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Abstract

Background

Over the last three decades, hospital adapted clonal complex (CC) 17 strains of Enterococ-

cus faecium have acquired and exchanged antimicrobial resistance genes leading to the

widespread resistance to clinically important antimicrobials globally. In Australia, a high

prevalence of vancomycin resistance has been reported in E. faecium in the last decade.

Methods

In this study, we determined the phylogenetic relationship and genetic characteristics of E.

faecium collected from hospitalized patients with blood stream infections throughout Austra-

lia from 2015 to 2017 using high throughput molecular techniques.

Results

Using single nucleotide polymorphism based phylogenetic inference, three distinct clusters

of isolates were observed with additional sub-clustering. One cluster harboured mostly non-

CC17 isolates while two clusters were dominant for the vanA and vanB operons.

Conclusion

The gradual increase in dominance of the respective van operon was observed in both the

vanA and vanB dominant clusters suggesting a strain-van operon affinity. The high preva-

lence of the van operon within isolates of a particular sub-cluster was linked to an increased

number of isolates and 30-day all-cause mortality. Different dominant sub-clusters were

observed in each region of Australia. Findings from this study can be used to put future sur-

veillance data into a broader perspective including the detection of novel E. faecium strains

in Australia as well as the dissemination and evolution of each strain.
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Introduction

Enterococcus faecium is a species of Gram-positive bacterium most commonly found as a com-

mensal of the mammalian gut microbiome. However not all E. faecium strains exists solely as

commensals, with some harbouring the ability to cause invasive infections [1]. In patients with

bacteraemia, the vast majority (>90%) of enterococci identified were either E. faecalis or E.

faecium. Although E. faecalis are more often responsible for infections, it is the nosocomial E.

faecium infections that are typically resistant to multiple antimicrobial classes.

The E. faecium responsible for the majority of hospital acquired infections consists of vari-

ous sequence types (STs) related to clonal complex (CC) 17 [2]. The acquisition of vancomycin

resistance genes in CC17 is of serious concern as vancomycin is also used for the treatment of

other Gram-positive bacterial infections including methicillin-resistant Staphylococcus aureus
[3]. Of the known van genotypes conferring vancomycin resistance, the vanA, vanB and vanM
genotypes have the greatest clinical significance as they confer intermediate to high levels of

resistance and reside on genetic elements that can not only be transferred within enterococci

but to other bacteria [4–6].

To ensure antimicrobial agents provide the best treatment outcomes with minimal risk of

adverse effects, including the development of antimicrobial resistance [7], robust surveillance

of antimicrobial resistant bacteria is required. In Australia, the Australian Group on Antimi-

crobial Resistance’s (AGAR) Australian Enterococcal Sepsis Outcome Program (AESOP)

closely monitors enterococcal isolates from episodes of blood stream infection (BSI) across the

country. In the 2015, 2016 and 2017 AESOPs the percentage of E. faecium BSIs that were van-

comycin resistant was 46.5%, 50.1% and 47.0%, respectively [8–10]. Compared to the popula-

tion-weighted mean of 8.3%, 11.8% and 14.2% for nations within the European Economic

Area over the same time period [11–13], the high prevalence of vancomycin-resistant E. fae-
cium (VREFm) BSIs in Australia represents a serious public health concern [14].

To understand the high prevalence of nosocomial VREfm causing enterococcal bacteraemia

in Australia, a whole genome sequencing (WGS) bioinformatics approach was used to deter-

mine the relationship and characteristics of E. faecium isolates from the 2015, 2016 and 2017

AESOPs.

Methods

Isolates were sourced from the 2015, 2016 and 2017 AGAR AESOPs. As part of the AESOPs,

enterococcal isolates were referred to a central reference laboratory where WGS was performed

on all E. faecium isolates. Libraries for WGS were prepared with the Illumina1Nextera1 XT

DNA Library Prep Kit (Illumina, United States) according to the prescribed protocol. Sequenc-

ing was performed on either the Miseq™ or NextSeq™ platform using the 600-cycle Reagent

Kit v3 and the 300-cycle mid output Reagent Kits v2 respectively. As part of quality control,

sequence data of isolates yielding less than 40x depth and 50% coverage to the reference chro-

mosome of E. faecium Aus0004 (GenBank CP003351), were excluded from the study.

For each isolate, raw sequencing reads were cleaned using Trimmomatic V0.38 [15] before

being assembled by SPAdes V3.12.0 [16] followed by gene identification and annotation by

Prokka V1.13 [17]. Pan genome analysis was performed using Roary V3.12.0 [18] on Prokka

generated files. Virulence and resistance genes were identified using ABRicate V0.8.7 in tan-

dem with VFDB (21/01/2019) [19] and the ResFinder (21/01/2019) [20] databases respectively.

Positive identification of resistance genes and virulence factors were indicated by a minimum

sequence homology of 85% to respective database entries. Analysis of the esp virulence factor

was excluded from this study due to the limitations of the sequencing methodology in resolv-

ing repeat regions within the esp gene [21]. Functional van operons were determined by the
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presence of regulation genes (vanR and vanS) and essential genes (vanH, vanA/vanB, vanX)

within the respective vanA or vanB operon. The ST for each isolate was determined using the

scheme described by Homan et al. [22] with sequence definitions hosted on the BIGSdb

(https://pubmlst.org/software/database/bigsdb/) database [23]. Isolates with one or more

ambiguous MLST alleles were categorized as undefined and excluded from the study. The

BURST diagram describing the relationship of STs was constructed using eBURST V3 [24].

Single nucleotide polymorphisms (SNPs) were identified using Snippy V4.1.0 [25]. Removal

of recombinant DNA segments was performed on SNP alignments using ClonalFrameML

V1.11 [26]. Phylogenetic trees were constructed using the maximum likelihood method based

on the SNP alignments in RAxML V8.2.11 [27] with the GTRCAT model and bootstrap

values set at 1000. The main phylogenetic tree was constructed using all isolates with the root

placed the most distantly related isolate. The most distantly related isolate was determined by

SNP inferred phylogeny of isolates with a distantly related reference from the E. durans species

(Accession: CP012366). Clusters were determined based on distinct phylogenetic branches

observed. To enhance SNP resolution in major branches of the main phylogenetic tree, SNP

analysis was repeated on subsets of isolates labelled as clusters. Individual cluster phylogeny

was analysed using the previously described method with the root placed at the most distantly

related isolate determined by the main phylogenetic tree. Further sub-clustering was per-

formed based on distinct branches of each phylogenetic tree. The iTOL V3 [28] web service

was used to visualize the phylogenetic tree along with the metadata.

All statistical analysis were performed with the statistical package R [29]. The association

between clusters and mortality were investigated using generalised linear regression model

(GLM). Odds ratios and confidence intervals were calculated from the GLM model with p-

values� 0.05 considered significant.

No ethics approval was required

Nucleotide sequences of isolates from AGAR AESOP 2015, 2016 and 2017 have been deposited

in the sequence read archive under BioProject IDs: PRJNA562395, PRJNA562414 and

PRJNA5662407 respectively.

Results

From 1st January 2015 to 31st December 2017 1,296 E. faecium BSI isolates were collected in the

AGAR AESOPs. WGS quality control excluded 266 isolates and an additional five isolates were

excluded due to ambiguous MLST alleles (two isolates with multiple copies of an allele and

three isolates with truncated alleles). The remaining 1,025 isolates (332 in 2015, 320 in 2016

and 373 in 2017) were used in the study. The average genome size of isolates was 2,974,436bp

with a standard deviation of 269,356bp. The average number of genes per isolate was 2,789

with a standard deviation of 244.

For the 1,025 episodes of E. faecium bacteraemia, the average patients age was 64 years with

an interquartile range of 55 and 77. The male to female ratio was approximately 1.6 and when

known, the 30-day all-cause mortality was 26.2%.

E. faecium isolates were collected from all Australian states and mainland territories: New

South Wales (NSW) 352 isolates; Victoria (Vic) 301; Western Australia (WA) 140; Queensland

(Qld) 85; South Australia (SA) 77; Tasmania (Tas) 34; Australian Capital Territory (ACT) 21;

and the Northern Territory (NT) 15.

Of the 1,025 isolates, 979 were categorized into 75 previously reported STs. The remaining

46 isolates consisted of 43 new MLST profiles which were designated a ST by the MLST data-

base curator (https://pubmlst.org/efaecium/). From the BURST model (S1 Fig), 95.8% of

Genomic characteristics of E. faecium

PLOS ONE | https://doi.org/10.1371/journal.pone.0228781 February 14, 2020 3 / 15

https://pubmlst.org/software/database/bigsdb/
https://pubmlst.org/efaecium/
https://doi.org/10.1371/journal.pone.0228781


isolates (982/1025), which included 83 STs were grouped into CC17. Thirty-two STs (40 iso-

lates) were grouped into CC94 with ST94 identified as the founder. The three remaining iso-

lates were singletons and a doubleton. Overall, 11 STs (ST17, ST18, ST78, ST80, ST192, ST203,

ST262, ST555, ST796, ST1421 and ST1424) were considered as major STs (� 20 isolates) and

all belonged to CC17 (Table 1).

Of the 11 major STs, ST1421 and ST796 had the most number of isolates with 149 and

159 isolates respectively. Over the three years, the number of isolates identified as ST17 and

ST1424 increased the most per year from 17 to 60 and 5 to 45 isolates respectively. Conversely,

the number of isolates identified as ST555 and ST203 decreased the most per year from 43 to

17 and 33 to 10 isolates respectively.

From the BURST analysis, the recently reported pstS-absent STs [30] were identified in

three different branches within CC17 and were separated by at least three ST nodes. The larg-

est group of pstS-absent STs consisted of ST1421 as the founder with ST1422, ST1423, ST1478,

ST1553 and ST1558 as single locus variants (SLVs). ST1424 and ST1559 formed the second

group while the third group consisted of a single ST1545 isolate.

Sixty-one virulence factors were identified, of which nine were present in five or more

isolates. The nine predominant virulence factors identified were: cpsF (encodes cleavage and

polyadenylation specific factor); ecbA (encodes a collagen type-V binding microbial surface

component recognizing adhesive matrix molecule [MSCRAMM]); fss3 (encodes a fibrino-

gen-binding MSCRAMM); psaA (encodes pneumococcal surface adhesion A); sgrA (encodes

a LPxTG surface adhesion that binds to fibrinogen and nidogen and is commonly implicated

in biofilm formation); acm (encodes a collagen binding MSCRAMM); bsh (encodes bile salt

hydrolase), bopD (putatively encodes a sugar-binding transcriptional regulator critical for

the process of biofilm); and clpP (encodes the ClpP protease) were. The average number of

predominant virulence factors identified per isolate was 5.2. The percentage of isolates har-

bouring the nine predominant virulence factors for the eleven major STs is summarized

in S1 Table.

Twenty-six antimicrobial resistance genes were identified of which 20 were present in five

or more isolates. The 20 predominant antimicrobial resistance genes identified were: aadE, aac
(6')-aph(2''), ant(6)-Ia, aph(2'')-Ie,aph(3')-III and spc encoding aminoglycoside resistance; cat
(pC221) and cat encoding chloramphenicol resistance; tet(S), tet(L), tet(M), tet(U) encoding

tetracycline resistance; erm(A), erm(B) and erm(T) encoding macrolide, lincosamide and strep-

togramin B resistance; vanA and vanB encoding glycopeptide resistance; lnu(B) encoding linco-

samide resistance; dfrG encoding trimethoprim resistance; and msrC encoding erythromycin,

macrolide and streptogramin B resistance. The average number of predominant resistance

genes identified per isolate was 6.7. The percentage of isolates harbouring the 20 predominant

antimicrobial resistance genes for the 11 major STs is summarized in S2 Table. Vancomycin

resistance in isolates from all three years was limited to the vanA and vanB operon. Neither

vanM nor the vertically transmitted vanC operons were identified. The proportion of E. faecium
isolates harbouring the vanA operon increased throughout the study period from 17.2% in

Table 1. Eleven major sequence types (�20 isolates) identified in the Australian Group on antimicrobial resistance Australian Enterococcal Sepsis Outcome Pro-

gram 2015–2017.

ST17 ST18 ST78 ST80 ST192 ST203 ST262 ST555 ST796 ST1421 ST1424

2015 17 5 21 28 9 33 9 43 66 45 5

2016 40 4 11 40 5 20 9 31 47 52 16

2017 60 11 10 35 7 10 3 17 46 52 50

Total 117 20 42 103 21 63 21 91 159 149 71

https://doi.org/10.1371/journal.pone.0228781.t001
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2015 to 22.3% in 2017 while the proportion of isolates harbouring the vanB operon decreased

from 38.3% in 2015 to 25.2% in 2017. The geographical distribution of the proportions of van

operon was different for each state and mainland territory (Table 2).

A maximum likelihood phylogenetic tree was constructed based on 35,058 core single nucleo-

tide polymorphisms (SNPs) to determine the relatedness between isolates (Fig 1). The root of the

tree was placed at the most distantly related isolate (E31901_2017). Three major clusters were

observed. From the phylogenetic tree, the major STs 78, 192, 203, 262, 555, 796, 1421 appeared

in one cluster; while STs, 17, 18, 80 and 1424 appeared in more than one cluster (Table 3).

Of the three clusters, cluster 1 harboured the fewest isolates, having only 134 isolates (Fig

2). However in terms of STs, cluster 1 was the most diverse with 84 unique STs including the

major STs 17, 18 and 80. Cluster 1 isolates could be divided into two sub-clusters: 1A and 1B.

Sub-cluster 1A consisted of 30 isolates with eight STs, all members of CC17, and included the

major STs 17, 18 and 80. Sub-cluster 1B consisted of 104 isolates with 76 STs and included all

CC94 isolates, which accounted for 38.5% of isolates in the sub-cluster and, the three non-

CC94/CC17 isolates. No isolates from the major STs were identified in sub-cluster 1B.

Isolates from sub-cluster 1A harboured an average of 4.8 antimicrobial resistance genes. All

isolates in sub-cluster 1A harboured msrC and more than 80% of isolates harboured tet(L) and

Table 2. The percentage of van genotypes across Australian states and mainland territories.

ACT NSW NT Qld SA Tas Vic WA

vanA 47.6 38.6 0.0 10.6 3.9 2.9 12.6 6.4

vanB 4.8 13.1 73.3 32.9 46.8 32.4 53.8 8.6

van negative 47.6 48.3 26.7 56.5 49.4 64.7 33.6 85.0

https://doi.org/10.1371/journal.pone.0228781.t002

Fig 1. Maximum likelihood phylogenetic tree based on single nucleotide polymorphisms grouped all Enterococcus faecium
isolates into three clusters. From the outermost ring: Number of virulence factors, number of antimicrobial resistance genes not

including the van operon, type of van operon and major sequence types are highlighted as per legend.

https://doi.org/10.1371/journal.pone.0228781.g001
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Table 3. Isolate characteristics based on the three phylogenetic clusters.

Cluster Sub-

cluster

n Major STs1 30-day all-cause

mortality2 (%)

Mortality odds ratio

(95% CI)

Average antimicrobial

resistance genes (n)

Average virulence

factors (n)

1 A 30 ST17, ST18 and ST80 23.1 1.9 (0.6–5.7) 4.8 5.2

B 104 - 13.6 ref 1.6 4.0

2 A 54 ST17, ST18 and ST262 24.5 2.1 (0.8–5.2) 4.7 5.2

B 85 ST80, ST1421 and ST1424 32.5 3.1 (1.4–7.0) 5.3 5.7

C 222 ST17, ST1421 and ST1424 33.0 3.1 (1.6–6.6) 6.9 7.7

3 A 73 ST17, ST80, ST192, ST203

and ST1424

24.3 2.0 (0.9–4.8) 5.2 7.5

B 69 ST17, ST80 and ST192 23.9 2.0 (0.9–4.8) 4.0 7.7

C 71 ST203 17.2 1.3 (0.5–3.3) 5.7 7.4

D 18 ST18 43.8 4.9 (1.5–16.2) 5.8 6.8

E 86 ST17 and ST555 25.3 2.2 (1.0–5.0) 5.4 6.9

F 214 ST78, ST80, ST203, ST555

and ST796

26.6 2.3 (1.2–4.9) 5.6 6.9

1 STs with 20 or more isolates
2 where the patient 30-day all-cause mortality was known

https://doi.org/10.1371/journal.pone.0228781.t003

Fig 2. Maximum likelihood phylogenetic tree of cluster 1 isolates. From the outermost ring: Number of virulence factors, number

of resistance genes not including the van operon, type of van operon and sequence types are highlighted as per legend.

https://doi.org/10.1371/journal.pone.0228781.g002

Genomic characteristics of E. faecium

PLOS ONE | https://doi.org/10.1371/journal.pone.0228781 February 14, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0228781.t003
https://doi.org/10.1371/journal.pone.0228781.g002
https://doi.org/10.1371/journal.pone.0228781


dfrG. No isolate in sub-cluster 1A harboured the aadE, cat(pC221) or tet(S) antimicrobial

resistance genes. The vanA and vanB operon was identified in 6.7% and 10.0% of isolates

respectively. No isolate harboured both van operons. Sub-cluster 1A isolates harboured an

average of 5.2 virulence factors. All isolates in sub-cluster 1A harboured the acm, bsh and clpP
and more than 80% harboured bopD and sgrA. No isolates in sub-cluster 1A harboured the

cpsF virulence factor. When known, the 30-day all-cause mortality of patients with sub-cluster

1A isolates was 23.1%. When compared to sub-cluster 1B, which had the lowest mortality of all

sub-clusters at 13.6%, the odds ratio for mortality was calculated at 1.9 (CI: 0.6–5.7). The dif-

ference in 30-day all-cause mortality between sub-clusters 1A and 1B was not significant

(p = 0.25).

Isolates from sub-cluster 1B harboured an average of 1.6 antimicrobial resistance genes.

More than 80% of isolates harboured msrC. No isolates in sub-cluster 1B harboured the vanA,

vanB, ant(6)-la, aph(2”)-le and tet(S) resistance genes. Sub-cluster 1B isolates harboured an

average of 4.0 virulence factors. All isolates harboured bopD and clpP, and more than 80% har-

boured bsh. None of the isolates in sub-cluster 1B harboured the psaA virulence factor.

Cluster 2 consisted of 361 isolates with 22 STs, all part of CC17, and included five major

STs: 18, 262, 80, 1424, 1421 (Fig 3). Cluster 2 isolates could be divided into three sub-clusters:

2A, 2B and 2C. Sub-cluster 2A, consisted of 54 isolates with six STs including the major STs

17, 18 and 262. Isolates from sub-cluster 2A were collected from all Australian regions except

the ACT. Sub-cluster 2B, consisted of 85 isolates with 12 STs including major STs 1421, 1424

and 80. Isolates from sub-cluster 2B were collected from across Australia. Sub-cluster 2C, con-

sisted of 222 isolates with eight STs including major STs 17, 1421 and 1424. Isolates from sub-

cluster 2C were only collected from NSW, Vic, SA and the ACT.

Fig 3. Maximum likelihood phylogenetic tree of cluster 2 isolates. From the outermost ring: Number of virulence factors, number

of resistance genes not including the van operon, type of van operon and sequence types are highlighted as per legend.

https://doi.org/10.1371/journal.pone.0228781.g003
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Isolates from sub-cluster 2A harboured an average of 4.7 antimicrobial resistance genes.

All isolates in sub-cluster 2A harboured msrC and more than 80% of isolates harboured dfrG.

No isolate in sub-cluster 1A harboured aph(2”)-le, erm(A), tet(S) or spc. The vanA and vanB

operon was identified in 1.9% and 16.7% of isolates respectively. Sub-cluster 2A isolates har-

boured an average of 5.2 virulence factors. All isolates in sub-cluster 2A harboured acm, bopD,

bsh and clpP. None of the remaining predominant virulence factors were identified in more

than 80% of isolates. No isolate in sub-cluster 2A harboured cpsF. When known, the 30-day

all-cause mortality of patients with 2A isolates was 24.5%. Compared to sub-cluster 1B isolates

the odds ratio for mortality was calculated at 2.1(CI: 0.5–5.2). The difference in 30-day all-

cause mortality between sub-clusters 2A and 1B was not significant (p = 0.12).

Isolates from sub-cluster 2B harboured an average of 5.3 antimicrobial resistance genes. All

isolates in sub-cluster 2B harboured msrC and more than 80% of isolates harboured dfrG. No

isolates in sub-cluster 2B harboured aph(2”)-le or cat. The vanA and vanB operon was identi-

fied in 28.2% and 14.1% of isolates respectively. Sub-cluster 2B isolates harboured an average

of 5.7 virulence factors. All isolates in sub-cluster 2B harboured bopD and clpP and more than

80% of isolates harboured acm, bsh and sgrA. No isolates in sub-cluster 2B harboured the cpsF
virulence factor. When known, the 30-day all-cause mortality of patients with sub-cluster 2B

isolates was 32.5%. Compared to sub-cluster 1B isolates the odds ratio for mortality was calcu-

lated at 3.1 (CI: 1.4–7.0). The difference in 30-day all-cause mortality between sub-clusters 2B

and 1B was significant (p = 0.005).

Isolates from sub-cluster 2C harboured an average of 6.9 antimicrobial resistance genes.

More than 80% of isolates harboured dfrG, erm(A), erm(B), msrC, spc and aph(3’)-III. No

isolates in sub-cluster 2C harboured aadE, ant(6)-la, aph(2”)-le, cat(p221), cat, lnu(B) or tet(S).

The vanA and vanB operon was identified in 68.0% and 0.9% of isolates respectively. Sub-clus-

ter 2C isolates harboured an average of 7.7 virulence factors. All isolates in sub-cluster 2C har-

boured acm, bopD and clpP and more than 80% of isolates harboured bsh, ecbA, fss3, psaA
and sgrA. No isolates in sub-cluster 2A harboured the cpsF virulence factor. When known,

the 30-day all-cause mortality of patients with sub-cluster 2C isolates was 33.0%. Compared

to sub-cluster 1B isolates the odds ratio for mortality was calculated at 3.1 (CI: 1.6–6.6).

The difference in 30-day all-cause mortality between sub-clusters 2C and 1B was significant

(p = 0.001).

Cluster three was the largest cluster consisting of 530 isolates with 20 STs (Fig 4). All STs

identified in cluster 3 were part of CC17 and included the major STs 17, 78, 80, 203, 555, 796,

1424, 1421. Cluster 3 isolates could be divided into six sub-clusters: 3A to 3F. Sub-cluster 3A,

consisted of 73 isolates with six STs including the major STs 17, 80, 192, 203 and 1424. Isolates

from sub-cluster 3A were collected from all Australian regions except SA, ACT and NT. Sub-

cluster 3B, consisted of 69 isolates with three STs including the major STs 17, 80 and 192. Iso-

lates from sub-cluster 3B were collected from all Australian regions except NSW, Vic and

ACT. Sub-cluster 3C, consisted of 71 isolates with seven STs including the major ST ST203.

Isolates from sub-cluster 3C were collected from all Australian regions except the NT. Sub-

cluster 3D, consisted of 18 isolates with four STs including the major STs 18 and 80. Isolates

from sub-cluster 3D were collected from all Australian regions except the NT and ACT. Sub-

cluster 3E, consisted of 86 isolates, with two major STs 17 and 555. Isolates from sub-cluster

3E were collected from all Australian regions except the ACT, Qld and Vic. Sub-cluster 3F,

consisted of 214 isolates, with eight STs including the major STs 78, 80, 203, 555 and 796. Iso-

lates from sub-cluster 3F were collected from all Australian regions except the ACT.

Isolates from sub-cluster 3A harboured an average of 5.2 antimicrobial resistance genes. All

isolates in sub-cluster 3A harboured msrC and more than 80% of isolates harboured ant(6)-IA,

aph(3”)-III and erm(B). No isolates in sub-cluster 3A harboured aadE, aph(2”)-le, cat(p221),
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cat, erm(A) or spc. The vanA and vanB operon was identified in 19.2% and 15.1% of isolates

respectively. Sub-cluster 3A isolates harboured an average of 7.5 virulence factors. All isolates

in sub-cluster 3A harboured acm, bopD and fss3 and more than 80% of isolates harboured bsh,

clpP, psaA and sgrA. No isolates in sub-cluster 3A harboured the cpsF virulence factor. When

known, the 30-day all-cause mortality of patients with sub-cluster 3A isolates was 24.3%. Com-

pared to sub-cluster 1B isolates the odds ratio for mortality was calculated at 2.0 (CI: 0.9–4.8).

The difference in 30-day all-cause mortality between sub-clusters 3A and 1B was not signifi-

cant (p = 0.10).

Isolates from sub-cluster 3B harboured an average of 4.0 antimicrobial resistance genes. All

isolates in sub-cluster 3B harboured msrC and more than 80% of isolates harboured aph(3’)-III
and erm(B). No isolate in sub-cluster 3B harboured aadE, aph(2”)-Ie, cat(p221), cat, erm(A),

erm(T), spc or tet(L). The vanA and vanB operon was identified in 11.2% and 2.9% of isolates

respectively. Sub-cluster 3B isolates harboured an average of 7.7 virulence factors. All isolates

in sub-cluster 3B harboured acm, bopD and clpP and more than 80% of isolates harboured bsh,

fss3, psaA and sgrA. No isolates in sub-cluster 3B harboured the cpsF virulence factor. When

known, the 30-day all-cause mortality of patients with sub-cluster 3B isolates was 23.9%. Com-

pared to sub-cluster 1B isolates the odds ratio for mortality was calculated at 2.0 (CI: 0.9–4.8).

The difference in 30-day all-cause mortality between sub-clusters 3B and 1B was not signifi-

cant (p = 0.11).

Isolates from sub-cluster 3C harboured an average of 5.7 antimicrobial resistance genes.

All isolates in sub-cluster 3C harboured msrC and more than 80% of isolates harboured erm
(B) and tet(M). No isolates in sub-cluster 3C harboured aadE, aph(2”)-le, cat, erm(A), erm(T),

Fig 4. Maximum likelihood phylogenetic tree of isolates in cluster 3. From the outermost ring: Number of virulence factors,

number of resistance genes not including the van operon, type of van operon and sequence types are highlighted as per legend.

https://doi.org/10.1371/journal.pone.0228781.g004
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spc, tet(L) or tet(S). The vanA and vanB operon was identified in 12.9% and 47.1% of isolates

respectively. Sub-cluster 3C isolates harboured an average of 7.4 virulence factors. All isolates

in sub-cluster 3C harboured acm, bsh and clpP and more than 80% of isolates harboured

bopD, fss3, psaA and sgrA. No isolate in sub-cluster 3B harboured the cpsF virulence factor.

When known, the 30-day all-cause mortality of patients with sub-cluster 3C isolates was

17.2%. Compared to sub-cluster 1B isolates the odds ratio for mortality was calculated at 1.3

(CI: 0.5–3.3). The difference in 30-day all-cause mortality between sub-clusters 3C and 1B was

not significant (p = 0.55).

Isolates from sub-cluster 3D harboured an average of 5.8 antimicrobial resistance genes. All

isolates in sub-cluster 3D harboured msrC and more than 80% of isolates harboured ant(6)-Ia,

aph(3”)-III and erm(B). No isolates in sub-cluster 3D harboured aadE, aph(2”)-Ie, cat(pC221),
erm(A), lnu(B), spc or tet(S). The vanA and vanB operon was identified in 5.6% and 11.1% of

isolates respectively. Sub-cluster 3D isolates harboured an average of 6.8 virulence factors. All

isolates in sub-cluster 3D harboured acm, bopD and clpP and more than 80% of isolates har-

boured bsh, psaA and sgrA. No isolates in sub-cluster 3D harboured the cpsF virulence factor.

When known, the 30-day all-cause mortality of patients with 3D isolates was 43.8%. Compared

to sub-cluster 1B isolates the odds ratio for mortality was calculated at 4.9 (CI: 1.5–16.2).

The difference in 30-day all-cause mortality between sub-clusters 3D and 1B was significant

(p = 0.008).

Isolates from sub-cluster 3E harboured an average of 5.4 antimicrobial resistance genes. All

isolates in sub-cluster 3E harboured msrC and more than 80% of isolates harboured dfrG and

erm(B). No isolates in sub-cluster 3E harboured aadE, aph(2”)-Ie, cat(pC221), cat, vanA or tet
(S). The vanB operon was identified in 48.8% of isolates. The vanA operon was not identified

in sub-cluster 3E. Sub-cluster 3E isolates harboured an average of 6.9 virulence factors. All iso-

lates in sub-cluster 3E harboured bopD, bsh, clpP and fss3 and more than 80% of isolates har-

boured acm, psaA and sgrA. No isolates in sub-cluster 3E harboured the cpsF or ecbA virulence

factors. When known, the 30-day all-cause mortality of patients with sub-cluster 3E isolates

was 25.3%. Compared to sub-cluster 1B isolates the odds ratio for mortality was calculated at

2.2(CI: 1.0–5.0). The difference in 30-day all-cause mortality between sub-clusters 3E and 1B

was not significant (p = 0.06).

Isolates from sub-cluster 3F harboured an average of 5.6 antimicrobial resistance genes. All

isolates in sub-cluster 3F harboured msrC and more than 80% of isolates harboured dfrG, erm
(B) and vanB. No isolates in sub-cluster 3F harboured the aadE resistance gene. The vanA and

vanB operon was identified in 0.9 and 92.1% of isolates respectively. Sub-cluster 3F isolates har-

boured an average of 6.9 virulence factors. All isolates in sub-cluster 3F harboured bsh and clpP
and more than 80% of isolates harboured acm, bopD, fss3, psaA and sgrA. When known, the

30-day all-cause mortality of patients with sub-cluster 3F isolates was 26.6%. Compared to sub-

cluster 1B isolates the odds ratio for mortality was calculated at 2.3(CI: 1.2–4.9). The difference

in 30-day all-cause mortality between sub-clusters 3F and 1B was significant (p = 0.02).

Geographically, the distribution of van genes and sequence types varied. In NSW, 38.6%

and 13.1% of isolates harboured the vanA and vanB operon respectively. An additional isolate

harboured both vanA and vanB operons. The most frequent ST amongst the NSW isolates was

ST1421 accounting for 32.4% of isolates. Overall, 54% of isolates from NSW were identified in

sub-cluster 2C.

In Vic, 12.6% and 53.8% of isolates harboured the vanA and vanB operon respectively.

An additional five isolates harboured both the vanA and vanB operons. Except for a pair of

closely related ST80 isolates, isolates harbouring both operons were from different STs and

unrelated phylogenetically. The most frequent ST amongst the Vic isolates was ST796 account-

ing for 44.5% of isolates. Overall, 47.2% of isolates from Vic were identified in sub-cluster 3D.
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In Qld, 10.6% and 32.9% of isolates harboured the vanA and vanB operon respectively. The

most frequent ST amongst the Qld isolates was ST17 accounting for 29.4% of isolates. Overall,

23.5% and 22.4% of isolates from Qld were identified in sub-cluster 3A and 3F respectively.

In WA, only 6.4% and 8.6% of isolates harboured the vanA and vanB operon respectively.

The most frequent ST amongst the WA isolates was ST17 accounting for 35% of isolates. Over-

all, 40.0% of isolates from WA were identified in sub-cluster 3B.

In SA, 3.9% and 46.8% of isolates harboured the vanA and vanB operon respectively. The

most frequent ST amongst the SA isolates was ST555 accounting for 45.5% of isolates. Overall,

45.5% of isolates from SA were identified in sub-cluster 3E.

In Tas, 2.9% and 32.4% of isolates harboured the vanA and vanB operon respectively. The

most frequent ST amongst the Tas isolates was ST796 accounting for 29.4% of isolates. Overall,

23.5% of isolates from Tas were identified in sub-cluster 3B.

In the NT, 73.3% of isolates harboured the vanB operon. The most frequent ST amongst the

NT isolates was ST555 accounting for 66.7% of isolates. Overall, 66.7% of isolates from NT

were identified in sub-cluster 3E.

In the ACT, 47.6% and 4.8% of isolates harboured the vanA and vanB operon respectively.

The most frequent ST amongst the ACT isolates was ST1421 accounting for 57.1% of isolates.

Overall, 61.9% of isolates from ACT were identified in sub-cluster 2C.

Discussion

In 2011, 36.5% of Australian E. faecium bacteraemia isolates were identified as vancomycin

non-susceptible, of which 98.4% harboured the vanB operon [31]. Supported by AESOP

reports, the high prevalence of VREfm has been a growing trend in Australian hospitals over

the last decade. In this study, we employed WGS as a screening tool in the surveillance of

1,025 BSI associated E. faecium collected across Australia from 2015 to 2017. Using bioinfor-

matics, we have demonstrated E. faecium epidemiology is heterogenous across Australia

with a mixture of strains harbouring unique genetic compositions that are constantly evolv-

ing in each region. When studied on a national level, Australian E. faecium BSI isolates can

be classified into three broad molecular clusters and further divided into eleven sub-clusters.

In addition, by pairing genomic features with molecular phylogeny we have identified key

phylogenetic clusters with increased clinical significance with respect to 30-day all-cause

mortality.

Focusing on the high prevalence of VREfm in Australia, the majority of vancomycin resis-

tant isolates were associated with sub-clusters 2 and 3. Within clusters 2 and 3, sub-clusters 2C

and 3F had the highest proportion of vancomycin resistant isolates. Aside from the high van

operon carriage, sub-cluster 2C had the most number of isolates, the highest number of aver-

age antimicrobial resistance and virulence genes per isolate, and the second highest 30 day all-

cause mortality. Similarly, sub-cluster 3F, which had the second highest number of isolates,

harboured a higher than average number of antimicrobial resistance and virulence genes. Con-

versely, isolates in sub-cluster 1B had the lowest numbers of antimicrobial resistance and viru-

lence genes and the lowest 30-day all-cause mortality.

Comparing sub-clusters, we observed an increase in the number of clonal isolates, namely

ST1421 and ST796, in the two van operon dominant sub-clusters, 2C and 3F respectively. In

contrast we observed a low clonality of isolates and the absence of the van operon in sub-clus-

ter 1B. Other than a high prevalence of the van operon, we were not able to identify additional

antimicrobial resistance or virulence genes that offered sub-clusters 2C and 3F an advantage

over the other sub-clusters. A significant difference in the 30-day all-cause mortality was

observed in the four predominant VREfm sub-clusters (2B, 2C, 3D and 3F) compared to sub-
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cluster 1B. The findings suggests the presence of van operons contribute to the success of the

clone and the increased 30-day all-cause mortality observed.

In sub-clusters 2C and 3F, we observed a dominance of the vanA operon and vanB operon

respectively. However, the dominance of a particular van operon was not observed throughout

a cluster. From the phylogenetic tree of clusters 2 and 3, basal isolates in sub-clusters 2A and

3A predominantly harboured a mixture of van operon type. With the exception of sub-cluster

3B, when moving further from the root in clusters 2 and 3, a gradual and sequential increase in

the prevalence of a particular van operons was observed suggesting an increasing affinity

between isolates and the dominant van operon type for that cluster.

Over the three-year study period, we observed a decrease in the proportion of isolates har-

bouring the vanB operon but an increase in isolates harbouring the vanA operon. The result,

coupled with the 2011 report identifying a 98.4% prevalence in vanB type VREfm[32], indi-

cates a shift in trend towards vanA VREfm in Australia.

Although E. faecium isolates were collected from every region in Australia, limitations of

this study include the difference in the number of participating laboratories and population

demographics in each region. Additionally, frequent patient transfers between NT and SA,

Tas and Vic, and the ACT and NSW, has resulted in major cross regional movement of

patients. Therefore, in this study, we are unable to make accurate observations comparing the

regional distribution of isolates across Australia. However, for most regions, we did observe

specific region-dominant sub-clusters accounting for at least 45% of isolates. Additionally, we

observed isolates from cluster 2C were collected in the fewest locations (NSW, Vic, SA and

ACT) suggesting a more confined geographical distribution. A further limitation of the study

was the clinical data of the patients was not available and therefore could not be analysed.

In our study, we observed several discrepancies between the relationship of STs described

by the BURST diagram compared to SNP based molecular phylogeny. For example, isolates

in sub-cluster 2C typed as ST1421 and ST1424 and isolates in sub-cluster 3F typed as ST203

and ST796 were observed to be distantly related by BURST but closely related by SNP phy-

logeny. SNP inferred isolate relationship offers a much higher resolution. As such, the use

of BURST modelling may not be accurate in depicting relationships between E. faecium
strains.

In conclusion, our study has shown E. faecium isolates from 2015 to 2017 causing BSI in

Australia could be classified into three phylogenetic clusters. Moreover, each cluster can be

characterized by a dominant van operon (or the lack of one) which we have shown to be key

in the dissemination of isolates. Our findings also show, unlike in 2011 when VREfm in Aus-

tralia was primarily due to the vanB operon, the presence of a highly successful vanA dominant

strain identified in sub-cluster 2C have resulted in the co-dominance of vanA and vanB

VREfm in Australia. Our analysis has highlighted clinically important strains of E. faecium in

sub-cluster 2C and 3F which should be closely monitored in future surveillance. With the phy-

logeny of VREfm in Australia established in this study, future surveillance can now identify

the introduction or emergence of new E. faecium strains with a much higher resolution com-

pared to MLST. Additionally, with regular timely monitoring, individual hospitals can use the

detection of clinically important VREfm strains, such as those identified in sub-cluster 2C and

3F as early warnings of potential outbreaks and therefore appropriate infection control proce-

dures could be commenced earlier than previously. As E. faecium is an emerging nosocomial

pathogen with extended antibiotic resistance, an online resource offering rapid typing and

phylogenetic relatedness linked to antibiotic resistance genes and clinical data would be very

useful [33]. Further studies of the van operon and genes associated with the operon will con-

tribute to our understanding of the evolution of enterococci in the hospital environment and

assist in the implementation of successful control strategies.
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