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Abstract: Type 2 diabetes is characterized by impairment in insulin secretion, with an established
genetic contribution. We aimed to evaluate common and low-frequency (1–5%) variants in nine
genes strongly associated with insulin secretion by targeted sequencing in subjects selected from
the extremes of insulin release measured by the disposition index. Collapsing data by gene and/or
function, the association between disposition index and nonsense variants were significant, also
after adjustment for confounding factors (OR = 0.25, 95% CI = 0.11–0.59, p = 0.001). Evaluating
variants individually, three novel variants in ARAP1, IGF2BP2 and GCK, out of eight reaching
significance singularly, remained associated after adjustment. Constructing a genetic risk model
combining the effects of the three variants, only carriers of the ARAP1 and IGF2BP2 variants were
significantly associated with a reduced probability to be in the lower, worst, extreme of insulin
secretion (OR = 0.223, 95% CI = 0.105–0.473, p < 0.001). Observing a high number of normal glucose
tolerance between carriers, a regression posthoc analysis was performed. Carriers of genetic risk
model variants had higher probability to be normoglycemic, also after adjustment (OR = 2.411,
95% CI = 1.136–5.116, p = 0.022). Thus, in our southern European cohort, nonsense variants in all
nine candidate genes showed association with better insulin secretion adjusted for insulin resistance,
and we established the role of ARAP1 and IGF2BP2 in modulating insulin secretion.

Keywords: diabetes; disposition index; obesity; next-generation sequencing; targeted resequencing;
extremes; insulin secretion; insulin resistance

1. Introduction

Type 2 diabetes (T2D) is a complex disease affecting the world’s population at epi-
demic rates and whose pathophysiology remains elusive. T2D is projected to affect up to
700 million people worldwide by 2045, with a 51% global increment [1]. The burden of
diabetes will affect mostly developing countries, as diabetes is strongly associated with
urbanization and increased wealth. T2D carries an increased risk of developing a wide
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range of macrovascular (cardiovascular, cerebrovascular and peripheral artery diseases)
and microvascular complications (retinopathy, neuropathy and nephropathy) [2], with
large differences in prevalence, severity and comorbidities across global populations. T2D
is characterized by an inadequate β-cell response to the progressive insulin resistance that
accompanies advancing age, inactivity and weight gain [3]. Impaired insulin secretion is
considered one of the first defects leading to impaired glucose metabolism and the develop-
ment of T2D. A genetic contribution is well recognized in diverse forms of both early-onset
and adult-onset diabetes [4–7]. Aside from genetic determinants, several other factors are
involved in the pathogenesis of diabetes, obesity and diabesity (co-occurrence of obesity
and diabetes). For example, studies pointing to the involvement of oxidative stress show
that it is significantly higher in obese vs. nonobese subjects. It is positively correlates with
worse clinical measurements (e.g., BMI, waist, fasting plasma glucose, total cholesterol,
etc.). Furthermore, reactive oxygen species (ROS) levels are higher in obese diabetic vs.
nondiabetic obese subjects. On the other hand, the measurement of antioxidant levels nega-
tively correlates with BMI and total cholesterol [8]. Additionally, there are well-established
prenatal and risk factors that influence metabolic impairment onset and development, such
as those reported for gestational diabetes mellitus [9]. Glucose metabolism and T2D are
well-established multifactorial processes. To deconstruct the heterogeneity of T2D, cluster
analyses using serum biomarkers and clinical data of individuals have been performed
to identify T2D subgroups [10,11]. Cluster analyses have been used to change the current
paradigm of classifying patients with diabetes mellitus. This analysis comprises an unbi-
ased cluster allocation using common variables such as autoimmunity, age at diagnosis,
BMI, glycemic control and homeostasis model estimates of β-cell function and insulin
resistance. The final scope is a refined classification that could provide a powerful tool to
individualize treatments and identify individuals with increased risk of complications at
diagnosis [10,11]. These studies suggest newer routes for future research, but there are also
limitations given the nature of the variables included in the analyses, which are bound to
change over time. Contrariwise to serum biomarkers, germline genetic variants associated
with T2D remain constant, regardless of age, disease state or treatment, and are more likely
to identify T2D causal mechanisms. In the last decade, large-scale genomic studies, includ-
ing genome-wide association studies (GWAS), have identified over 400 common variants
in more than 100 loci that confer disease susceptibility [12,13]. Despite the great number
of loci linked, there is an extensive gap between the discovery of many T2D-associated
single-nucleotide polymorphisms (SNPs) and the understanding of their physiological
impact on T2D pathogenesis or their clinical use as risk factors. Furthermore, a consistent
discrepancy between observed heritability and recognized genetic background in complex
disease is well established, often reported as “missing heritability” [14,15]. Identification
of genetic factors and genes that underlie T2D could shed light on diabetes molecular
background and inform clinical management strategies, including patient stratification,
personalized medicine or optimization of study design of randomized controlled trials.

The genes identified so far are mainly associated with pancreatic β-cells matura-
tion or function [16], but all the mechanisms affecting β-cell function have not yet been
fully understood.

Common variants associated with complex disease by GWAS cause modest increases
in disease risk, with odds ratios generally <1.2 [17–21]. They may indicate a gene or a
locus strongly involved in that disease, as most GWA studies use technologies that allow
investigating only known or common mutations. As suggested by Rivas et al., targeted
resequencing may help to discover other new variants, especially rare or low frequencies,
harbored in genes that may exert extra influence on the trait or disease [22,23]. Furthermore,
it has been reported several times that multiple rare variants can have a stronger effect on
complex traits than individual common variants [24,25].

It is therefore clear that there is an increasing need to analyze in-depth candidate
genes by direct sequencing [25–27]. This strategic approach is now made possible thanks
to next-generation sequencing (NGS) technologies. Moreover, a new powerful strategy
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was proposed to increase the chance to highlight causal variants involved in modulating
a phenotype in association studies. It consists of sequencing samples from the extremes
of a trait [28]. Intuitively, such samples should be enriched for the burden of alleles
influencing a trait, thus improving statistical power to discover risk/protective variants
and association to the trait [24,29,30]. Additionally, it allows for more homogeneity into
cohorts, determining a greater power to detect association and helping to identify markers
with higher ORs [31].

Given the fact that β-cell function and glucose-stimulated insulin secretion appear
to be the traits most strongly associated with T2D pathogenesis, and that insulin resis-
tance is accompanied by early compensatory upregulation of insulin secretion, the best
method for measuring β-cell function is evaluating insulin secretion adjusted for insulin
sensitivity. This ratio, called the disposition index (DI), assumes that at the same glu-
cose tolerance this index remains constant. DI is calculated by insulin secretion/insulin
resistance (∆I/∆G ÷ IR), with several formulas being proposed depending on available
measurements [32,33]. The loss of function of β-cells, which reduces their capacity to raise
insulin secretion to compensate for insulin resistance, results in a lower DI [34–36]. Thus,
DI can be considered a measure of the functionality of the pancreas and can predict the
normal β-cell response adequate for any degree of insulin resistance. In diabetes, β-cells are
unable to respond adequately to insulin resistance, thus determining the appearance of im-
paired glucose regulation and altering the disposition index. DI avoids using gold-standard
techniques (i.e., euglycemic clamp), which is difficult to apply on a wide scale [34–36].

Thus, we aimed to evaluate common and low-frequency (1–5%) variants in genes
associated with insulin secretion by targeted resequencing in subjects selected from the
extremes of insulin release measured by DI. We selected the nine genes most associated in
the literature to β-cell’s insulin secretion who reach genome-wide significant association
with T2D from published GWAS (p ≤ 5 × 10−8). Genes selected are ADAMTS9, ADCY5,
CDAKL1, IGF2BP2, JAZF1, GCK, NAT2, KCNQ1 and ARAP1. These genes are all involved
in the process of insulin secretion, including synthesis, trafficking, rate, localization and
vesicles formation. Published odds ratios (ORs) along with 95% confidence intervals (CIs)
and references for selected genes are shown in Supplementary Table S1 [37,38].

To our knowledge, no studies involving NGS of such candidate genes have been
performed so far in obesity and diabetes associated with obesity, and no deep resequencing
has been implemented on these selected genes.

2. Results
2.1. Study Samples and Quintiles of Disposition Index

The clinical features of all 757 participants presented as 20% versus 80% (1st vs.
5th quintile) of the disposition index are shown in Table 1. Table 1 also shows p-values
calculated between the extremes. Sex distribution was similar between the two quintiles:
in the 20% DI (n = 377), 18 (31.3%) were males, and 259 (68.7%) were females; in the 80% DI
(n = 380), 94 (24.8%) were males, and 285 (75.2%) were females.

Our cohort shows, as expected, a high prevalence of obesity, as the median BMI
(Kg/m2) in the two extremes is 39 and 40, respectively. Additionally, the lowest and highest
quintiles of DI differ significantly for most of the lipid measurements, with the lower insulin
secretion (lower DI) showing the worst metabolic profile (e.g., higher LDL, lower HDL,
higher TGs).

Nonparametric variables are reported as medians along with the 25◦ and 75◦ per-
centiles (25◦% and 75◦%), the 1st and 5th quintiles (Q1 and Q5), respectively. P was evalu-
ated with the Student’s t-test if the variable was assessed parametric or the Mann–Whitney
U test if nonparametric. SBP: systolic blood pressure; DBP: diastolic blood pressure; Col:
cholesterol; HDL: high-density lipoprotein; LDL: low-density lipoprotein; TG: triglycerides;
AST: aspartate aminotransferase; ALT: alanine aminotransferase; FPG: fasting plasma glu-
cose; Glu 120′: PLASMA GLUCOSE after oral glucose tolerance test (OGTT) at 120′; FPI:
fasting plasma insulin; Ins 120′: plasma insulin after OGTT at 120′; ISI: insulin sensitivity
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index; IGI: insulinogenic index; DI: disposition index; HOMA-IR: homeostatic model as-
sessment for insulin resistance; HOMA-B: homeostatic model assessment of β-cell function;
c-pep 0’: C-peptide test at 0′; HbA1c: glycosylated hemoglobin.

Table 1. Clinical features of all 757 participants showed 80% versus 20% (1st vs. 5th quintile) of
DI distribution.

20% DI
(n = 377) Median 25◦ % 75◦ % p Median 25◦ % 75◦ % 80% DI

(n = 380)

Age (y) 47 38 53.75 1.42 × 10−23 35 27 44.75 Age
BMI (kg/m2) 41.6 37.2 48.05 3.97 × 10−10 38 32.975 43.85 BMI
Weight (kg) 113.8 102.2 132.6 n.s. 108.5 96.48 129.35 Weight

SBP (mmHg) 130 120 140 5.07 × 10−11 120 110 130 SBP
DBP (mmHg) 80 75 90 0.0002 80 70 85 DBP

FAT% 47.5 41.9 51 0.01 46.25 40.15 49.325 FAT%
Col (mg/dL) 206 182 234.7 4.04 × 10−7 194 163.9 218 Col

HDL (mg/dL) 47 39 56 0.0002 50.05 42.1 60.48 HDLc
LDL (mg/dL) 128 108.99 152 0.000001 117 95.59 138.65 LDLc
TG (mg/dL) 134 96.4 179 2.30 × 10−14 99.75 74.43 134.33 TRIG
AST (IU/L) 21 17 28 0.00001 19 15 24 AST
ALT (IU/L) 26.9 20 40 3.50 × 10−7 22 16 32.63 ALT

FPG 0′ (mg/dL) 102 92 112 1.86 × 10−67 83 79 88 OGTT 0′

Glu 120′ (mg/dL) 14 4 115 176 1.63 × 10−59 99 84 114 OGTT 120′

FPI 0′ (µIU/mL) 27.35 16 43.8 7.87 × 10−36 12.6 7.7 20.2 INS 0′

Ins 120′ (µIU/mL) 119.35 62.025 199.25 1.34 × 10−22 57.45 28.45 96.98 INS 120′
ISI 0.48 0.28 0.87 4.25 × 10−29 1.04 0.65 1.80 ISI
IGI 0.27 0.02 0.60 1.52 × 10−89 2.20 1.28 3.59 IGI
DI 0.00223 0.00184 0.00275 1.86 × 10−67 0.00339 0.00301 0.00376 DI

HOMA-IR 7.10 4.10 11.49 1.70 × 10−44 2.64 1.67 4.42 HOMA-IR
HOMA-B 310.04 190.08 527.24 n.s. 299.14 169.97 465.47 HOMA-B
c-pep 0’ 4.49 3.41 5.83 4.40 × 10−17 2.99 2.2975 3.87 c-pep 0’

HbA1c (%) 5.7 5.4 6.1 2.22 × 10−31 5.2 4.9 5.4 HbA1c

2.2. Number and Type of Variants Observed in Study Subjects

Quality assessment for sequencing data resulted in a QScore ≥ 30 for 72.7% of bases,
QScore ≥ 20 for 81.7% of bases, and QScore ≥ 12 reads for 100% of bases. The fraction of
the captured targeted regions (29′685 bp) covered by at least one read was 98.2%. After
the sequencing runs, acquisition of data and variant calling, we observed 5636 variants in
the raw dataset. Filter setup is explained in detail in the Materials and Methods section
(Section 4). The first filtering retained 2751 variants in the whole sample, 1876 of which
were differentially distributed in one of the extremes. After the final filtering, 1221 variants
were retained. Among these, 879 affected protein function by in silico analysis. The gene
distribution and function of these 1221 variants are reported in Table 2.

Table 2. Variant distribution by function and gene localization.

ADAMTS9 ADYC5 IGF2BP2 CDKAL1 JAZF1 GCK NAT2 KCNQ1 ARAP1 Total

Variants 311 171 89 95 23 91 23 113 268 1221
Missense 85 47 22 21 6 19 11 32 87 330
Nonsense 3 1 1 1 0 0 1 2 0 9
Splicing 6 1 0 1 0 0 0 5 2 15

Frameshift 51 24 10 1 0 0 0 5 2 93
LoF 145 73 33 24 6 19 12 44 91 447

Synonymous 85 47 22 21 8 19 11 34 87 334
rs (known) 83 50 24 27 4 25 6 45 54 325
LoF/TOT 47% 43% 37% 25% 26% 21% 52% 39% 34% 37%

LoF: loss of function, meaning missense, nonsense, splicing and frameshift variants; LoF/TOT: ratio between
observed LoF and total variants; rs describes known variants. Total column is not the raw sum of single-gene
data, as several variants were found in adjacent, intronic noncoding regions or in the antisense transcript.
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2.3. Association Analyses

After this discovery phase, binary logistic regression was performed to evaluate the
association of variants, both alone and collapsed by gene or function, with DI extremes.
When analyzing all variants that passed the filter (n = 1221), collapsed by gene and/or
function, only the association between DI and nonsense variants were significant, also after
adjustment for established risk factors such as age, gender and BMI. Carriers of these stop
variants had overall 75% less probability to be in the lower, more pathologic, extreme of DI
(OR = 0.25 95% CI = 0.11–0.59 p = 0.001). Analysis of goodness of fit showed that this model
explained around 25% of the variable’s variance (R2 Nagelkerke = 0.25; Hosmer–Lemeshow
test = 0.063). Thus, in our cohort, nonsense variants seem to be protective regarding insulin
secretion status. We then evaluated the variants individually, and eight of them, within four
genes (ARAP1, GCK, KCNQ1 and IGF2BP2), were significantly associated with one of the
extremes of DI. After adjustment for confounding factors (age, gender and BMI), only three
novel variants, in the ARAP1, IGF2BP2 and GCK genes, remained significantly associated
(see Table 3). The strongest significant effect was observed for carriers of the IGF2BP2
variant, showing an 85% (CI = 50% to 95%) reduced probability to be in the pathological
extreme of insulin secretion relative to insulin resistance. Carriers of SNPs in ARAP1 and
GCK showed similar results in significance and effect, with a mean probability of 70% and
62%, respectively. Other genes did not reach significance in our samples.

Table 3. Binary logistic analysis of single variants associated with the lower extreme of DI, adjusted
for age, gender and BMI.

Gene Variant p O.R. 95% C.I. Obs MAF

IGF2BP2 chr3:185363420 A > G c.1708-9 A > G 0.003 0.142 0.039 0.527 1.19%
GCK chr7:44186286 GA > G c.864-70delA 0.014 0.384 0.179 0.825 2.51%

ARAP1 chr11:72422158 A > C c.1121T > G; p.Val374Gly 0.011 0.304 0.121 0.763 1.92%

Only significant associations are shown. OR: odds ratio; CI: confidence interval; Obs MAF: observed minor allele
frequency in our cohort.

Of note, 22 out of 29 (75%) of the carriers of the missense variant in ARAP1 were
diagnosed as normal glucose tolerant (NGT), assessed by OGTT. Additionally, between the
18 carriers of the intronic variant in IGF2BP2, 13 (72%) were identified as NGT.

2.4. Genetic Risk Model of Significant Variants

Due to the low frequency observed for the variants in the ARAP1, IGF2BP2 and
GCK genes, without subjects carrying more than one variant, we constructed a genetic
risk model. We initially used all three associated variants. Unexpectedly, when all three
SNPs in the genetic risk model were analyzed by binomial regression, GCK did not reach
significance. We therefore used only the ARAP1 and IGF2BP2 variants to build a genetic
model. Association analysis of this genetic risk model adjusted for age, gender and BMI,
strengthened both significance and effect compared to the individual association (see
Table 4). Carriers of at least one of the two allele variants showed to be, on average, 78%
less likely to be in the lower, pathological, extreme of DI, with a reduction of between 90%
and more than 50%. Interestingly, this model explained more than 25% of DI variance (R2

Nagelkerke = 0.254, p = 0.015).

Table 4. Binary logistic regression of significant variants associated with the lower extreme of DI as
genetic risk model, adjusted for age, gender and BMI.

Gene p O.R 95% C.I. R2 Nagelkerke Sign H-L

ARAP + IGF2BP2 0.000093 0.223 0.105 0.473 0.254 0.015
OR: odds ratio; CI: confidence interval; Sign H-L: significance in Hosmer–Lemeshow test.
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Observing a large number of NGT between carriers of each SNP, a post hoc regression
analysis was performed to assess whether glucose tolerance status is associated with being
carriers of at least one of the two selected variants (see Supplementary Table S2). Indeed,
carriers of any of the two variants in the genetic risk model had a 2.4-fold higher probability
to be NGT after adjustment for age, gender and BMI than noncarriers (OR = 2.41 95%
CI = 1.14–5.12 p = 0.02).

3. Discussion

In this study, we employed a candidate gene approach with NGS technology to
confirm and validate results derived from genome-wide association analyses in a southern
European real-life cohort with a high prevalence of overweight/obesity. As previously
discussed, GWAS results should be confirmed and validated with further studies, including
molecular and cellular studies or targeted sequencing [22,23]. Because of its own technique,
GWA studies focus on common variants. Empirical observations showed that heritability
explained by common variants emerging from GWAS is limited, especially for multifactorial
diseases such as diabetes or obesity. Possibly, rare and low-frequency variants harbor more
effect, and for a selective pressure in fitness, they are less frequent. Additionally, GWAS-
derived variants may not directly affect the trait but might be in linkage with a “real”
causal variant. Furthermore, SNPs in noncoding regions could affect protein regulation
through several ways pre/post-transcriptionally and translationally, such as modulation of
chromatin, RNA transcription, translation and stability. For all this evidence, we performed
deep resequencing of nine genes selected from the most strongly associated with insulin
secretion from GWAS (see Supplementary Table S1), to confirm the genes’ roles and to
extend our knowledge on the T2D molecular mechanism.

Considering all variants together, collapsed by function or position in the nine genes,
the presence of nonsense variants is associated significantly with a reduced chance to
be in the lower quintile of the disposition index (i.e., the quintile with the most reduced
insulin secretion adjusted for insulin resistance). Carriers of nonsense variants in this
dataset showed on average a 75% reduced probability to be in the worst quintile of insulin
secretion, ranging from 45% to 90%. To explain this association of the nonsense variants
with a protective role, we could hypothesize that those nonfunctional forms of these
proteins could interfere with molecular feedback pathways responsible for the processing
of insulin secretion. For example, reducing the expected increase in insulin secretion was
secondary to the rise in insulin resistance. This may result in the lowering of DI and
possibly slowing down diabetes progression. However, we cannot exclude additional
mechanisms, such as enhancing or blocking secondary effectors of insulin secretion or
signaling or positive/negative feedback pathways.

Analyzing data individually, three variants in the GCK, ARAP1 and IGF2BP2 genes
were significantly associated with DI. Evaluating these three variants in a single predictive
model, the variant in GCK lost significance. Thus, its contribution to the association was
dropped. The remaining associated variants were chr3:185363420 A > G in IGF2BP2 and
chr11:72422158 A > C, in ARAP1. Both were novel variants not previously reported.

3.1. IGF2BP2 Variant

chr3:185363420 A > G in IGF2BP2 (NM_006548) is a variant in intron 15 (c.1708-9
A > G; g.184410 G > C), next to the start of exon 16/16. It is located two nucleotides apart
from a rare known variant (rs1199891239 c.1708-7 G > C) laying in a splice site. IGF2BP2
binds and modulates insulin growth factor 2 (IGF2) 5’-UTR mRNA, affecting its localization,
translation and stability. Moreover, it modulates the rate and site of translation of target
transcripts and protects them from endonucleases or microRNA-mediated degradation [39].
IGF2BP2 is highly expressed in pancreatic islets, but its contribution to diabetes is unclear.
Animal models show that it is implicated in regulating growth and metabolism. The null
model results in dwarf mice resistant to obesity and fatty liver if subjected to a high-fat diet
(HFD). Results in tissue-specific knockout models are divergent. IGF2BP2 knockout in β-
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cells showed reduced fasting insulin, c-peptide levels and lower glucose-stimulated insulin
secretion in animals fed an HFD. KO IGF2BP2 hepatocytes mice showed high resistance
to fatty liver in HFD. They also show reduced fat mass and lipid oxidation. In a mouse
model where IGF2BP2 was instead upregulated in the liver by the transgene, lipid storage
was enhanced, which led to fibrosis and NAFLD [40–42]. Of note, the insulin (INS) gene is
located near the IGF2 gene, and the INS-IGF2 readthrough transcript (INSIGF) has been
observed. It aligns the INS gene in the 5’ region to the IGF2 gene in the 3’ region. INSIGF
expression was found in the placenta, liver, pancreas, fat, ovary and endothelial tissues,
the tissues most strongly implicated in regulating metabolism. It has been speculated
that IGF2BP2 could bind the INSIGF transcript with the same domain utilized with IGF2,
also fine modulating insulin expression and consequently insulin receptor activity, thus
ameliorating DI [43].

Given this scenario, we can speculate that this could be a splicing variant likely
impairing IGF2BP2 protein function. Thus, our results are in line with previous studies,
which demonstrated that IGF2BP2 deletion in mice improves glucose tolerance and insulin
sensitivity and protects mice from diet-induced obesity and fatty liver [44]. Finally, IGF2BP2
also contributes to obesity and T2D through its regulation of IGF2, which participates in
the pathogenesis of these diseases [45].

3.2. ARAP1 Variant

The variant in ARAP1 (NM_001040118), chr11:72422158 A > C is a missense, Val 374
Gly (V374G). Several prediction tools (such as SIFT, PolyPhen2, MutPred, FATHMM and
PROVEAN) suggest that V374G is deleterious or probably damaging for protein function.
For example, PolyPhen-2 analysis of V374G results as probably damaging with a score
of 0.971 (sensitivity: 0.77; specificity: 0.96). ARAP1 phosphorylates a large family of
GTPases, which modulate actin and cytoskeleton through ARF and RHO proteins. It is
wildly expressed and involved in the Golgi apparatus, molecular trafficking and cellular
membrane function. ARAP1 is activated by (3, 4, 5) trisphosphate (PIP3) and 3.4 PI (PIP2)
with less efficiency. PIP3 is a secondary signaling lipid generated by insulin signaling.
It has been reported in the drosophila cell model that deleting a negative regulator for
PIP3 (phosphatidylinositol 5 phosphate 4-kinase (PIP4K)) causes an increase in PIP3 levels,
with enhanced insulin sensitivity [46]. Additionally, overexpression of ARAP1 mRNA in
the human pancreatic cell, due to a common functional variant (rs11603334; MAF in non-
Finnish EU: 16%) in the promotor, was associated with decreased production of proinsulin
and an increase in T2D risk [47]. Contrariwise, a proinsulin-raising variant was associated
with lower fasting glucose (0.019 mg/dL per allele; p = 1.7 × 10−4), lower A1C (0.023%;
p = 0.02), improved β-cell function (p = 1.1 × 10−5) and a lower risk of T2D (OR = 0.88;
p = 7.8 × 10−6) [48]. Furthermore, ARAP1 regulates the ARF family of GTPases, which
control several key cellular processes, including membrane trafficking such as secretion or
endocytosis, ciliogenesis, lipid metabolism, energy balance, motility, division, apoptosis
and transcriptional regulation [49]. Among the ARF family, ARAP1 strongly interacts with
ARF6, which is a known modulator of insulin secretion [50–53]. Thus, as ARAP1 is involved
in the Golgi apparatus, molecular trafficking and cellular membrane, its contribution to
insulin secretion can be postulated by its ability to affect insulin storage in vesicles, their
movement, membrane binding and release. A nonfunctional ARAP1 protein may lead to
a decrease in glucose-stimulated insulin secretion, possibly via ARF6. Overall, our data
are in line with Kulzer and Strawbridge’s results, where higher levels of ARAP1 mRNA
are associated with an increased risk of T2D and decreased proinsulin release, while the
reduction in ARAP1 levels or function ameliorates β-cell function and T2D risk.

3.3. Post hoc Analysis

In our results, unexpectedly, the ARP1 and IGF2BP2 variants protectively influence
DI. Analysis showed an increased probability for carriers to be in the highest quintile of
insulin secretion adjusted for insulin sensitivity. This condition is also confirmed by the
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high number of carriers presenting with normal glucose tolerance. Our post hoc analysis
displayed a significant association between normal glucose metabolism and the variants
in a genetic risk model (see Supplementary Table S2). Specifically, carriers of any variant
present in the genetic risk model are significantly associated (p = 0.02) with a 2.4-fold (95%
CI = 1.14–5.12) higher probability to be normoglycemic (NGT).

3.4. Novelties and Limits

As limits, our study samples allow us to detect only ORs of relative medium magnitude
(1.7–2.6 depending on MAF). Thus, we could have missed some variants that exert weaker
effects or that become significant only in very large datasets. However, as suggested
by Nejentsev et al., in complex diseases, such as T2D, there may be no low-frequency
variants, or very few, with very strong effects (e.g., allele OR >3). Even if such variants have
large impacts on a certain molecule’s function, it is possible that in complex multifactorial
diseases, such a molecule and its biological pathway are just one of many contributing to
the pathogenesis. Nevertheless, the discovery of such rare variants using high-throughput
sequencing will help to identify disease genes in the loci found by GWAS in various
complex diseases. [54].

Results from published GWAS and metadata studies need to be assessed in specific
and real-life populations to generalize findings in gene function and ethnicity. The novelties
of this study are the targeted resequencing searching for associated variants, especially rare
or low frequencies, harbored in genes identified by GWAS [22,23] in a Central Italy cohort,
and the study design, exploring the extremes of a trait (the disposition index of insulin
secretion), which allows more homogeneity in the study sample and enhances statistical
power. Our study shows that nonsynonymous variants in nine candidate genes are all
associated with better insulin secretion adjusted for insulin resistance. Additionally, from
the single analysis, the novel low-frequency variants chr11:72422158 A > C in ARAP1 and
chr3:185363420 A > G in IGF2BP2 showed significant association with healthier insulin
secretion, relative to insulin sensitivity, measured by DI.

4. Materials and Methods
4.1. Study Subjects

From a cohort of 2232 white Italian patients enrolled at Policlinico Umberto I Hospital
of University of Rome Sapienza, Italy, attending the outpatient clinics of Endocrinology
and Diabetology during the years 2001–2018, we selected 757 subjects from the first and
last quintiles of DI distribution for the sequencing study. Ethnicity was self-reported.
Anthropometric and clinical measurements comprising a minimum 3-point OGTT were
recorded in an anonymized database. Body mass index (BMI) was calculated as body
weight (kg) divided by height squared (m2) and was used as a marker of obesity. Glucose
tolerance status (NGT, IFG: impaired fasting glucose, IGT: impaired glucose tolerance, DM:
diabetes mellitus) was diagnosed according to ADA 2021 [2]. Plasma/serum biochemistry
(glucose, insulin, full lipid profile, transaminases, etc.) was measured in the same laboratory
with standard techniques. The disposition index (DI), as well other clinical derivative
estimates of insulin release and sensitivity, was calculated from OGTT. The insulinogenic
index (IGI30), as a measure of glucose-stimulated insulin secretion and also of β-cell
function, was calculated as (Ins30–Ins0)/(Glc30–Glc0) [55]. Insulin sensitivity (ISI) was
estimated as [56]: 10,000/(Glc0 × Ins0 × GlcMean × InsMean)1/2. DI was calculated as
the product of IGI30 and ISI for estimating insulin secretory capacity adjusted for insulin
resistance [57].

Samples to be sequenced were selected from two extremes of insulin secretion calcu-
lated by DI (1st and 5th quintiles or <20% and >80% of DI distribution) in the whole cohort
comprising more than 2000 patients. To compare genetic variants between subjects with a
better and worse DI index of insulin secretion, they were analyzed as a case–control cohort.

Study protocols and informed consent procedures were approved by the local Institu-
tional Ethics Committees (Protocol No.: 151/14, Ref.: 3070/30-01-2014), and all participants
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gave signed informed consent. The study was carried out in accordance with the Declara-
tion of Helsinki, as revised in 2000.

4.2. DNA Extraction and Sequencing

DNA extraction was carried out from white-cell peripheral blood by the standard
procedure of the salting-out method. DNA was then evaluated for quality (NanoDrop
2000 Spectrophotometers, Thermo Fisher, Waltham, MA, USA) and quantified (Qubit
Fluorometric Quantification, Thermo Fisher, Waltham, MA, USA) before processing. The
design of the gene panel, which included 9 genes (i.e., ADAMTS9 NM_182920, ADYC5
NM_183357, ARAP1 NM_001040118, CDKAL1 NM_017774, GCK NM_000162, IGF2BP2
NM_006548, JAZF1 NM_175061, NAT2 NM_000015 and KCNQ1 NM_000218), was made
with DesignStudio (Illumina) online software. GC content, specificity, probe interaction
and presence of SNPs were considered in the probes’ selection. The probe’s panel was
optimized through in silico simulation. Then, it was tested and validated in Illumina
WetLab. Each probe comprehends the sequences designed for capturing the regions of
interest, including one specific sequence to be utilized in successive genetic amplification.
NGS was made through Illumina TrusSeq Custom Amplicon (Illumina, San Diego, CA,
USA) technology in the Illumina MiSeq (cartridge V2 300c) sequencer. Probes were designed
to amplify, by 219 amplicon intermediates, the coding region, along with 100 bp flanking
on both sides of the exons, for a total of 29,685 bp. The study design provides a mean
coverage of 100× for each sample, allowing more accurate base calling, especially for
low-frequency variants. Briefly, the sequencing process started with amplification of all
exons and flanking 100 bp from selected genes via amplicon generation. They represent the
genetic libraries. Obtained libraries from all samples were purified singularly through the
magnetic beads approach. Then, they were normalized and pooled together to perform
high-throughput parallel sequencing by cluster generation and successive sequencing
by reading fluorescence. Following the runs of the libraries on a MiSeq system, data
were automatically processed using built-in and on-cloud software, such as Illumina
software BaseSpace (https://basespace.illumina.com, accessed on 20 February 2021). The
output variant call format (VCF) file was then annotated through BaseSpace, VariantStudio
(Illumina), wANNOVAR (http://wannovar.wglab.org accessed on 20 September 2021)
and Cravat (https://www.cravat.us/CRAVAT/ accessed on 20 September 2021) software.
Collected data were analyzed both with dedicated software and plug-ins made by Illumina
and free bioinformatics and biostatistics tools (SAMtools, BCFtools, VCFtools) [58]. The
variants were annotated as nonsense, missense, splicing, synonymous and UTR following
published guidelines [59]. Functional affection of the variants was investigated using
the major prediction programs available: SIFT, PolyphenII, SNP&go, Provean, Mutation
T@ster, Mutation Assessor, FATMHH and CADD were used for exonic, while ESEfinder,
GeneSplicer, and NetGene2 for intronic variants were used. This methodological approach
allowed us to assess, in transcribed regions of genes associated with insulin secretion, the
distribution of genetic variants within our southern European cohort.

MAF was obtained by assessing the gnomAD browser genome (https://gnomad.
broadinstitute.org/ accessed on 20 November 2021) and the 1000 genome database (https:
//www.internationalgenome.org/ accessed on 20 November 2021).

4.3. Variants Filtering

SNPs and insertions/deletions were identified across the targeted subset of the refer-
ence genome (hg19). We filtered all variants observed for quality and quantity of reads, as
well as information on annotated variants. Several filters were subsequently applied. First
were selected data with more than 30 reads (DP > 30) and genotype quality equal to or more
than 30 (GQX ≥ 30). Additionally, default sample and record levels filters were applied
from Illumina VCF metrics. Then, variants with genotype quality less than 99 (GQX < 99)
were filtered out to avoid most false-positive results from NGS. All passing-filter variants
were retained.

https://basespace.illumina.com
http://wannovar.wglab.org
https://www.cravat.us/CRAVAT/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.internationalgenome.org/
https://www.internationalgenome.org/


Int. J. Mol. Sci. 2022, 23, 1221 10 of 13

4.4. Statistical Analysis

Categorical variables were compared with the Chi-square test or Fisher’s exact test.
Differences between continuous variables were evaluated by two-tailed Student’s t-test
and ANOVA. For nonparametric measures, the Mann–Whitney U test was used. To control
for the effects of other confounding factors, multivariate linear and logistic regression
analyses were performed. The adequacy of the final model was assessed using the Hosmer–
Lemeshow goodness-of-fit test. Furthermore, the Nagelkerke R2 was calculated to indicate
how useful the explanatory variables in the model were in predicting DI association [60].
Variants in carriers were considered both individually and collapsed together, evaluating
the possible combined effect. In general, p < 0.05 was taken as statistically significant, except
where Bonferroni correction was applied. All statistical analyses were performed with
SPSS (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk,
NY, USA.), R and Rstudio (Rstudio Team (2020). Rstudio: Integrated Development for R.
Rstudio, PBC, Boston, MA, USA. http://www.rstudio.com/ accessed on 20 February 2021).

4.5. Power Calculation

According to Guey et al. [29], we estimated that an ascertainment sample of
757 individuals in the top and bottom quintiles of a quantitative trait (DI in our study),
assuming a disease prevalence of 0.15, gave a power >80% with a significance level
of 0.05, to detect low-frequency (1–5%) variants, with ORs ranging between 1.7 and
2.6, depending on allele frequency (from 1 to 5%), from a population of more than
2000 subjects. Power analysis was performed by the Genetic Association Study (GAS)
Power Calculator (© 2017 Jennifer Li Johnson, University of Michigan; available online:
https://csg.sph.umich.edu/abecasis/gas_power_calculator/index.html accessed on 20
November 2021).

5. Conclusions

In conclusion, nonsense variants in all nine candidate genes showed association with
better insulin secretion adjusted for insulin resistance. Furthermore, in the ARAP1 and
IGF2BP2 genes, we found two low-frequency novel variants (MAF = 1.2% and 1.9% for
IGF2BP2 and ARAP1, respectively) showing independent association with insulin secretion
adjusted for insulin sensitivity. Importantly, here, we demonstrated the association and
measured the effect of each of the newly discovered low-frequency variants, both separately
and analyzed together. Thus, in our southern European real-life cohort, we confirmed
the role of the ARAP1 and IGF2BP2 genes in modulating insulin secretion assessed with
DI. Further and deeper genetic studies are warranted to assess the presence and effects of
low-frequency variants involved in insulin secretion.
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