complexes. The KB-HFAR cells without treatment were used 
as a control group. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-
modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal 
groups; CA4, combretastatin A4; HFAR, high folic acid receptor levels; LFAR, low 
folic acid receptor levels.

KB-HFAR cells (control) and KB-HFAR and KB-LFAR 

cells treated with the G5.NHAc-FI-FA/CA4 complexes. It 

can be clearly seen that treatment of KB-HFAR cells with 

the G5.NHAc-FI-FA/CA4 complexes results in a significant 

decrease (of about 32%) in cell viability (P , 0.05 versus 

control). In contrast, approximately 86% of KB-LFAR cells 

were still alive after the same treatment (P . 0.05 versus 

control), suggesting a weaker therapeutic effect of CA4 com-

plexed with G5.NHAc-FI-FA dendrimers in KB-LFAR cells. 

It should be noted that there was no difference in viability 

between KB-HFAR and KB-LFAR cells before treatment 

with the dendrimer/CA4 complexes. These results indicate 

that the G5.NHAc-FI-FA/CA4 complexes enable targeted 

inhibition of cancer cells via receptor-mediated binding and 

intracellular uptake.

Conclusion
In summary, multifunctional G5 dendrimers modified with 

fluorescein isothiocyanate and folic acid were synthesized 

to encapsulate an anticancer drug, CA4. The inclusion com-

plexes of G5.NHAc-FI-FA/CA4 formed were able to improve 

the water solubility of the hydrophobic CA4 significantly and 

enabled release of the drug in a sustained manner, with a slow 

release rate. More importantly, the G5.NHAc-FI-FA/CA4 

complexes not only displayed an inhibitory effect on can-

cer cells similar to that of free CA4, but also delivered 

CA4 specifically to cancer cells with a high level of folic acid 

receptor expression and exerted a targeted therapeutic effect. 

The significance of our study is that using dendrimer-based 

nanotechnology, a new CA4 drug formulation could be 

developed with the capability to target and kill cancer cells 

specifically via a receptor-mediated endocytosis pathway. 

To demonstrate further the efficacy of these multifunctional 

dendrimer/CA4 complexes, we will be performing in vivo 

studies in the future. With a unique capacity to encapsulate 

hydrophobic cancer drugs and to endow drugs with targeting 

specificity, these multifunctional dendrimers may act as a 

valuable carrier for a range of hydrophobic anticancer drugs 

for targeted chemotherapy.
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Figure S1 The photograph of G5.NHAc-FI-FA dendrimers (A) and G5.NHAc-FI-FA/CA4 complexes (B) dispersed in water at pH values of 5.0, 7.0, and 10.0.
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, 
combretastatin A4.
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Figure S2 G5.NHAc-FI-FA/CA4 complexes dispersed in (A) water, (B) phosphate-
buffered saline, and (D) cell culture medium. (C) Cell culture medium without 
complexes. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-
modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal 
groups; CA4, combretastatin A4.
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Figure S3 Dose-dependent viability of KB cells treated with free CA4 and 
G5.NHAc-FI-FA/CA4 complexes. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-
modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal 
groups; CA4, combretastatin A4.
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Figure S4 Confocal microscopic analysis of distribution of G5.NHAc-FI-FA/CA4 complexes into KB-HFAR cells. The cells were incubated with (A) phosphate-buffered 
saline for one hour, (B) G5.NHAc-FI-FA/CA4 complexes for one hour, and (C) G5.NHAc-FI-FA/CA4 complexes for 2 hours, respectively. In (B) and (C), cells were treated 
with Lyso Tracker Red (50 nM) for an additional one hour after treatment with G5.NHAc-FI-FA/CA4 complexes. The upper left of each panel shows the green fluorescence 
of fluorescein isothiocyanate, the upper right of each panel shows the red fluorescence of Lyso Tracker Red, the lower left of each panel shows the differential interference 
contrast images, and the lower right of each panel shows merged images with the above three modes. 
Abbreviations: G5, generation 5; G5.NHAc-FI-FA, fluorescein isothiocyanate-modified and folic acid-modified G5 PAMAM dendrimers with acetyl terminal groups; CA4, 
combretastatin A4.
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