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Although the vast majority of women encounters at least one vaginal infection during
their life, the amount of microbiome-related research performed in this area lags behind
compared to alternative niches such as the intestinal tract. As a result, effective means
of diagnosis and treatment, especially of recurrent infections, are limited. The role of
the metabolome in vaginal health is largely elusive. It has been shown that lactate
produced by the numerous lactobacilli present promotes health by limiting the chance of
infection. Short chain fatty acids (SCFA) have been mainly linked to dysbiosis, although
the causality of this relationship is still under debate. In this review, we aim to bring
together information on the role of the vaginal metabolome and microbiome in infections
caused by Candida. Vulvovaginal candidiasis affects near to 70% of all women at least
once in their life with a significant proportion of women suffering from the recurrent
variant. We assess the role of fatty acid metabolites, mainly SCFA and lactate, in onset
of infection and virulence of the fungal pathogen. In addition, we pinpoint where lack of
research limits our understanding of the molecular processes involved and restricts the
possibility of developing novel treatment strategies.
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THE VAGINAL METABOLOME

The Composition of the Vaginal Metabolome
The vagina is a muscular structure lined with epithelial cells, connecting the uterus with the outside
world (Farage and Maibach, 2006; O’Hanlon et al., 2013). A major component of the vaginal niche
are its secretions, also known as the vaginal fluid. This vaginal fluid is not only composed of
contributions from the host herself as vaginal transudate, secretions from glands residing in the
vaginal area, such as Bartholin’s and Skenes’s glands, epithelial cells, residual urine, mucus from the
cervix and endometrial fluids, also metabolites by the vaginal microbiota contribute significantly
to its composition (Paavonen, 1983; Morrison and Preston, 2016). The vaginal microbiota consists
of over 50 different microbial species coexisting in a balanced environment, establishing intricate
connections with the host and each other (Oakley et al., 2008; Ma et al., 2012). This microbial
composition of the vagina fluctuates intra- and inter-individually, especially between women
from different geographical environments and age (Farage and Maibach, 2006). Most of these
microbial species exists in a mutualistic relationship with the host. However, some are opportunistic
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pathogens with the potential to cause infections and even
life-threatening diseases (Sobel, 1990). To establish a balanced
connection with its environment and host, microorganisms
produce metabolites. These metabolites do not only play an
important role as a chemical barrier to protect the host against
pathogens but also function in the maintenance of the overall
homeostasis of the vaginal niche (Aldunate et al., 2015). The
predominant metabolites in this niche are the short chain fatty
acids (SCFA) (Cunha et al., 2017; Tachedjian et al., 2017),
amines, organic acids, amino acids, nitrogenous bases, and
monosaccharides (Vitali et al., 2015).

Women produce approximately 6 g of vaginal fluid per
day, with 0.5–0.75 g present at any given time (Owen and
Katz, 1999). The vaginal fluid is mainly composed of fatty
acids, proteins, salts and carbohydrates (Table 1). However,
in this regard it should be noted that large inter- and intra-
individual variation of these components exists. Several studies
determined the concentrations of ions, such as sodium (1.38 g/L),
potassium (0.987 g/L), calcium (0.120 g/L), and chloride
(2.13 g/L) in the vagina (Levin and Wagner, 1977; Wagner
and Levin, 1978, 1980; Owen and Katz, 1999), as well as the
presence of proteins in the vaginal fluid and found them to
be present in a range from 0.015 to 0.026 g/L (Bdallah and
de Vargas-Linares, 1971; Raffi et al., 1977; Huggins and Preti,
1981). In healthy women, median glucose levels in vaginal
fluid were reported to be 5, 2 mM (0.94 g/L). However,
inter-individual variation can be observed (between 0.2 and
149 mM) (Ehrstrom et al., 2006). Concentrations of many other
carbohydrates have not yet been quantified. The concentrations
of fatty acids present in the vaginal fluid were determined
by different research teams using varying techniques, resulting
in consensus concentrations of 2 and 1 g/L for lactate and
acetic acid, respectively (Oberst and Plass, 1936; Preti and
Huggins, 1975; Huggins and Preti, 1976; Preti et al., 1979).
The relative ratio of L- and D-lactate present in the vagina
strongly depends on the microbial composition. While epithelial
cells can only produce the L-isomer, certain bacteria can
produce both (Boskey et al., 2001). On average, the proportion

TABLE 1 | Composition of vaginal fluid.

Vaginal metabolites Concentration (g/L)

Ions Na+ 1.38

K+ 0.987

Ca2+ 0.120

Cl− 2.13

Proteins 0.015–0.026

Carbohydrates Unknown

Fatty acids Lactic acid 2

Acetic acid 1

Glycerol 0.16

Urea 0.4

Glycogen/glucose 4.4–15*

* Depends on the specific characteristics of the tested individuals.
Details and references are given in the main text.

of D-lactic acid is reported to be around 55% of the total
lactic acid present. Glycerol and urea appear to be present
in the vaginal fluid at concentrations of 0.16 and 0.4 g/L,
respectively. Glycogen concentrations found in the vaginal fluid
differ significantly between different research reports, ranging
between 0.1 and 32 g/L, possibly depending on the specific
characteristics of the tested individuals (Lapan and Friedman,
1950; Stamey and Timothy, 1975; Mirmonsef et al., 2016).
These glycogen levels were inversely correlated with pH and
progesterone levels.

This review highlights the role of fatty acid metabolites in
vaginal health and disease with an application on vulvovaginal
candidiasis. We focus specifically on SCFA, which are fatty acids
with less than six carbon atoms that include acetic acid, propionic
acid and butyric acid. Because of their specific relevance in
vaginal infections, we also address particularly relevant medium
chain fatty acids (MCFA), with 6–11 carbon atoms, and the
intermediates of fatty acid metabolism, such as lactic acid and
succinic acid (Brody, 1998).

Factors That Influence the Vaginal
Metabolome
Many factors appear to influence the composition of the vaginal
metabolome either direct or by altering the composition of
the vaginal microbiome. Changes in the vaginal microbiome
consequently lead to changes in the metabolic profile. Ceccarani
et al. (2019) investigated the metabolic profiles of samples
derived from healthy patients (HP) and patients suffering from
Chlamydia trachomatis (CT), vulvovaginal candidiasis (VVC),
and bacterial vaginosis (BV). They found a sharp decrease in
lactate concentration in CT, VVC, and BV conjointly with
an increased vaginal pH, which is a marker of dysbiosis.
Additionally, they concluded that proliferation of diverse
bacterial genera that play a role in establishment of the vaginal
dysbiosis was associated with the increased presence of SCFA
such as butyrate, propionate and acetate. Additionally, upon
treatment of the vaginal dysbiosis, such as BV, with antibiotics,
the metabolic profiles restore to levels similar to healthy vaginas
(Laghi et al., 2014).

Ethnicity influences the composition of the vaginal
microbiome as well, thereby shaping the metabolic profile.
Studies performed by Ravel et al. (2011) showed differences
in the composition of the vaginal microbiome between four
self-named ethnicities (white, Asian, black, and Hispanic).
The vaginal niche of Asian and white women is dominated
by higher levels of Lactobacillus species compared to Hispanic
and black women (Ravel et al., 2011). This coincided with
lower pH values. However, contrary to the stigma in which
the prevalence of high quantities of lactobacilli and low pH are
said to define a “healthy” vagina, a vaginal microbiome that is
not dominated by Lactobacillus appears frequently and can be
defined as “normal” in black and Hispanic women (Zhou et al.,
2007). The reasons for this difference in vaginal microbiome and
consequently in vaginal metabolome, remains unknown. This
variation along ethnic backgrounds could be a consequence of
genetic predisposition or geographical and behavioral differences
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(Ravel et al., 2011). The latter includes the number of sexual
partners, the use of contraception devices, showering, eating
habits, clothing, and smoking (Schwebke, 2009). It was shown
that women suffering from BV were significantly less likely
to use condoms or hormonal contraception (Smart et al.,
2004). A study by Nelson et al. (2018) proved that cigarette
smoking is associated with changes in vaginal metabolome. They
found that nicotine and the resulting degradation metabolites
were significantly increased in the vaginal niche of smoking
individuals (Nelson et al., 2018). In addition, the presence of
breakdown products of several drugs such as painkillers, cocaine
and antidepressants in the metabolic profiles was demonstrated
in vaginal fluids (Nelson et al., 2018). In addition to the role of
the vaginal microbiome in metabolome composition, also the
activity of the host immune system affects the composition of the
vaginal secretions (Ravel et al., 2011).

The age and hormone levels of women also have a significant
impact on the composition of the vaginal microbiome and
consequently on the metabolome. Until puberty, estrogen and
thus also glycogen levels remain low, which causes the vagina
to be dominated with anaerobic micro-organisms (Farage and
Maibach, 2006). From puberty on, estrogen levels rise, leading to
production of cervicovaginal secretions and colonization by high
numbers of lactobacilli, with increasing concentrations of lactate
as a result. Upon pregnancy, the vagina remains dominated by
lactobacilli but is characterized by lower richness and diversity
than in non-pregnant women (DiGiulio et al., 2015). Following
menopause, estrogen and glycogen levels decrease, causing the
Lactobacillus dominance to decrease and eventually cease (Cauci
et al., 2002; Gupta et al., 2006). Additionally, throughout the
menstrual cycle estrogen and glycogen levels vary, ranging
from low levels during menses to the highest levels before
ovulation (Sjöberg et al., 1988; Gajer et al., 2012). This variation
might also explain the differences in microbiome composition
(Nunn and Forney, 2016).

Analysis of Vaginal Microbiome and
Metabolome
In the human vagina, the microbiota plays an important role
in preventing vaginal infections, like BV and VVC (Sobel and
Chaim, 1996; Fredricks et al., 2005). The last decade, the bacterial
and metabolite composition of the vaginal microbiota has been
studied to improve diagnosis, to identify biomarkers of disease
and to characterize the complex interplay between the microbiota
and the host metabolism (Srinivasan S. et al., 2015; Vitali et al.,
2015; Watson and Reid, 2018; Ceccarani et al., 2019; Oliver et al.,
2020).

Traditionally, vaginal infections are diagnosed by subjecting
vaginal fluids to microscopic evaluation, pH measurements as
well as visual and olfactory evaluation (Biagi et al., 2009). BV
is often diagnosed using the Nugent scoring system, possibly
in combination with the Amsel criteria (Amsel et al., 1983;
Nugent et al., 1991). Nugent scoring relies on gram staining
to determine the bacterial composition of vaginal secretions
(Nugent et al., 1991). The Amsel criteria refer to clinical signs and
symptoms associated with the infection, such as the occurrence

of the vaginal discharge, the vaginal pH, the presence of clue
cells (these are squamous epithelial cells covered with adherent
bacteria) and amine production. VVC can be diagnosed through
the observation of clinical symptoms e.g., itching or vaginal
whitish discharge, microscopy and colony appearance as well as
pigmentation in chromogenic culture medium (Biagi et al., 2009;
Baron et al., 2013; Eddouzi et al., 2013; Maheronnaghsh et al.,
2016; Vecchione et al., 2017). Unfortunately, these methods lack
precision and accuracy due to diverse morphology of vaginal
microorganisms, subjectivity in microscopic examination and
non-diagnosis of BV in women with asymptomatic infections
(Schwebke et al., 1996; Chaijareenont et al., 2004; Beverly
et al., 2005). Moreover, culture-based microbiome assessments
are hampered by the diverse growth requirements or even
uncultivable nature of various strains (2003—The uncultured
microbial majority—Rappé). Lactobacillus iners exemplifies the
bias that culture conditions exert, as this organism is only able to
proliferate on blood agar, in contrast to other lactobacilli that are
able to grow on Mann Rogosa Sharpe (MRS) agar (Vaneechoutte,
2017). As a result, its role in the vaginal microbial flora
was unknown prior to 1999. Since then, multiple cultivation-
independent studies have demonstrated the predominance of
L. iners in the vagina of healthy women. To avoid these
situations, more rapid and reliable diagnostic tools are needed
(Oliver et al., 2020).

During the last decade, combinations of genomic, proteomic,
and metabolomic techniques were developed to characterize
micro-organisms and correlate their presence to specific
metabolic profiles and virulence associated parameters (Bai et al.,
2012; Yeoman et al., 2013; McMillan et al., 2015; Vitali et al.,
2015; Oliver et al., 2020). A well-established method to study
the composition of the microbiome is the analysis of the 16S
ribosomal RNA gene amplicon sequences (Thies et al., 2007;
Biagi et al., 2009; Zhou et al., 2009; Caporaso et al., 2011;
Borgogna et al., 2020). This sequence is present in all bacteria
and contains both regions of sequence conservation and sequence
heterogeneity. Therefore, it can be amplified with broad range
of PCR primers and enables the identification of bacteria or
infer phylogenetic relationships (Hugenholtz and Pace, 1996;
Pace, 1997; Baker et al., 2003; Schmidt, 2006; Weng et al.,
2006). Besides Sanger sequencing, electrophoretic fingerprinting
techniques like denaturing gradient gel electrophoresis (DGGE)
and terminal restriction fragment length polymorphism (T-
RFLP) can be used for analysis (Muyzer et al., 1993; Thies
et al., 2007). T-RFLP is a rapid and reliable technique that
allows more differentiation of the microbiota than DGGE
(Horz et al., 2001). Fluorescence in situ hybridization (FISH),
using nucleic acid probes, oligonucleotides complementary to
rRNA gene targets, labeled with a fluorescent tag, can give
additional information about the microbiota (Fredricks et al.,
2005; Srinivasan and Fredricks, 2008). Moreover, by performing
next generation sequencing of barcoded 16S rRNA amplicons,
large amounts of data can be obtained to characterize the
vaginal microbiome (Ravel et al., 2011; Bai et al., 2012;
Brotman et al., 2014; Hang et al., 2014; Ceccarani et al.,
2019; Borgogna et al., 2020). However, sample collection,
storage, nucleic acid extraction as well as PCR amplification,
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amplicon sequencing and the selected bioinformatics analysis
can affect the accuracy and resolution of these metagenomic
approaches (Hamady and Knight, 2009; Kuczynski et al., 2011;
Bai et al., 2012). For identification of Candida species, genomic
regions of the rDNA genes can be sequenced. Comparison
of these sequences using basic local alignment search tool
(BLAST) algorithms1 or the MycoBank database2 can provide
an accurate species identification. Amplification and subsequent
sequencing of the D1/D2 domain of the 28S rDNA can serve
the same goal (Chen et al., 2000; Leaw et al., 2006; Cornet
et al., 2011; Rezaei-Matehkolaei et al., 2016). Unfortunately,
sequencing of clinical isolates is time-consuming and not
yet standardized (Lacroix et al., 2014). In the last years,
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) was used for microorganism
identification, both at species and genus levels. This technique
shows high precision and efficiency while allowing a low error
rate and ensuring rapid analysis. To improve the identification
rate, however, spectral databases require a regular update (Bader
et al., 2011; Haigh et al., 2011; Bille et al., 2012; Bader, 2013;
Sandrin et al., 2013; De Carolis et al., 2014; Lacroix et al., 2014;
Foschi et al., 2017; Hendrickx, 2017; Oliver et al., 2020).

One of the techniques for metabolomic analysis is nuclear
magnetic resonance (1H-NMR). H-NMR is a high-throughput,
rapid, non-destructive method with low running costs that allows
chemotype characterization of microorganisms. By analyzing
the presence and the quantity of small molecule metabolites
simultaneously, this tool can be used for researchers to determine
the effects caused by perturbations on the host’s metabolic
profiles. Nevertheless, the use of standardized conditions, growth
media and pure cultures of isolates are required to ensure
reproducible and accurate identification (Himmelreich et al.,
2003, 2005, 2017; Sandrin et al., 2013; Vitali et al., 2015;
Foschi et al., 2017; Oliver et al., 2020). Metabolomic profiles
of vaginal secretions can also be determined by gas (GC-
MS) and liquid chromatography and mass spectrometry (LC-
MS). Metabolites are identified by comparing the corresponding
spectra to a database with reference metabolite standards.
Standards of metabolites of interest can also be used to
confirm identities during a run. Although both methods can
measure the concentration in the samples, it is not possible to
differentiate whether the metabolite is derived from the host or
the microorganisms (McMillan et al., 2015; Nelson et al., 2018;
Borgogna et al., 2020). Gas chromatography is the most widely
used method for SCFA analysis and is, given its sensitivity, well
suited for accurate analysis of samples with low concentrations
of SCFA, such as human samples (McGrath et al., 1992; Hoving
et al., 2018). Since SCFA are volatile molecules, collection and
proper storage of the samples is critical for reproducibility. They
should be kept frozen and vacuum dried. Before processing the
samples, pretreatment, distillation, ultrafiltration, and extraction
are important for a rapid qualitative and quantitative SCFA
determination in biological samples. To remove the protein
fraction in the samples and simultaneously obtain the maximum

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://www.cbs.knaw.nl/collections/BioloMICSSequences.aspx

yield of small molecules after purification, a series of organic
and aqueous extractions can be conducted, followed by removal
of the organic solvent (Zhao et al., 2006; Fiorini et al., 2015;
Hoving et al., 2018; Nelson et al., 2018; Zhang C. et al., 2020).
However, one of the most critical steps in the GC-MS analysis
of SCFA is the derivatization (e.g., by silylation or alkylation)
to improve separation. In the past, SCFA were converted
into their methyl ester, or trimethylsilyl esters. Nowadays,
other derivatization reagents are used, such as the alkylation
reagents pentafluorobenzyl bromide (PFBBr), bistrimethyl-silyl-
trifluoroacetamide (BSTFA), tert-butyl dimethylsilyl (TBDMS),
propyl chloroformate or isobutyl chloroformate. More recently,
the use of benzyl chloroformate (BCF) was suggested to obtain
better and more reproducible results (Quehenberger et al., 2011;
Tomcik et al., 2011; Zheng et al., 2013; Kloos et al., 2014;
Gao and Xu, 2015; Furuhashi et al., 2018; Hoving et al., 2018;
Nelson et al., 2018; Kim et al., 2019). GC-MS aided detection
of lactic acid requires derivatization using alkyl chloroformates,
like methyl chloroformate (MCF), ethyl chloroformate (ECF),
propyl chloroformate (PCF), and isobutyl chloroformate (IBCF)
(Sobolevsky et al., 2004; Qiu et al., 2007; Zampolli et al., 2007;
Stefanelli et al., 2018; Zhang et al., 2018). For all molecules,
GC provides separation based on affinity to the mobile gas
phase vs. the stationary capillary phase. Molecules with different
properties will elute at a different retention time. The mass
spectrometer will allow identification of the separated fractions,
based on differences in mass and charge. Both LC and GC-based
methods can be modified to specifically determine the ratio of
L- and D-isomers of lactic acid in a sample. Either using a chiral
stationary phase or conversion of the enantiomers with a chiral
product and consequent separation on a non-chiral column can
be opted for (Inoue et al., 2006). Since the specific detection
of both enantiomers requires additional instrumentation, many
studies in which the metabolome was investigated, do not
distinguish between both isomers.

THE ROLE OF FATTY ACID
METABOLITES IN THE HEALTHY
VAGINAL NICHE

Origin of Vaginal Fatty Acid Metabolites
Microbial Fatty Acid Metabolites
In the last decades much attention has been given to the
investigation of the human microbiome in government-backed
projects, such as the MetaHIT project (METAgenomics of the
Human Intestinal Tract) and the Human Microbiome Project
(Hmp et al., 2009; Ehrlich and Consortium, 2011). Although the
importance of the micro-, and to a lesser extent, mycobiome
and its metabolites on gut health has been established, little
attention has been given to the vaginal microbiota and its
role in intimate health (Cui et al., 2013). This is likely due
to the gender health care gap which encompasses the general
underrepresentation and underfunding of research on female-
specific conditions, such as VVC (Council, 2015). Although the
vaginal microbiome of healthy women is dominated by bacteria
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(1010–1011 bacterial cells/ml), its exact composition is unique
(Mitchell et al., 2015; Chen C. et al., 2017). Archaea, protists,
fungi and viruses are often present, but in lower numbers
compared to bacteria (Belay et al., 1990; Ravel et al., 2011;
Drell et al., 2013; Kusdian and Gould, 2014; Bradford and
Ravel, 2017; Zhang et al., 2021). The largest group of healthy
women (±70–80%) show vaginal microbiomes dominated by
the aerotolerant anaerobic Lactobacillus bacteria, specifically
L. crispatus, L. gasseri, L. iners, and L. jensenii (Redondo-Lopez
et al., 1990). The remaining healthy women (±20–30%) have
a more diverse vaginal microbiome with low concentrations
of Lactobacillus species. In the microbial communities of
these women, strict anaerobic bacteria are predominant from
genera such as Prevotella, Dialister, Atopobium, Gardnerella,
Megasphaera, Peptoniphilus, Sneathia, Eggerthella, Aerococcus,
Finegoldia, Mobiluncus etc. (Ravel et al., 2011; Drell et al., 2013).
Since an inverse relationship exists between the presence of
lactobacilli and BV-associated species, non-diverse Lactobacillus
dominated microbiomes are considered healthy (Razzak et al.,
2011). However, it is still a subject of debate how much variation
in the vaginal microbiome can be considered within normal
boundaries. Whether these women should be considered healthy
or asymptomatic for bacterial vaginosis (BV) remains unclear
since many of these anaerobic bacteria are after all common
causes of BV (Fredricks et al., 2005; Danielsson et al., 2011). In
contrast to bacteria, not every woman has vaginal mycobiota.
The proportion of asymptomatic women with fungal vaginal
communities ranges between 20 and 50%. The mycobiome’s
predominant occupant is C. albicans, however, non-albicans
Candida species such as C. krusei, C. parapsilosis, C. tropicalis, C.
glabrata, as well as species from other genera like Saccharomyces,
Aspergillus, Alternaria, and Cladosporium can also be present
(Goldacre et al., 1981; Barousse et al., 2004; Nowakowska et al.,
2004; Drell et al., 2013; Underhill and Iliev, 2014).

Since lactobacilli make up the vast majority of the vaginal
microbiome, a large amount of the metabolites present in
the vaginal niche, of which lactate is most abundant, are
produced by these species. Therefore, most recent studies focus
on vaginal health mainly or exclusively by studying lactobacilli
and their metabolic properties. Lactic acid and the SCFA that
can be found in the female genital tract are produced via
fermentation of carbohydrates and degradation of amino acids
by various microorganisms, as represented in Table 2 (Amabebe
and Anumba, 2020). Lactobacilli use glycogen, produced in
the vaginal epithelium, during anaerobic glycolysis to produce
lactate. The bacteria do not directly metabolize glycogen.
A vaginal α-amylase breaks down glycogen first to maltose,
maltotriose, maltopentaose and maltodextrins (Spear et al.,
2014). These short polymers are then metabolized to pyruvate
via glycolysis. Finally, L- or D-lactate dehydrogenase converts
pyruvate to L- or D-lactate. Not all Lactobacillus species are
able to produce both isomers. L. iners only has genes coding
for L-lactate dehydrogenase in its genome, while L. crispatus,
L. gasseri, and L. jensenii have genes encoding both enzymes
(Papagianni, 2012; Witkin et al., 2013). Lactobacillus species
differ in the amount of lactate they produce and even within
the same species, metabolic output can vary between strains.

L. crispatus dominated microbiomes are generally associated
with a high lactate content and acidic vaginal pH (Bai et al.,
2012). Although lactate is the main fermentation end product of
lactobacilli, it is not their only metabolic product. L. jensenii is
also capable of producing high amounts of acetate and succinate
(Amabebe and Anumba, 2020). Most bacteria that are responsible
for the production of the SCFA found in the vagina, are BV-
associated species. So, it is no surprise that during BV, lactate
levels are lowered, while the concentration of SCFA increases
(Spiegel et al., 1980; Stanek et al., 1992; Yeoman et al., 2013).
A few examples of BV-associated species that produce organic
acids are: Peptococcus (butyrate and acetate production), Dialister
(propionate production), Gardnerella vaginalis (acetate and
succinate production), Bacteroides (succinate production), gram-
positive cocci, and Clostridium (caproate production) (Spiegel
et al., 1980; Debruères and Sedallian, 1985; Downes et al., 2003;
Chaudry et al., 2004; Aldunate et al., 2015). Because archaea,
protists, fungi and viruses are largely outnumbered by bacteria,
the majority of SCFA in the vagina are produced by bacteria.

There is a lot of information available on the metabolic
pathways of vaginal lactobacilli. The biosynthetic pathways
by which other vaginal bacteria produce SCFA are less well
documented. In the gut on the other hand, these pathways
are well understood and described in detail (Koh et al.,
2016). Figure 1 represents a schematic overview of fatty acid
metabolism. Acetate can be produced from pyruvate directly
via acetyl-CoA or via the branched Wood-Ljungdahl pathway.
In the methyl branch, CO2 is reduced to formate to eventually
produce a methyl group. In the carbonyl branch, CO2 is
reduced to carbon monoxide, which is then combined with
the bound methyl group and coenzyme A to form acetyl-CoA
(Ragsdale and Pierce, 2008). Succinate can be formed by reversing
some reactions of the tricarboxylic acid cycle. Pyruvate is first
converted to oxaloacetate by carboxylation. Oxaloacetate is then
reduced to malate, fumarate and eventually succinate (Connors
et al., 2018). Propionate can be synthesized via three different
pathways: the acrylate pathway, the succinate pathway and the
propanediol pathway. In the acrylate pathway, lactate is first
combined with coenzyme A to form lactoyl-CoA followed by
a dehydration and reduction to produce propionyl-CoA. In the
succinate pathway, succinate is converted to methylmalonyl-
CoA, which is then decarboxylated to yield propionyl-CoA. In the
propanediol pathway, deoxyhexose sugars fucose and rhamnose
are degraded to form 1,2-propanediol, followed by a dehydration
and addition of coenzyme A to produce propionyl-CoA.
Via dihydroxyacetone-phosphate and methylglyoxal, which are
glycolysis intermediates, 1,2-propanediol can also be produced
from other sugars. The final step of all three pathways is to
omit coenzyme A to form propionate (Hetzel et al., 2003; Scott
et al., 2006; Louis and Flint, 2017). Butyrate can be formed
by the condensation reaction of two molecules of acetyl-CoA,
followed by reduction to butyryl-CoA, which is then converted
to butyrate (Louis et al., 2004; Louis and Flint, 2017). In the
vagina, these pathways could possibly be different since there are
differences between the characteristics of both niches like the pH,
presence of certain sugars, acids, enzymes, oxygen availability,
etc. (Fallingborg, 1999; Hill et al., 2005; Krauss-Silva et al., 2014;
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Formate
(C1)

Acetate
(C2)

Propionate
(C3)

L-Lactate
(C3)

D-Lactate
(C3)

Butyrate
(C4)

Isobutyrate
(C4)

Succinate
(C4)

Valerate
(C5)

Isovalerate
(C5)

Caproate
(C6)

Caprylate
(C8)

Caprate
(C10)

Allisonella X X X

Alloscardovia X

Anaerococcus X X X X

Arcanobacterium X X X

Atopobium X X X

Bacteroides X X X X X X X

Bifidobacterium X X X X X X

Blautia X X X X X

Bulleidia X X X

Campylobacter X X

Clostridium X X X

Corynebacterium X X

Dialister X

Enterobacter X X X X

Escherichia X X X X X X X X X

Faecalibacterium X X X

X

Fusobacterium X X X X X X

Gardnerella X X X X X X

Gemella X X

Haemophilus X X X X

L. crispatus X X

L. gasseri X X

L. iners X

L. jensenii X X X

Megasphaera X X X X

Mobiluncus X X X X X X

Mollicutes X X X X X X X X

Moryella X X

Mycoplasma X X

Olsenella X X X
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Zheng et al., 2015). Very little research is performed on the
vaginal mycobiome and its metabolites and thus, no conclusions
can be made at this point. Additionally, it was established before
that fungal species also produce significant amounts of SCFA, but
whether they are able to produce them in the vaginal niche and
their production pathways need to be further investigated (Pinu
et al., 2018). Research shows that metabolome deviations can be
correlated to vaginal dysbiosis, such as BV and VVC, however,
many questions regarding the role of these metabolites in health
and the potential of using them in therapy, remain unanswered
(Vitali et al., 2015; Tachedjian et al., 2017).

From Gut to Vagina: Transmission of Microbes and
Their Metabolites
The microbiome of the gut is a complex and heterogeneous
ecosystem that consists of more than 1,100 species (Scarpellini
et al., 2015). A healthy eubiotic gut is dominated by Firmicutes
and Bacteroidetes but deficient in Proteobacteria species that
promote inflammation (Cammarota et al., 2015). Firmicutes and
Bacteroidetes make up more than 90% of all the gut microbiota.
The predominant genera are Bacteroides, Bifidobacterium,
Eubacterium, Clostridium, Peptococcus, Peptostreptococcus, and
Ruminococcus (Salminen et al., 1998; Guarner and Malagelada,
2003). The most abundant bacterial species in the gut of healthy
adults is Faecalibacterium prausnitzii of the Firmicutes phylum.
It represents more than 5% of the total intestinal bacterial
population (Hold et al., 2003; Miquel et al., 2013). Firmicutes
species are the main butyrate producers, while Bacteroidetes
species the main acetate and propionate producers in the gut
(Yang et al., 2013; Salonen et al., 2014; Vital et al., 2014; Aguirre
et al., 2016). Archaea, protists, fungi and viruses can also be
found in the gut, but to date their exact composition is not
completely resolved (Nash et al., 2017; Nieves-Ramírez et al.,
2018; Shkoporov et al., 2019; Kim et al., 2020). The mycobiome
of the human gut is low in diversity compared to bacteria with
Saccharomyces, Malassezia, and Candida as predominant genera
(Nash et al., 2017).

Crosstalk and transfer between microorganisms of the
vagina and gut is possible both horizontally, from gut to
vagina within the same individual, and vertically, from mother
to child. Vaginal microorganisms including the dominant
Lactobacillus species are believed to originate from the gut
(El Aila et al., 2009a,b, 2011; Amabebe and Anumba, 2018).
Species of the phyla Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, and Fusobacteria are found in both niches
(Eckburg et al., 2005; Kaur et al., 2020). In one study, vaginal
and rectal swabs were collected from 132 pregnant women
(35–37 weeks of gestation) (El Aila et al., 2009b, 2011). In
36% of these women the same bacterial species were identified
in their vagina and rectum, of which 68% of the isolated
species showed identical random amplified polymorphic DNA
(RAPD) patterns, indicating substantial genotypic similarity.
This microbial transfer from gut to vagina is striking for
recurrent BV. Women with high concentrations of BV-associated
bacteria in their rectum are prone to recurrent BV caused by
repeated re-infection from rectum to vagina (Marrazzo et al.,
2012). Vertical transmission of microorganisms depends on
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FIGURE 1 | Microbial pathways for the biosynthesis of SCFA and MCFA in the gut. [H] indicates redox reactions which involve electron carriers. PEP,
phosphoenolpyruvate; DHAP, dihydroxyacetonephosphate; CoA, coenzyme A; H4F, tetrahydrofolate; Pi, inorganic phosphate; CoFeSP, corrinoid iron sulfur protein;
ATP, adenosine triphosphate. Details are given in the main text (Koh et al., 2016; O-Thong et al., 2020).

the method of delivery. Newborns delivered vaginally have
microbial communities in their gut that are similar to the
microbiota of the mother’s vagina. Their intestinal microbiome
is dominated by Lactobacillus, Prevotella, Sneathia, and
Bifidobacterium species (Dominguez-Bello et al., 2010). Bacteria
of other genera like Faecalibacterium, Roseburia, Staphylococcus,
Streptococcus, Atopobium, Akkermansia, Escherichia, Bacteroides,
Methanobrevibacter, Peptostreptococcus, and Veillonella can
also be present (Grölund et al., 1999; Biasucci et al., 2008;
Pantoja-Feliciano et al., 2013; Mueller et al., 2015; Perez-
Muñoz et al., 2017). Newborns delivered by C-section have
intestinal microbiota that originate from the environment and
the microbiota of the skin of the mother. The microbiome of
their gut shows less diversity and a lower microbial richness
(Dominguez-Bello et al., 2010; Azad et al., 2013). It is dominated
by Staphylococcus, Corynebacterium and Propionibacterium

species while Bifidobacterium species are absent (Dominguez-
Bello et al., 2010; Perez-Muñoz et al., 2017). Additionally,
there is increasing evidence that links intestinal microbiota
to postnatal development of the immune system (Cho and
Norman, 2013; Kristensen and Henriksen, 2016). Since the
composition of the intestinal microbiome differs depending
on the method of delivery, this could have an effect on the
development of the immune system (Dominguez-Bello et al.,
2010). It is already confirmed that children born by C-section
have an increased risk of immune system disorders such as
bronchiolitis, gastroenteritis, inflammatory bowel disease,
leukemia and allergies such as asthma, hay fever and eczema
(Cho and Norman, 2013).

Since transfer of microbes happens, the SCFA will move
along with their producers. Acetate, propionate and butyrate
are the major SCFA present in a healthy gut. Succinate and
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lactate are generally detected in lower concentrations. The
amount of SCFA differs along the length of the gut. The total
SCFA concentration is the highest in the caecum (131 mmol/kg
intestinal content) followed by the ascending (123 mmol/kg),
transverse (117 mmol/kg) and descending colon (80 mmol/kg)
(Cummings et al., 1987). The availability of substrates and free
water is the highest in the caecum making it the primary
site of fermentation (Chakraborti, 2015). SCFA have important
functions in the gut. They promote mucus production, stimulate
the production of antimicrobial peptides, increase the expression
of intestinal tight junction proteins, maintain the integrity of
the intestinal epithelial barrier and serve as important energy
substrates for colonocytes (Roediger, 1982; Willemsen et al.,
2003; Ewaschuk et al., 2008; Peng et al., 2009; Zhao et al.,
2018). In contrast to the gut, the predominant organic acid in
a healthy vagina is lactic acid (±120 mM) (Al-Mushrif et al.,
2000; Gajer et al., 2012). The concentrations of acetic (0–
4 mM), propionic (<1 mM), butyric (<1 mM), and succinic acid
(<1 mM) during eubiosis are much lower (Al-Mushrif et al.,
2000; Chaudry et al., 2004; Mirmonsef et al., 2011; Mirmonsef
et al., 2012; O’Hanlon et al., 2013). During BV, these proportions
change. The concentration of lactate drops below 20 mM and
the SCFA are increased: acetate (< 120 mM), propionate (2–
4 mM), butyrate (2–4 mM), succinate (<20 mM) (Al-Mushrif
et al., 2000; Chaudry et al., 2004; Mirmonsef et al., 2011, 2012;
Gajer et al., 2012). The functions of lactate and SCFA in the vagina
are discussed further. Transfer of microbes between gut and
vagina is possible so one would think the microbial composition
of both would be similar. However, due to differing characteristics
of the niches different species thrive and become dominant in the
microbiome. This makes that their metabolites lactate, acetate,
butyrate, succinate and propionate are present in both niches but
in completely different concentrations.

Fatty Acid Metabolites Originating From the Vaginal
Mucosa
In addition to production by vaginal microorganisms, lactate
can also be produced by the vaginal mucosa itself (Weinstein
et al., 1936; Weinstein and Howard, 1939; Linhares et al., 2011).
Epithelial cells have access to limited oxygen, glucose and other
essential nutrients that diffuse from underlying tissues. Therefore,
the dominant metabolism in the vaginal mucosa is the anaerobic
fermentation of glucose (Baron and Merk, 2001). Glycogen,
which is stored in vaginal epithelial cells, is first converted
to glucose and then metabolized to pyruvate and adenosine
triphosphate via glycolysis. Eventually, pyruvate is converted to
lactate (Gross, 1961). These epithelial lactate molecules diffuse
to the vaginal lumen and maintain the acidic pH of the
vagina together with lactate produced by vaginal bacteria. Most
epithelial lactate is probably produced in the intermediate vaginal
epithelium cell layer, because glycogen metabolism is highest
here (Linhares et al., 2011). It is not clear yet whether the
primary source of vaginal lactate is the vaginal mucosa or vaginal
microbiota and whether this is the same in all women. Boskey,
Cone (Boskey et al., 2001) concluded that vaginal bacteria are
the primary source of lactate in the vagina, because they found
that more than 50% of the lactate in the vaginal samples of

most participants of their study was D-lactate. Epithelial cells can
only produce L-lactate while bacteria can produce both L- and
D-lactate (Brin, 1965; Smith et al., 1989; Bongaerts et al., 1997;
McCabe et al., 1998). However, the percentage of D-lactate in the
vaginal samples ranged between 6 and 75%, which is too broad
of a range to conclude that bacteria are the dominant source
in all women (Boskey et al., 2001). Also, the concentration of
lactobacilli is uniform throughout the whole vagina and yet the
pH in the lower part of the vagina is more acidic compared
to the middle and upper part (Chen C. et al., 2017; Lykke
et al., 2021). This suggests a rather important role of the vaginal
mucosa in the determination of the vaginal pH. To the best of
our knowledge, evidence that the vaginal epithelial cells produce
significant amounts of SCFA remains absent.

Functions of Fatty Acid Metabolites in
the Healthy Vagina
Fatty Acid Metabolites Influence the Local pH
The average healthy pH of the vagina is found to be around
4 ± 0.5 although some studies report even lower pH values
of 2.8–4.2 (O’Hanlon et al., 2013). Variations in the vaginal
pH exist and are caused by recent sexual activity, condom use,
hormonal activity or treatment, age, the menstrual cycle and
various types of illnesses and infections. The pH also alters
across different geographical locations and ethnicity. The low
pH of the human vagina is quite unique if you compare it to
other mammals, in which the vaginal pH ranges from 5.4 to
7.8 (Miller et al., 2016). The main reason for this high acidity
in humans, is likely the dominance of lactobacilli (Boskey et al.,
2001). It has been established that more than 70% of the bacteria
in the human vagina are lactobacilli, while in other mammals
this only accounts for 1%. Under the influence of high estrogen
levels, glycogen is deposited in the vaginal epithelial cells,
mainly in the intermediate layers (Ayre, 1951; Gross, 1961). The
metabolism of glycogen accounts for energy production, invested
in proliferation and maturation of epithelial cells. Breakdown
of glycogen by human α-amylases, leads to smaller polymers,
such as maltose, maltotriose, and α-dextrines (Amabebe and
Anumba, 2018). In anaerobic conditions, such as those in the
vaginal cavity, lactobacilli convert these first to pyruvate and
later to lactate by activity of lactate dehydrogenase. Lactate in
its turn lowers the local pH. Although the resident bacteria were
shown to be the main source of lactate, producing both D- and
L-isomers, also epithelial cells can breakdown some glycogen
into lactic acid, however, only producing the L-isomer (Witkin
et al., 2013). The roles of both isomers are also slightly different.
It has been suggested that the protective qualities of D-lactate
against particular infectious agents are higher compared to those
of the L-isomer, although this has been countered by others
(McWilliam Leitch and Stewart, 2002; Aldunate et al., 2013;
Witkin et al., 2013). The difference in quantity of both isomers
might also partially explain the difference in protecting qualities
between different Lactobacillus species, as they produce different
amounts of both (Boskey et al., 2001). In humans, the vaginal
pH inversely correlates with the amount of lactate present. This
implies that lactate is the main cause of acidification in this
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FIGURE 2 | Schematic representation of the effects of lactate and SCFA on host metabolism. Details on their role in pH balance, barrier function and inflammation
are schematized. Further details as well as references are given in the main text. LPS, lipopolysaccharide; AMPK, AMP-activated protein kinase; HIF,
hypoxia-inducible factor; HDAC, histon deacetylase.

niche (O’Hanlon et al., 2013). Figure 2 depicts a schematic
representation of the effects of lactate and SCFA on metabolism,
including their effect on the local pH. Lactic acid is a weak
acid, indicating that it only partially dissociates in water to
form lactate and a proton (H+). Its pKa is 3.89, so below a
pH of about 3.9, lactic acid exists in its protonated state, while
above this pH the lactate anion predominates (Tachedjian et al.,
2017). Therefore, because the average pH in the vaginal niche
is about 4, in this review we will refer to this molecule as
lactate, even though the pH can drop below 3.89 and lactic acid
will be present (O’Hanlon et al., 2013). This protonated acid is
membrane-permeable and can thus diffuse into microbial cells.
Upon entering, the cytosol is acidified, which leads to impaired
cellular functioning, membrane permeabilization and cell death
(Alakomi et al., 2000). In contrast, in the deprotonated form,
lactate has no antimicrobial activities. It is thus of importance
that the pH of the vagina is sufficiently acidic to allow lactic acid
to exist and exert its protective qualities.

Apart from lactic acid, also some other organic acids occur in
the vaginal niche, such as acetic acid, propionic acid, butyric acid
and succinic acid. These are generally weaker acids compared to
lactic acid, with pKa values of 4.76, 4.82, 4.87, and 4.16–5.61,
respectively. This indicates that they exist in their protonated
form at pH levels lower than 4.5 and will thus more readily
penetrate and acidify pathogenic bacteria in comparison to lactic
acid. However, the amounts in which they are observed in the
vaginal cavity and thus contribute to the local pH are negligible
(Tachedjian et al., 2017). During periods of bacterial vaginosis,
the pH of the vagina typically increases, as well as the levels
of some SCFA (Yeoman et al., 2013; Hoffman et al., 2017).

Measurement of acetic acid levels in the headspace of vaginal fluid
samples, has even been suggested as a diagnostic tool for bacterial
vaginosis (Chaudry et al., 2004).

Fatty Acid Metabolites Affect the Epithelial Barrier
Function
The vaginal mucosa of healthy women is composed of several
parts. The first line of defense against pathogens is the mucus
layer covering the epithelial cells (Lacroix et al., 2020). This
cervicovaginal mucus consists for more than 95% of water.
Mucins are glycosylated proteins produced by epithelial cells.
After polymerization, the protein chains are secreted into the
vaginal lumen, where they bind water and form hydrogels.
Mucins cause the mucus to become elastic and viscous.
Apart from mucins and water, vaginal mucus also contains
other proteins, nucleic acids, fatty acids and cells. The mucus
layer covering the epithelial cells performs several functions.
Apart from safeguarding fertility, its main role is to protect
the vagina and uterus from harmful micro-organisms. The
latter function comprises both the provision of a favorable
environment for the healthy constituents of the microbiota
as well as creating an unfavorable niche for pathogens, by
accumulating immune modulatory components and limiting
pathogen diffusion (Yarbrough et al., 2015). The outer-most
cellular section of the vagina consists of multiple layers of
stratified squamous epithelium, which rest on a basal cell layer
or lamina propria. The uterus as well as the upper part of
the cervix are lined with columnar epithelium. The epithelial
cells are surrounded by tight junctions which close off the
intercellular space, thereby disconnecting the exterior or apical
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surrounding from the deeper, basolateral, tissues. Together,
the mucus and epithelial cells can be termed the epithelial
barrier, as they protect the host from pathogens encountered
in the exterior environment, a function vital for maintaining
proper homeostasis within the vagina. When the structure and
composition of the mucus layer are aberrant, infections are likely
to arise (Goldenberg et al., 2000). During pregnancy, this can
be linked to preterm birth (Smith-Dupont et al., 2017). The
tightness of the barrier as composed by in vitro cultured epithelial
cells, can be quantified using transepithelial electrical resistance
(TEER) (Gorodeski, 1996; Srinivasan B. et al., 2015). The effect of
several parameters, such as age, hormonal levels, mental status,
composition of the microbiome and vaginal lubricants on barrier
function has been investigated, using this technique (Gorodeski,
2001a,b, 2007; Li et al., 2015; Tsata et al., 2016; Ayehunie et al.,
2018).

Only little is known about the effect of different short or
medium chain fatty acids on the epithelial barrier function of the
vagina. It is, therefore, of interest to take a look at the interplay
between both factors in the gut, where much more knowledge has
been acquired over the past years. It has been shown many years
ago, that SCFA have a beneficial role in enforcing the epithelial
barrier function in the gut, although the exact mode-of-action is
still not fully understood (Harig et al., 1989). It is observed by
various research groups that SCFA, such as acetate, propionate
and butyrate, strengthen the gut epithelial barrier function by
stimulating tight junction formation and prevention of damage,
for instance imposed by lipopolysaccharides (Peng et al., 2009;
Hsieh et al., 2015; Feng et al., 2018). The effect of butyrate is most
thoroughly investigated. A myriad of mechanisms explaining the
altered formation of tight junctions has been suggested. It was
already established that butyrate inhibits histone deacetylases
(HDAC), thereby altering gene expression (Della Ragione et al.,
2001). Ohata et al. (2005) show that in this manner, expression
of the LOX gene encoding lipoxygenase was increased upon
addition of butyrate or propionate to intestinal cells. This enzyme
produces hydroxy derivatives of arachidonic acid, which were
shown to decrease permeability of tight junctions. In another
study, the effect of butyrate on expression of the Claudin-1
gene, which encodes a major component of tight junctions, was
shown and ascribed to the increased association between the
transcription factor SP1 and the Claudin-1 promoter (Wang
et al., 2012). On the other side, butyrate was shown to repress
the expression of the Claudin-2 gene, which encodes a tight
junction protein that promotes permeability, through the IL-
10 receptor α subunit (Zheng et al., 2017). Yet another study
demonstrates the involvement of the AMP-activated protein
kinase (AMPK) pathway in the butyrate-regulated increase of
tight junction assembly (Peng et al., 2009). The AMPK pathway
activates expression of the CDX2 transcription factor by histone
modification, which increases epithelial cell differentiation and
thereby barrier function (Sun et al., 2017). Alternatively, the
effect of AMPK on epithelial barrier function might be caused
by a decreased phosphorylation of the myosin II regulatory light
chain (MLC2) and increased phosphorylation of protein kinase
C β2 (PKCβ2) (Miao et al., 2016). Butyrate and other SCFA have
also been shown to increase oxygen consumption by intestinal

cells (Kelly et al., 2015). This causes stabilization of the hypoxia-
inducible factor, which, by activating a plethora of targets genes,
reinforces the barrier function (Pasolli et al., 2017). Recently,
butyrate exposure and improved tight junction integrity were
shown to be linked through the increased expression of the actin-
binding protein synaptopodin (Wang et al., 2020). The induction
of this epithelial barrier promoting protein is possibly linked
to inhibition of HDAC. This beneficial effect of butyrate on
TEER does not seem to be universal. In a recent in vitro setup,
Vancamelbeke and co-workers could confirm the increased TEER
of human primary colonic monolayers upon butyrate exposure.
However, after induction of inflammation, butyrate reduced
epithelial barrier integrity. Moreover, presence of butyrate at
higher concentrations has been shown to induce toxicity to the
epithelial cells, due to activation of apoptosis (Peng et al., 2007;
Liu et al., 2018). This balance between the beneficial and harmful
effect must thus be considered for application.

The role of lactate in maintenance or reinforcement of
both the vaginal and intestinal epithelial barrier function is
severely understudied. Okada et al. (2013) showed that feeding
mice lactate after a period of starvation enhances enterocyte
proliferation, thereby contributing to the barrier function of
the gut. Similar to butyrate and other SCFA, lactate can inhibit
HDACs, although the concentrations necessary to achieve this
are higher than what is present in the gut (Latham et al.,
2012; Schilderink et al., 2013). In the vaginal niche, the
concentration of lactate is higher and potentially sufficient
to inhibit HDAC activity. However, lactate is a less potent
inhibitor. The polar hydroxyl moiety that is present on the
second lactate carbon may reduce binding to the HDAC active
site, which is lined by hydrophobic residues, and explain this
lower activity (Vannini et al., 2004). Although the exact role of
both lactic acid enantiomers is often not investigated, in this
particular case, different activities were observed for both, with
D-lactate (10 mM) being more potent than L-lactate (40 mM)
(Latham et al., 2012). Nevertheless, at physiological vaginal
concentrations, HDAC inhibition was demonstrated in vitro
(Wagner et al., 2015).

Whether and how lactate might potentiate the vaginal
epithelial barrier function is thus not evident.

Fatty Acid Metabolites Influence the Local Immune
Response
Several organic acids present in the human body have
immunomodulatory functions. An inflammatory response
is necessary to prevent invasion and infection by pathogens.
However, chronic inflammation is characterized by high
levels of pro-inflammatory cytokines/chemokines and
potentially damages the tissue which, in its turn, can lead
to hypersusceptibility for other pathogens, such as HIV
(Couzin-Frankel, 2010; Passmore et al., 2016). Many of the
symptoms of vaginal candidiasis are caused by the inflammation
secondary to the infection (Cassone, 2015). Certain organic
acids can induce or repress the local immune response. At
the intestinal mucosa, these anti-inflammatory functions are
widely studied and several modes-of-action have been identified.
Inhibition of HDACs, promotion of histone acetylation that
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consequently affects genes involved in the inflammatory
response, inhibition of LPS-induced NF-kB signaling and
induction of anti-inflammatory cytokines, such as IL-10 (Segain
et al., 2000; Cox et al., 2009; Chang et al., 2014). Particularly in
the gut, it was concluded that the presence of SCFA producing
microbes shows an advantage and even a potential therapeutic
strategy for diseases like ulcerative colitis and Crohn’s disease
(Parada Venegas et al., 2019). Lactate also protects the gut
from inflammation-mediated damage. It has been observed that
lactate-pretreatment of a murine 2,4,6-trinitrobenzenesulfonic
acid induced colitis model prevented intestinal inflammation
(Iraporda et al., 2016). However, it has also been shown that
certain organic acids can activate the immune system when
present at higher concentrations (Vinolo et al., 2009, 2011).
The situation in the vaginal niche is less well-studied. First,
lactic acid, both protonated L- and D-isomers, elicits an anti-
inflammatory response as it dampens an overactive immune
response. Based on studies in which transmission of HIV
was investigated, it can be assumed that both enantiomers
perform similarly when it comes to modulation of the local
immune response (Hearps et al., 2017). Lactic acid stimulates
production of anti-inflammatory cytokines/chemokines, such as
IL-1 receptor antagonist, and inhibits Toll-like receptor-induced
production of pro-inflammatory actors, such as IL-6 and IL-8, by
cervicovaginal epithelial cells (Hearps et al., 2017; Tyssen et al.,
2018; Delgado-Diaz et al., 2019). Lactic acid thereby likely plays
a role in protection of the unborn fetus and protection of the
pregnancy against inflammation as well as providing protection
against HIV. However, using the same mechanisms, lactic acid
also promotes oncogenesis (Witkin, 2018). Presence of certain
SCFA, such as acetic acid, propionic acid and butyric acid, as well
as succinic acid at low pH and at concentrations that characterize
eubiosis, do not interfere with the effect of lactic acid on the
local immune response (Delgado-Diaz et al., 2019). However,
prolonged treatment of cervicovaginal cells with these SCFA in
higher concentrations typical for dysbiosis and higher pH, elicits
conflicting effects. While production of the pro-inflammatory
cytokines TNFα and IL-1β are upregulated, production of IL-6,
IL-8, and others were downregulated (Mirmonsef et al., 2012;
Delgado-Diaz et al., 2019). The net effect of these changes on the
immune status in the vaginal niche remains unknown. Moreover,
several research groups report seemingly contradictory results
on the subject (Mirmonsef et al., 2012; Aldunate et al., 2015;
Delgado-Diaz et al., 2019). This conflicting data may result from
differences in the cell type or method used for stimulation of the
cells, e.g., using Toll-like receptor agonists PAM, imiquimod,
PIC or lipopolysaccharides (Delgado-Diaz et al., 2019).

SCFA Play a Role in Sexual Attractiveness
Although rather controversial, SCFA present in the vaginal fluid
were also suggested to play a role in sexual attractiveness of
women (Michael and Keverne, 1970; Michael et al., 1974, 1975).
The composition of the SCFA pool, also called copulins in this
respect, varies with the stage in the menstrual cycle (Michael et al.,
1975). It has been shown that these molecules act as pheromones
that affect the attractiveness as rated by men and the women
themselves (Grammer et al., 2005; Williams and Jacobson, 2016).

Fatty Acid Metabolites Serve an Antimicrobial
Function
It has been shown on multiple occasions, mainly in the gut,
that SCFA and lactic acid possess antimicrobial activity. It
can generally be accepted that this antimicrobial activity is
mediated mainly by lowering intracellular pH and concomitant
disturbance of cellular metabolism. To elicit this effect on the
intracellular environment, these acids should be available in their
protonated and thus membrane-permeable form. Once inside
the cell, the acids dissociate, thereby leading to an increase
in protons and anions. An important prerequisite is that the
pH of the local niche should thus be below the pKa of the
acid. The exact mechanism by which the acids affect virulence
of the pathogenic organisms is not known, although several
options have been discussed. The effect of SCFA against intestinal
pathogens, such as Salmonella species, E. coli and Campilobacter
jejuni, has been investigated. SCFA modulate growth, motility,
biofilm formation and quorum sensing by these organisms
(Nakamura et al., 2009; Amrutha et al., 2017; Jacobson et al.,
2018; Lamas et al., 2019). Remarkably, it has also been shown
that subinhibitory concentrations of these SCFA can alter gene
expression of pathogenic bacteria in such a way that virulence is
favored (Lamas et al., 2019). It must be noted, however, that this
effect is strongly dependent on the type of pathogen.

Lactobacillus-based probiotics are well known for their gut
microbiome modulatory functions, where they are used against
diarrhea and other gastrointestinal disorders (Azad et al., 2018).
Part of the anti-infection activity of these bacterial strains is
attributed to their production of lactic acid and consequent
lowering of the intracellular pH (Fayol-Messaoudi et al., 2005).
Most research specific to the vaginal niche has been devoted to
the antimicrobial effect of lactic acid. It has been shown that
lactic acid produced by lactobacilli can inhibit both bacteria
associated with BV, such as Gardnerella vaginalis, Atopobium
vaginae and Clostridium perfringens, and viruses, such as HIV
and HSV-2 (Conti et al., 2009; O’Hanlon et al., 2011; Aldunate
et al., 2013; Amin et al., 2017). Remarkably, there is no harmful
effect against natural inhabitants of the vagina, such as L. jensenii
and L. crispatus (O’Hanlon et al., 2011). Important to mention,
however, is that these effects are strongly pH dependent (pKa
of lactic acid is 3.89) as only the protonated form of the acid
has these antimicrobial properties. It was indeed shown that
at slightly higher pH, lactate does not seem to exhibit similar
antiviral nor antibacterial activity (Lai et al., 2009; O’Hanlon et al.,
2011). Furthermore, it should be kept in mind that the vaginal
pH fluctuates, for example during intercourse, when semen is
deposited in the vagina, the pH rises to neutral, indicating that the
therapeutic potential of lactic acid should be reconsidered (Fox
et al., 1973). It is, however, likely that lactic acid can also affect
pathogens in other ways apart from disturbing the intracellular
pH balance. It has been suggested that it can also liberate
lipopolysaccharides from the outer membranes of bacterial cells
and potentially denature viral proteins (Alakomi et al., 2000;
Aldunate et al., 2013, 2015). The difference between L- and
D-lactic acid in terms of antibacterial and antiviral activity has
been studied, although not extensively. It has been reported that
L-lactic acid is much more active against particular bacterial
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pathogens, such as E. coli, as well as viral pathogens, such as
HIV (McWilliam Leitch and Stewart, 2002; Aldunate et al., 2013).
Compared to lactic acid, the SCFA seem to be less potent in
targeting pathogenic micro-organisms. Despite the higher pKa
of acetic acid (4.76), which will thus be present in the vagina
in its protonated form more readily compared to lactic acid,
its antimicrobial activity was not found to be as strong as
that of lactic acid, potentially proving the importance of the
multifactorial activity of lactic acid (Aldunate et al., 2015).

Other Functions of Fatty Acid Metabolites
SCFA function as an energy source to host cells, accounting
for about 10% of the daily caloric need (Bergman, 1990). They
act as substrates for metabolism of glucose, lipids and sterols
(LeBlanc et al., 2017). In the gut, mainly butyrate is metabolized
by colonocytes, whereas other absorbed SCFA end up in the blood
stream, where they provide energy to peripheral tissues (Koh
et al., 2016; Amabebe and Anumba, 2020). These molecules have
also been shown to reduce diarrhea as they inhibit loss of fluids
and electrolytes and stimulate uptake of sodium and chloride
(Binder and Mehta, 1989; Rabbani et al., 1999; Binder, 2010).
Apart from the potential role of SCFA as antimicrobial actors,
they have also been shown to induce expression of antimicrobial
peptides by intestinal cells (Zhao et al., 2018). SCFA have also
been shown to protect against carcinogenesis in the intestinal
system, whereas lactic acid stimulates survival of malignant cells
(Hinnebusch et al., 2002; Witkin, 2018). As far as we know,
the roles of SCFA in energy metabolism, electrolyte recovery,
antimicrobial peptide expression and cancer progression in
vaginal epithelial cells, have not yet been investigated. It is also
noteworthy that there is a significant difference between host-
directed toxicity of L- and D-lactic acid. While L-lactic acid is
produced by epithelial cells and is a harmless component of
human cell metabolism, exposure to high levels of D-lactic acid is
dangerous (Pohanka, 2020). Production of the D-enantiomer is
derived from microbial growth. Under normal circumstances, it
is present in the blood in low concentrations, not toxic to the host.
In specific situations, however, such as short bowel syndrome or
other intestinal malfunctioning, D-lactic acid is overproduced,
leading to D-lactic acidosis (Kowlgi and Chhabra, 2015). In such
conditions, the compound can be neurotoxic (Thurn et al., 1985;
Munakata et al., 2010).

THE ROLE OF FATTY ACID
METABOLITES DURING VAGINAL
Candida INFECTIONS

Vaginal Candida Infections
Worldwide, 70–75% of females suffer from VVC at least once
during their life. Approximately 50% of the initially infected
women experience a second episode of VVC, while 5–10% face
at least four episodes each year, indicating recurrent vulvovaginal
candidiasis or RVVC (Sobel, 2007; Gonçalves et al., 2016).
However, the actual frequency with which these infections
are reported is still underestimated (Parolin et al., 2015).
VVC and especially RVVC severely impair the wellbeing, and

quality of life; also, they are typically associated with mental
distress, low self-esteem, physical pain and sexual dysfunction.
In addition, sporadic reports indicate an involvement in late
miscarriage, preterm labor, infertility and pelvic inflammatory
disease (Gonçalves et al., 2016). Apart from the mental
and medical discomfort, these infections impose a substantial
financial cost to the patients and society for diagnosis and
treatment, reaching up to 1 billion dollars yearly in the US
(Zhou et al., 2009). Additionally, research on female specific
conditions is underrepresented and underfunded compared to
males (Holdcroft, 2007a,b).

Candida albicans and Candida glabrata are the two species
most-frequently isolated from women suffering from VVC, with
frequencies of 80 and 2–5%, respectively (Gonçalves et al.,
2016). In addition, both organisms may increase each other’s
virulence in the female reproductive tract. Major risk factors for
VVC are the disturbance of the local microbiome by antibiotic
therapy, immunosuppression or host-related factors such as
pregnancy and uncontrolled diabetes mellitus. Certain behavioral
risk factors include the use of oral contraceptives, poor hygiene
and restrictive clothing (Donders et al., 2010). The exact cause
of RVVC is unknown, though, it has been suggested to be a
hypersensitivity disorder associated with allergic rhinitis and
allergic skin disorders (Guo et al., 2012).

The current treatment recommendations of uncomplicated
VVC by the American Centers for Disease Control and
Prevention (CDC) are topical formulations or a single oral
dose of fluconazole (Pappas et al., 2016). For more severe,
acute VVC, multiple doses of fluconazole are administered. To
treat a C. glabrata infection, topical therapy is combined with
amphotericin B. RVVC is treated by daily oral administration
of fluconazole, after which therapy is continued weekly for 6
months. It is noteworthy, however, that 40–50% of women
treated for RVVC will experience recolonization with Candida
within 30 days after therapy cessation (Sobel et al., 2001).
Furthermore, after prolonged treatment, resistance can occur
(Marchaim et al., 2012). In Europe, the International Union
against Sexually Transmitted Infections (IUSTI) guidelines
describe treatment of RVVC according to the ReCiDiF protocol
(for Recurrent Candida infections treated with Degressive
individualized doses of Fluconazole), where personalized
reduction of the azole treatment is vital (Donders et al., 2008;
Sherrard et al., 2011; Donders and Viera Baptista, 2018). This
protocol allows to find the lowest drug dose to remain symptom-
free and states that some women do not respond to therapy due
to a shift toward azole resistant non-albicans Candida species.

Correlation Between the Vaginal
Metabolome and Risk of VVC
As mentioned before, the vaginal microbiota is the prime
producer of vaginal metabolites. When the microbiome and
consequently the metabolome fluctuates, the chance arises for
pathogenic bacteria and fungi to proliferate, dominate and cause
infections. Several studies have investigated the microbiome-
metabolome fluctuations upon bacterial vaginosis, and associate
BV with changes in metabolome composition, such as increased
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FIGURE 3 | The role of fatty acid metabolites in Candida metabolism and pathogenesis. Details as well as references are given in the main text.

levels of the SCFA acetate and succinate (Srinivasan S. et al., 2015;
Vitali et al., 2015). However, little is known about fluctuations
in the microbiome and metabolome upon VVC. Ceccarani et al.
(2019) analyzed the vaginal microbiome and metabolome upon
VVC for the first time. Compared to healthy subjects, increased
levels of Gardnerella, Faecalibacterium, and Prevotella were
observed. Furthermore, they established that decreased levels
of L. crispatus correlated with increased levels of L. iners and
L. gasseri in VVC-associated vaginas. In addition, the comparison
of the metabolic profiles revealed a unique fingerprint of VVC-
affected women. Vaginal fluids of VVC-affected patients
were enriched in trimethylamine N-oxide (TMAO), taurine,
methanol, isopropanol, and O-acetylcholine, and showed
lower concentrations of lactate, 4-hydroxyphenylacetate,
phenylalanine, pi-methyl histidine, and glycine (Ceccarani et al.,
2019). However, it remains unknown whether these changes in
metabolome composition are the cause of the VVC infection or
are merely present as a result of the infection.

The Effect of Fatty Acid Metabolites on
Candida Growth and Virulence
Pathogenic Candida species can alter their central carbon
metabolism to utilize lesser-preferred carbon sources like SCFA
instead of glucose. This metabolic versatility is important for
their virulence in niches like the vaginal tract that are often
low in or deprived of glucose (Childers et al., 2016). The entry
of lactic acid and SCFA like acetic acid in the fungal cells is
expected to happen mainly via passive diffusion. The vaginal pH

is close to or below the pKa of the weak acids (pKaaceticacid = 4.76;
pKalacticacid = 3.89) so that they mostly occur in undissociated
form (Lourenco et al., 2018). Although in C. albicans and
C. glabrata transporters are identified that mediate the uptake of
lactate and/or acetate, it is unlikely that they play a crucial role
in the tolerance to these acids (Vieira et al., 2010; Mota et al.,
2015; Lourenco et al., 2018). Candida species can metabolize
certain amounts of SCFA. This explains why the antifungal
effect of several SCFA (acetate, butyrate, propionate, etc.) was
shown to be concentration-dependent (Guinan et al., 2019). In
C. albicans, SCFA can inhibit growth, germ tube formation,
hyphae formation, hyphae attachment and reduce the metabolic
activity of fungal cells in a biofilm. The effect of lactic acid on
hyphae formation is controversial. Although it has been reported
that certain lactobacilli can inhibit hyphae formation, the role
of lactic acid in the process is not yet clear. Recent research
showed that there is no clear correlation between the level of lactic
acid produced and the level of inhibition. On the contrary, for
D-lactic acid an inverse correlation was observed (Allonsius et al.,
2019). Most of the effects of weak acids on microbial processes,
are partially caused by inducing acidic external conditions due
to the dissociative properties of SCFA in addition to currently
unknown mechanisms (Guinan et al., 2019). Figure 3 illustrates
the modes in which fatty acid metabolites can inhibit Candida
pathogenicity. The inhibition of C. albicans growth is unlikely
due to a change in environmental pH levels. C. albicans is capable
of actively neutralizing acidic environments so SCFA-induced
changes in environmental pH could not significantly affect their
growth (Vylkova et al., 2011; Fan et al., 2015; Guinan et al., 2019).
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An important conclusion that can be drawn from various studies
is that an acidic environment is needed for the antimicrobial
activity of SCFA (Lai et al., 2009; Aldunate et al., 2015; Lourenco
et al., 2018; Guinan et al., 2019). In neutral conditions they exist
in anion form, but no longer exhibit inhibitory effects. Unlike
many other weak acids, inhibition of Candida growth by lactic
acid is controversial. In various studies, the inhibitory effect of
lactic acid on growth appears to be minor (Moosa et al., 2004;
Kasper et al., 2015; Lourenco et al., 2018), while in others, a clear
effect is reported (Krasner et al., 1956; Kohler et al., 2012). In these
studies, no distinction was made between both enantiomers of
lactic acid. Since Candida species can mobilize lactate and acetate
even when glucose is present, a possible explanation could be
that lactate is rapidly metabolized while the metabolization of
acetate may occur much more slowly giving it the time to exert
its inhibitory effects (Childers et al., 2016; Lourenco et al., 2018).

As previously stated, the mechanisms by which SCFA exert
their antifungal effects are not completely known yet. Various
theories implicate intracellular acidification, accumulation of
anions, ATP depletion and perturbation of the plasma membrane
(Bracey et al., 1998; Guldfeldt and Arneborg, 1998; Stratford and
Anslow, 1998; Mollapour et al., 2008; Ullah et al., 2012). To
what extent each mechanism contributes to combined antifungal
effects of various weak acids is not clarified yet. In S. cerevisiae,
the lipophilicity of weak acids correlates with the acidification
rate of the cytosol, which confirms that weak acids need to
diffuse over the plasma membrane to be toxic, and that not
the initial acidification but rather the ability of the fungal cell
to restore the intracellular pH is an important determinant for
growth inhibition (Purschke et al., 2012). The longer the chain
length of a weak acid, the higher the lipophilicity and its toxicity.
The mechanism to restore the cytosolic pH seems specific for
each weak acid. For acetic acid, the activity of Pma1p, a plasma
membrane H+-ATPase, is crucial for its resistance and long-term
acidification is the major mechanism by which this weak acid
inhibits growth. Although Pma1p activity is increased during
acetic acid-stress, the capacity of the H+-ATPase as well as the
ATP availability are probably not limiting. Acetic acid is as anion
not very toxic. Its effect on the membrane integrity of fungi
is not yet fully clear (Ullah et al., 2012). Acetic acid does not
significantly affect membrane integrity in S. cerevisiae while Mira
et al. (2010) reports that weak acids like acetic acid or lactic
acid can cause membrane perturbation. This effect on membrane
function and permeability may increase the uptake of azoles and
explain the synergistic effect that is seen between acetic/lactic
acid and azoles on the growth of Candida cells (Lourenco et al.,
2018). Candida species have a better external pH adaptability
than S. cerevisiae, and can therefore survive in environments
between pH 2-10. This adaptability can potentially be explained
by their broader cytosolic pH range. The cytosolic pH range
of S. cerevisiae is between 6.0 and 7.0 while in C. albicans
the intracellular pH range in vivo is wider, ranging between
5.8 and 9 (Cassone et al., 1983; Kaur et al., 1988; Stewart
et al., 1988, 1989; Rabaste et al., 1995; Liu and Kohler, 2016;
Tournu et al., 2017; Rane et al., 2019). Their growth is also less
affected by an acidic cytosol compared to S. cerevisiae. Rane
et al. (2019) it was shown that C. albicans cells with very acidic

cytosols (pH ≤ 5.5) only show minimal growth defects. So SCFA
probably exert their inhibitory effect on Candida species not
by intracellular acidification alone. To better understand how
exactly weak organic acids inhibit Candida cells, Cottier et al.
(2015) looked at genomic and transcriptomic changes caused
by lactic, acetic, propionic and butyric acid. They found that
each organic acid triggers the expression of unique combinations
of genes. Despite the differences in the induced responses, all
the organic acids regulated the same sixteen genes at all-time
points and independent of the pH. Thirteen of these genes
(CFL2, MP65, PIR1, ASR1, FET3, DAG7, GDH3, COI1, FRP1,
6311, ICL1, FTR1, CAN1) were up-regulated and three genes
(RPL13, HSP90, FTR2) were down-regulated (Cottier et al., 2015).
There are large similarities with the transcriptional response to
reactive oxygen species and seven out of sixteen genes (CFL2,
COI1, FRP1, PIR1, FET3, FTR1, FTR2) are involved in the
regulation of iron homeostasis (Lan et al., 2004; Chen et al.,
2011; Cottier et al., 2015). Cottier, Tan (Cottier et al., 2015)
also found that all weak organic acids decreased the intracellular
iron levels of C. albicans cells by approximately 60%. However,
restoring normal intracellular iron levels by using a mutant that
imports more iron did not significantly affect the inhibitory
effect of butyric acid. So, the growth inhibition caused by
lactic, acetic, propionic, and butyric acid cannot be explained
by an intracellular iron drop alone. Still, iron is an essential
micronutrient for C. albicans (Ramanan and Wang, 2000). It is
critical for its growth, competition with other microbiota and
interaction with the host (Ramanan and Wang, 2000; Purschke
et al., 2012). Hence, the fact that weak organic acids decrease
the availability of this important micronutrient calls for further
research. Besides iron homeostasis, weak organic acids also had
an effect on the expression of genes involved in host interaction,
glycolysis, the biosynthesis of ATP, ergosterol, arginine and RNA
and the biogenesis of ribosomes (Cottier et al., 2015). All acids
down-regulated genes involved in RNA synthesis and ribosome
biogenesis, especially during longer exposure. This caused a
significant reduction in total RNA and the ratio ribosomal
RNA/total RNA in C. albicans cells (Cottier et al., 2015). An
overall down-regulation of transcription and translation is very
typical for stress responses in general, and can be seen across
a variety of microbial species (Lempiäinen and Shore, 2009).
These data suggest that weak organic acids push C. albicans
cells in a metabolic state similar to starved cells, in which the
rates of transcription, translation and growth are low (Uppuluri
and Chaffin, 2007). Which other mechanisms are contributing
to the inhibiting effect of SCFA and to which extent, still needs
to be elucidated.

MCFA are fatty acids with a chain length of 6-12 carbon
atoms [caproic (C6), heptanoic (C7), caprylic (C8), non-anoic
(C9), capric (C10), undecanoic (C11), and lauric (C12) acid].
In multiple studies, their antifungal effect on Candida species
were demonstrated (Bergsson et al., 2001; Murzyn et al., 2010;
Takahashi et al., 2012; Clitherow et al., 2020; Lee et al., 2020;
Suchodolski et al., 2021). In Clitherow, Binaljadm (Clitherow
et al., 2020), effects of all MCFA were tested on wild-type
strains (SC5314, BWP17) and an azole-resistant strain (CAR17)
of C. albicans and on other Candida species. Strain SC5314
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and BWP17 were significantly inhibited in growth by heptanoic,
caprylic and non-anoic acid. Caprylic and non-anoic acid
even showed similar levels of inhibition to fluconazole and
miconazole. Strain CAR17 was significantly inhibited in growth
by MCFA ranging from C6-C10. Non-anoic acid also significantly
inhibited the growth of C. auris, C. tropicalis, and C. glabrata. The
effect of the MCFA were also tested on the biofilm viability of
strain SC5314 (Clitherow et al., 2020). In contrast to the growth
experiment, the three longest MCFA (capric, undecanoic and
lauric acid) killed the most cells in the biofilm while heptanoic,
caprylic and non-anoic acid were much less effective in reducing
biofilm viability. The inhibition of MCFA on C. albicans growth
and biofilm formation is confirmed by various other studies,
however no consensus is reached on which MCFA are most
potent (Bergsson et al., 2001; Murzyn et al., 2010; Takahashi et al.,
2012; Clitherow et al., 2020; Lee et al., 2020).

S. boulardii, a commonly used probiotic yeast, produces
caproic, caprylic, and capric acid. Murzyn et al. (2010) identified
capric acid as the most effective antifungal MCFA that S. boulardii
produced. It was the only MCFA of the three that inhibited the
filamentation and adhesion of C. albicans. in C. albicans, HWP1,
INO1, and CSH1 expression were decreased upon capric acid
treatment. HWP1 encodes a hyphal wall protein that is important
for both filamentation and adhesion (Nobile et al., 2006; Ene
and Bennett, 2009). INO1 encodes an enzyme required for the
synthesis of GPI-anchored glycolipids, which is important during
adhesion (Mille et al., 2004). CSH1 encodes a protein that is
important for the cell surface hydrophobicity of fungal cells,
which increases C. albicans virulence by increasing adhesion to
epithelial cells and are rendering C. albicans cells more resistant
to phagocytes (Singleton et al., 2001, 2005). It is suspected that
MCFA might exhibit their antifungal activity via mimicking the
quorum-sensing molecule farnesol (Lee et al., 2020). Farnesol is a
sesquiterpene produced by C. albicans that blocks filamentation
at high cell densities in an autocrine manner (Ramage et al.,
2002; Décanis et al., 2011). Various arguments state this claim.
First, MCFA and farnesol are structural very similar. Secondly,
heptanoic and non-anoic acid repress the same hypha- and
biofilm-related genes (HWP1, ALS3, ECE1, and UME6) as
farnesol (Lee et al., 2020). The genes that S. boulardii-produced
capric acid downregulates (HWP1, INO1, and CSH1), are also
downregulated by farnesol (Ramage et al., 2002; Cao et al., 2005;
Murzyn et al., 2010). Lastly, after addition of MCFA to C. albicans
cells, the production of farnesol is lower (Lee et al., 2020).

USE OF FATTY ACID METABOLITES IN
THERAPY

Fatty acids can play a significant role in treatment of vaginal
infections. Figure 4 schematizes the therapy strategies that rely
on pre-, pro-, and postbiotics.

Fatty Acid Producing Probiotics
Lactobacillus-Based Probiotics
As previously mentioned, Lactobacillus species are the most
prevalent microbial species in the vaginal microbiome of most

women and are the prime producers of vaginal metabolites,
especially lactate (Redondo-Lopez et al., 1990). Because of this
vaginal dominance and its promising antimicrobial effects as a
probiotic in the gut, it is therefore no surprise that Lactobacillus-
based probiotics are the focus for development of probiotic
treatments for vaginal dysbiosis. In the context of vaginal disease,
it has been shown that lactobacilli can decrease the infectivity
of bacterial species associated with BV such as Gardnerella
vaginalis, Atopobium vaginae and Clostridium perfringens by
the production of lactate (Aldunate et al., 2015). However, the
potential of lactobacilli to treat vaginal dysbiosis is strongly
species dependent as the overall fatty acid production by
Lactobacillus species depends on the individual potential of strain
(Macfarlane and Macfarlane, 2003; Chee et al., 2020). Additional
to the research on the potential of lactobacilli in the treatment of
BV, many studies report the effectiveness of several Lactobacillus
species against VVC (Williams et al., 2001; De Seta et al., 2014;
Oerlemans et al., 2020). However, the role of lactobacilli as a
probiotic to treat VVC is not univocal (Tachedjian et al., 2017).
To date contradicting results keep arising on whether lactate
produced by the lactobacilli has, at low pH, the ability to inhibit
Candida growth and hyphal formation (Krasner et al., 1956; Lee
et al., 1975; Morales and Hogan, 2010; Han et al., 2011). These
contradicting results may be explained by the lactic acid tolerance
of the tested Candida species (Cunha et al., 2017).

In the last two decades, various research teams investigated the
potential of different Lactobacillus species as prophylactic therapy
or treatment of VVC. Dating back to 2001, the research team of
Williams et al. (2001) already investigated the probiotic effects
of weekly intravaginal application of Lactobacillus acidophilus
as a prophylactic treatment for VVC. It showed to have the
same prophylactic capacities as the drug clotrimazole, one of
the most commonly used imidazoles for VVC treatment (Sobel,
2014). Another study investigated the effect of intravaginally
administered Lactobacillus plantarum P17630 on the reduction
of VVC after conventional therapy with clotrimazole (De Seta
et al., 2014). Women treated with Lactobacillus plantarum
P17630 showed a significant increase in vaginal lactobacilli
count. Moreover, the physiological pH was restored to stable
levels and the women experienced significantly less discomfort,
such as burning and itching after 3 months. However, once
again no further investigation was executed to obtain insights
into the role of lactate and SCFA in this treatment. More
recently, a proof-of-concept study, performed by Oerlemans
et al. (2020), formulated a gel-based system carrying three
different Lactobacillus species, L. rhamnosus GG, L. pentosus
KCA1, and L. plantarum WCFS1, and investigated its effectivity
against VVC. During in vitro experiments, lactic acid production
of several individual lactobacilli strains was evaluated and
shown to display widespread concentration range from 2.78 g/L
(L. parabuchneri AB17) to 20.22 g/L (L. pentosus KCA1).
L. rhamnosus GG produced the highest amount of L-lactic
acid (17.27 g/L) while L. plantarum WCFS1 produced the
highest amount of D-lactic acid (7.68 g/L). Additionally, the
latter strain inhibited C. albicans growth to the largest extent,
implying that high amounts of D-lactic acid cause the greatest
C. albicans growth inhibition. This result should, however, be
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FIGURE 4 | Overview of involvement of fatty acid metabolites in possible treatment of vaginal infections. Abbreviations and short references are given in the figure
and designated by an asterisk. Details as well as full references are given in the main text.

interpreted with caution. As discussed on several occasions in
the previous paragraphs, the ratio L- and D-lactic acid should
be considered when selecting optimal probiotic strains. Although
both enantiomers seem to have similar effects on the immune
system and D-lactic acid was hypothesized to inhibit Candida
growth further, it also negatively affects specific bacterial and viral
pathogenesis to a lesser extent than L-lactic acid and is toxic to
the host at high concentrations. The in vivo supplementation
of the vaginal gel containing the three previously mentioned
Lactobacillus strains, administered daily over a period of 10 days,
proved to be effective against VVC in almost 10 out of the twenty
participants.

To date, various in vitro studies and clinical trials using
Lactobacillus-based probiotics as a treatment against VVC show
promising results. However, the anti-Candida effect of certain
probiotic lactobacilli strains are variable and highly species-
specific. Therefore, it is impossible to extrapolate the probiotic
tendencies and characteristics from one Lactobacillus species to
another without extensive in vitro and in vivo studies.

S. cerevisiae-Based Probiotics
At this moment, most well-characterized and used
microorganisms as probiotics are bacterial species of the
genera Lactobacillus and Bifidobacteria. However, the last
couple of years the interest in fungi-based probiotics is growing
(Bermudez-Brito et al., 2012). This is not surprising since they
offer important advantages over bacterial probiotics. Fungi
have a unique cell wall construction. It consists of two layers
of which the inner layer is composed of chitin, 1,3-β-glucan
and 1,6-β-glucan and the outer layer contains mannan (Lipke
and Ovalle, 1998). This structure allows fungi to easily survive
passage through the gastrointestinal tract as many probiotics
are taken orally (Banik et al., 2019). Moreover, fungal probiotics
are resistant to antibiotics. This means that, in addition to
the fact that their antibiotic resistance profile does not need
to be investigated, they can also be used in patients taking
antibiotics, which is an important risk factor for VVC (Xu
et al., 2008; Gaziano et al., 2020). The most common fungal
probiotic on the market is Saccharomyces cerevisiae var. boulardii
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(Sen and Mansell, 2020). This yeast is currently being used in
the treatment of chronic and acute gastrointestinal diseases like
inflammatory bowel disease, bacterial and rotaviral diarrhea
(Madsen, 2001; Kelesidis and Pothoulakis, 2012). Only recently,
it has been demonstrated that S. cerevisiae-based probiotics
show potential for treatment of not only VVC, but also BV
(Cayzeele-Decherf et al., 2017; Pericolini et al., 2017; Gabrielli
et al., 2018; Sabbatini et al., 2018). S. cerevisiae strain CNCM
I-3856 reduced the C. albicans vaginal load in women with
VVC and increased the clearance of C. albicans from the vagina
in mice (Cayzeele-Decherf et al., 2017; Pericolini et al., 2017).
In vitro, this strain inhibited C. albicans adhesion to vaginal
epithelial cells, induced C. albicans co-aggregation, inhibited
C. albicans germ-tube and hyphae formation and reduced vaginal
epithelial cell damage (Pericolini et al., 2017). Strain CNCM
I-3856 was also shown to suppress the expression of secretory
aspartyl proteinase (Sap) genes SAP2 and SAP6 in C. albicans
both in vitro and in mice (Pericolini et al., 2017). Saps are
important virulence factors of C. albicans as they play a major
role during adhesion to and invasion of the host cells (Naglik
et al., 2003). The suppression of Sap2 and Sap6 is specifically
relevant for treatment of VVC due to their proinflammatory
nature since vaginal inflammation is crucial in the pathogenesis
of vaginal Candida infections (Pericolini et al., 2015; Vecchiarelli
et al., 2015). Strain CNCM I-3856 also showed other therapeutic
effects like reducing interleukin-8 production (IL-8), reducing
the number of vaginal polymorphonuclear cells (PMNs) and
enhancing the antimicrobial activity of PMNs (Gabrielli et al.,
2018). IL-8 is a key cytokine during inflammatory processes. It
recruits PMNs, which release proinflammatory substances by
degranulation (Lacy, 2006; Gabrielli et al., 2018). These cells
also have the capacity to produce diverse antimicrobial proteins
and enzymes to kill small engulfed microorganisms, and release
reactive oxygen species and cytokines to kill microorganisms
extracellularly (Lacy, 2006). By reducing IL-8 and the number of
PMNs in the vagina, S. cerevisiae can dampen local inflammation
while maintaining or even enhancing the antimicrobial activity
of the PMNs (Gabrielli et al., 2018). Current research on vaginal
S. cerevisiae-based probiotics is not focused on the beneficial
effects of SCFA. However, this could be very interesting since
one of the mechanisms by which S. cerevisiae potentially
exerts its probiotic effects in the gut, is the production of
SCFA due to their immunomodulatory properties (Schneider
et al., 2005; Ratajczak et al., 2019; Sen and Mansell, 2020).
It is also demonstrated in several studies including our own
unpublished research, that acetate, butyrate and propionate have
an antifungal effect on Candida species (Nguyen et al., 2011; Yun
and Lee, 2016; Lourenco et al., 2018). Focusing on high SCFA
production together with other mechanisms-of-action during
the development of vaginal S. cerevisiae-based probiotics could
be advantageous.

Prebiotics Stimulating Production of
Fatty Acid Metabolites
Originally a prebiotic was defined as a non-digestible food
ingredient that selectively stimulates the growth and/or activity

of bacteria in the colon, and therefore improves the health of
the host (Gibson and Roberfroid, 1995). Later, in 2008, this
definition was refined by the International Scientific Association
of Probiotics and Prebiotics (ISAPP) as a compound fulfilling
three main criteria. Firstly, the compound should not be absorbed
in the gastrointestinal tract and needs to be resistant to the
acidic pH of the stomach and hydrolysis by mammalian enzymes.
Secondly, the prebiotic needs to be fermented by intestinal
microbiota. And thirdly, it needs to selectively stimulate the
growth and/or the activity of the intestinal bacteria and improve
the host health (Gibson et al., 2010). Various soluble fibers match
these criteria and are fermented by anaerobic microbiota in the
colon, to produce weak acids as byproducts (den Besten et al.,
2013; McLoughlin et al., 2017). These fatty acids cause a drop
in the colonic pH, and therefore promote the growth of some
bacteria like Lactobacillus and Bifidobacterium. These bacteria
are known as potent fatty acid producers that can produce other
antimicrobial agents like hydrogen peroxide, bacteriocins and
related substances for maintaining healthy immune responses
(Basu et al., 2006; Simpson et al., 2006; Cocolin et al., 2007a).
Fructooligosaccharides (FOS), galactooligosaccharides (GOS),
isomaltooligosaccharides (IMO), xylooligosaccharides (XOS),
lactulose, inulin, polydextrose and lactitol are categorized as
prebiotics (Stowell, 2006). The type of prebiotic fiber results
in production of different SCFA concentrations (den Besten
et al., 2013). Short chain molecules with a low degree of
polymerization, like oligosaccharides (e.g., FOS, GOS, inulin) are
readily fermented and result in a higher SCFA yield compared
to longer-chain polysaccharide soluble fibers, such as pectin
(Slavin, 2013). Moreover, SCFA production is influenced by the
composition of the microbiota in the colon, the site of substrate
fermentation and by gut transit time (Lewis and Heaton, 1997;
Wong et al., 2006).

When investigating the potential of using prebiotics against
vaginal infections its definition requires re-formulation, as this
was devised specifically for application in the gastro-intestinal
tract. We can define prebiotics in the context of vaginal health,
as ingredients that, when applied to the vaginal cavity, result in
specific changes in the composition and/or activity of the genital
microbiota, thereby conferring a specific benefit to the host.
Most often these ingredients are nutrients that specifically allow
growth of beneficial microbes which can thereby outcompete
the pathogen (Rousseau et al., 2005). Since lactobacilli are the
dominant microbiota in the vagina of most women, prebiotics
can stimulate the growth of the body’s native lactobacilli, and
are therefore capable of maintaining, restoring or optimizing the
flora of the vaginal ecosystem (Al-Ghazzewi et al., 2007; Cocolin
et al., 2007b; Ravel et al., 2011). In the first study with the
use of prebiotics in vaginal environment, Rousseau et al. (2005)
selected different prebiotic oligosaccharides, in combination with
three different human vaginal Lactobacillus strains with probiotic
properties, L. crispatus, L. jensenii, and L. vaginalis, to investigate
the effect on pathogenic microorganisms like C. albicans and
Gardnerella vaginalis which are often encountered in vaginal
infections. Oligosaccharides FOS Actilight R© DP3, α-1,6/α-1,4
GOS and α-1,2/α-1,6/α-1,4 GOS (with α-1,6 and α-1,4 bonds
similar to α-1,6/α-1,4 GOS) were consumed by the Lactobacillus
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strains resulting in a lactate concentration of 3–7,6 g/l after
fermentation, while FOS Raftilose R© was fermented to a much
lower extent and did not result in lactate production. The
pathogenic microorganisms were unable to ferment these
oligosaccharides FOS Actilight R© and α-1,6/α-1,4 GOS. Therefore,
combining lactobacilli and oligosaccharides in a therapy can
be a good method to prevent vaginal infections (Rousseau
et al., 2005). Unfortunately, little information exists on how
to prevent or treat vaginal infections with prebiotics in the
form of a cream, douche, spray, pessary or tablet. A vaginal
bio-adhesive delivery system based on pectinate-hyaluronic acid
microparticles for prebiotics and probiotics encapsulation was
designed for better controlled drug release in the vaginal tract
(Pliszczak et al., 2011). An in vitro study showed that FOS
and GOS stimulate the growth of lactobacilli, generating lactate
and resulting in lower pH, causing suppressing of growth of
harmful species like E. coli and potentially C. albicans in the
vaginal ecosystem (Mahore et al., 2017). Other studies show
that the prebiotics glucomannan and glucomannan hydrolysates
(GMH) promote the growth, metabolism and antimicrobial
properties Lactobacillus strains, with an increased inhibition of
vaginal Candida species and link this to the produced lactic acid
(Huang et al., 2007; Sutherland et al., 2008; Tester et al., 2012).
Moreover, introduction of glucomannan hydrolyzates pessaries
directly in the vagina showed an improvement of vaginal health
(Al-Ghazzewi and Tester, 2016).

Animal trials indicate that the topical application of maltose
gel and sucrose gel in the vagina of rhesus macaques can stimulate
the growth of Lactobacillus species (Hu et al., 2015; Zhang
Q.-Q. et al., 2020). Female rhesus macaques can be used as
a good animal model to study vaginal microbiota-associated
diseases, since their vagina is colonized by anaerobic bacteria
which are normally associated with BV in women (Spear et al.,
2010; Chen et al., 2018). Two clinical trials showed a high cure
rate of clinical symptoms associated with bacterial vaginosis
when treating with sucrose gel (Xiao et al., 2015; Khazaeian
et al., 2018). A disadvantage when using sucrose gel is its
instability at low pH. As far as we know, the combination
of the vaginal probiotic S. cerevisiae and prebiotics have not
been investigated.

Fatty Acid Metabolites as Postbiotics
Apart from the well-known probiotics and prebiotics, also
alternative approaches for using microbes to confer a health
benefit to the host, are being investigated. Postbiotics are defined
as soluble products secreted or released by and resulting from
microbial metabolism that have a beneficial effect on the host
(Teame et al., 2020). There is ongoing discussion on which
type of molecules can be classified under this denominator.
In some cases, postbiotics are seen as any product released
by microbes that confers a benefit to the host, including
proteins, vitamins, SCFA, polysaccharides and even cell wall
fragments and lysates (Zolkiewicz et al., 2020). According to
other researchers, these products of microbial origin must
be further subdivided into two categories. The structural
components of the cells, such as inactivated cells or cell
fragments, are termed parabiotics, while secreted components

are classified as postbiotics (Teame et al., 2020). In any case,
it seems to be true that not only living organisms can
stimulate host health, also metabolites can do so and are thus
exploited commercially. Many types of secreted molecules can
be considered as potential postbiotics, such as peptides, proteins
and other small metabolites. An example of microbial peptides
that confer benefits to the human host are bacteriocins, which
are small antimicrobial peptides that are synthesized by various
Lactobacillus species and can inhibit local pathogen overgrowth
(Perez et al., 2014). More interesting in the context of this
review, are the small molecules considered as postbiotics, such
as neurotransmitters and SCFA. Weak organic acids have been
used as supplements in wash liquids and intimate soaps (Jacquet
et al., 1995; Chen Y. et al., 2017). Presence of lactic acid was shown
to mitigate recurrence of BV after treatment with metronidazole
(Bahamondes et al., 2011). Acetic acid formulations were shown
to relieve VVC to some extent (Rahmani et al., 2020). Apart from
these individual manuscripts, not much has been reported on
the use of postbiotics to treat vaginal infections. However, the
main benefit of postbiotics compared to probiotics is that no
living micro-organisms need to be ingested or applied. This way,
no harm can be inflicted by probiotic overgrowth and infection,
as is reported in some exceptional cases involving critically ill
patients (Kara et al., 2018; Castro-Gonzalez et al., 2019; Fadhel
et al., 2019). Furthermore, postbiotics are more predictable and
more easily standardized. Also transport and preservation is less
critical compared to probiotics (Zolkiewicz et al., 2020).

CONCLUSION

It seems evident from the information collected in this review
article that fatty acid metabolites play an important role in
vaginal health. These metabolites depict a close relationship
to the local microbiome, as both factors can influence each
other’s composition directly and indirectly. It thus makes sense
that further elucidating the metabolome and its role in specific
dysbiotic states can lead to insights in the cause, expression
and possible treatment of vaginal infections. Research devoted
specifically to the vaginal niche will allow the identification
of components of the vaginal micro- or metabolome that link
to onset of infections. Altering the microbial or metabolic
composition of the vagina can therefore be a promising therapy
strategy to prevent or cure infections such as BV or VVC.
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