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Microplastics (MPs), small pieces of plastic (~5 mm), are released into the

environment not only as a result of the decomposition of large-sized

plastics but also from day-to-day use of plastic products. Chronic exposure

toMPs has been attributed to harmful effects on aquatic organisms and rodents.

Effects include gastrointestinal toxicity, hepatotoxicity, neurotoxicity, and

reproductive and developmental toxicities. Exposure to MPs may also

potentially affect human health. Herein, we reviewed the impact of MPs on

male and female reproductive systems and the associated mechanisms

involved in the reproductive and developmental toxicities of MPs. We

performed a literature search in Google Scholar and PubMed using the

following keywords: MPs and reproductive toxicity; MPs and developmental

studies; MPs and infertility; MPs and aquatics; and MPs and rodents. Evidence of

MPs accumulation has been reported in many organs of humans and

experimental models. The harmful effects of MPs have been manifested in

male and female reproductive systems of mammalian and aquatic animals,

including developmental effects on gametes, embryos, and their offspring. This

review describes various signaling pathways involved in MPs-associated male

and female reproductive and developmental toxicities.
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Introduction

Plastics are frequently used in day-to-day life due to their low cost, ease of handling,

transportation, production process, and widespread applications. The production of

plastics has been increasing continuously for the last 60 years. Many of these are broken

down into small plastics called microplastics (MPs) (Avio et al., 2017). Mechanical stress,

sunlight, and an oxidizing atmosphere decompose large plastics into MPs, typically 5 mm

in diameter. Numerous samples from the environment, including rivers, Antarctic snow,

and biogas plants, have been collected to identify various types of MPs such as

polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyethylene
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terephthalate (PT) (Dumichen et al., 2017; Aves et al., 2022). The

generation of MPs is not only limited to their degradative by-

products but also emerged from clothingmicrofibres (Hernandez

et al., 2017; Galvao et al., 2020), indoor dust (Zhang et al., 2020),

cosmetics (facial scrubs) (Napper et al., 2015), tap water (Tong

et al., 2020), and seafood (MPs accumulation) (Leung et al.,

2021).

MPs affect the normal functioning of the organisms and may

cause several organ-specific toxicities such as neuronal, digestive,

reproductive, and developmental toxicity (Yin et al., 2021).

Compromised sperm quality in men and infertility problems

in women have been reported among plastic industry workers.

(Jelnes, 1988; Hougaard et al., 2009). Indeed, micro- and nano-

particles of plastics may pose more risk to the reproductive

system. Various studies have been conducted on animals in

order to understand the effect of MPs on male and female

fertility (Hou B. et al., 2021; Haddadi et al., 2022; Wei et al.,

2022). Moreover, MPs may also affect the growth of offspring

when the mother is exposed for a longer duration, suggesting the

detrimental effects of MPs on development and growth (Luo

et al., 2019; Wang et al., 2019; Hu et al., 2021). Therefore, further

research studies are required to understand the in-depth

biological effects of MPs on the reproductive and

development process, as they can affect future generations.

Reproductive toxic effects of MPs
exposure

Reproductive toxicity is defined as exposure to any substance

that interferes with the normal functioning of male and female

reproductive organs, causing the loss of fertility (United Nations

Economic Commission for Europe (UNECE), 2011). Continuous

exposure to environmental toxicants and pollutants such as MPs

can compromise the fertility of males and females (Wei et al.,

2022). It has been reported that MPs induce reproductive toxicity

FIGURE 1
Schematic diagram showing microplastics affecting male and female reproductive functions: Microplastics affecting male reproductive
functions via the activation of different signaling pathways, Akt/mTOR, apoptosis, MAPK, and inhibition of cAMP/PK3 that results in increased
oxidative stress, BTB disruption, and spermatogenesis dysfunction and decrease in steroidogenic enzymes and LHR downregulation. Microplastics
affecting the female reproductive functions altered by the activation of NLRP3, TLR4/NOX2, and TGF-β/fibrogenesis that results in increased
oxidative stress, endometrial thinning, collagen deposition, inflammatory markers, and pyroptosis and apoptosis of granulosa cells while ovarian
reserve, growing follicles, granulosa cells capacity, and anti-müllerian hormone levels are decreased. Abbreviations: cAMP, cyclic adenosine
monophosphate; AKT, Ak strain transforming; BTB, blood–testes barrier; LHR, luteinizing hormone receptor; MAPK, mitogen-activated protein
kinase; mTOR, mammalian target of rapamycin; NOX-2, NADPHoxidase-2; NLRP3, nod-like receptor family pyrin domain containing 3; PKA, protein
kinase A; StAR, steroidogenic acute regulatory protein; TGF-β, transforming growth factor-β; TLR4, toll-like receptor-4.
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in various organisms, including rodents (An et al., 2021; Hou B.

et al., 2021) and aquatic species such as oysters (Sussarellu et al.,

2016), cladocerans (Jaikumar et al., 2019), Caenorhabditis elegans

(Chen et al., 2022), and zebrafish (Danio rerio) (Qiang and

Cheng, 2021). In this section, we have covered the effect of

MPs on structural, functional, and hormonal changes in male

and female reproductive organs (Figure 1).

MPs-induced male reproductive toxicity

MPs-induced reproductive dysfunctions have been

observed in the aquatic species, which is attributed to the

MPs accumulation in reproductive tissues (Issac and

Kandasubramanian, 2021; Qiang and Cheng, 2021; Cormier

et al., 2022; Liu Y. et al., 2022). Toxicity evaluation of PE-MPs

(<400 µm) in freshwater hydra at concentrations of 0.01, 0.02,

0.04, and 0.08 g/ml for 3–96 h have reported morphological

(clubbed and disintegrated tentacles) and reproductive

(hydranth numbers) changes; however, these changes are

non-lethal (Murphy and Quinn, 2018). Furthermore, Qiang

et al. have investigated the testicular toxicity of PS-MPs in

zebrafish, and exposure to 100 and 1,000 μg/L of MPs has

shown increased testicular apoptosis (Qiang and Cheng,

2021). Moreover, the effect of MPs on testis has not been

limited to zebrafish but has also gained attention in other

organisms. Earthworms (Eisenia andrei) exposed to nano-

plastics (>100 nm) for 21 days have been shown to reduce

male reproductive functions and deformities in sperm cells,

such as reduced mature bundle, damaged plasma membranes,

and reduced density of sperm and viability of coelomocytes

(Kwak and An, 2021). In addition, chronic exposure to PS-

MPs (10 µm) for 28 days exhibits a significant decrease in

testosterone, spermatogenic cells, and disrupted blood–testis

barrier (BTB) integrity in Balb/c mice (Jin et al., 2021). Some

dose-response studies have been performed to evaluate the

effects of MPs on the male reproductive organs (Park et al.,

2020; Ijaz et al., 2021). PS-MPs have been assessed at the

concentration of 2, 20, 200, and 2,000 μg/L in SD rats, and the

lowest observed adverse effect level (LOAEL) showed at a dose

of 20 μg/L, while the highest concentration (2,000 μg/L) has

been reported maximum toxicity (Ijaz et al., 2021).

Furthermore, at the highest concentration, PS-MPs have

been reported to decrease sperm counts, motility, and

viability and also reduce the follicle-stimulating hormone

(FSH), luteinizing hormone (LH), and testicular and

plasma testosterone levels (Ijaz et al., 2021). MPs (4 and

10 µm) exposure to male Balb/c mice for 28 days have

disrupted the BTB and caused testicular inflammation via

the downregulation of BTB-linked proteins (tight junction

protein zonula occludens-1, occludin, basal ectoplasmic

specializations (ES) protein, N-cadherin and β-catenin, and
gap junction protein CX43) in the testis (Wei et al., 2021).

The steroidogenic enzymes P450scc, P450c17, 3β-HSD, and

17β-HSD are involved in testosterone synthesis in Leydig’s cells

(Sun et al., 2019). Jin et al. reported that administration of

100 and 1,000 μg/L of PS-MPs (0.5, 4, and 10 μm) in mice

with drinking water for 180 days had shown a significant

decrease in steroidogenic enzymes and steroidogenic acute

regulatory protein (StAR) levels (Jin et al., 2022). MPs may

also cause morphological changes in sperm, such as absent

and small head and acrosome loss (Jin et al., 2022). A

repeated oral toxicity study for 28 days in SD rats has shown

that PP-MPs induce lesions in the testis and epididymis at

25 mg/kg/day (Jin et al., 2022). A recent study has reported

that exposure to PS-MPs (1%–10% crushed PS disposable plates

for 90 days) showed a remarkable decrease in epididymal sperm

count, motility, and serum testosterone level in male albino

Wistar rats (Ilechukwu et al., 2022). Based on the above

mentioned findings from diverse model systems, it is

pertinent that MPs exposure adversely affects the male

reproductive system (Figure 1). However, more evidence is

required to validate the mechanism of MPs toxicity on male

fertility and reproductive health. Hence, it is suggested that future

mechanistic investigations are urgently needed to understand the

MPs-associated reproductive toxicities.

MPs-induced female reproductive toxicity

The harmful effects of MPs have not been limited to the male

reproductive system (D’Angelo and Meccariello, 2021) but have

also been shown to adversely affect the female reproductive

system (Wei et al., 2022). Although, as compared to male

reproductive studies, a limited number of studies are

conducted to evaluate the harmful effects on the female

reproductive system. MPs-associated female reproductive

toxicity has been studied in several species, including zebrafish

(Qiang and Cheng, 2021), oysters (Sussarellu et al., 2016),

zooplankton (copepods) (Cole et al., 2015), medaka fishes

(Yan et al., 2020; Li et al., 2022), mice (Liu Z. et al., 2022;

Wei et al., 2022), and rats (An et al., 2021). Here, we have

summarized the available studies on MPs exposure in female

reproductive cells/organs.

Copepods, a zooplankton species, were subjected to PS-beads

(20 μm, 75 MPs/ml) and cultured algae (250 µgCL−1) for 24 h

and have shown a significant reduction in ingestion, fecundity,

and survival rate, though no change in laying out eggs were

observed (Cole et al., 2015). PS-MPs (2 and 6 µm) exposure

(0.023 mg/L) to oysters for 2 months has reported a decrease in

diameter and number of oocytes (Sussarellu et al., 2016). The

combined effect of MPs with heavy metals in medaka fishes

(Oryzias melastigma) has been shown to perturb similar changes

such as irregular oocytes, partly adhesion, and empty follicle in

the ovaries of female medaka (Yan et al., 2020). Moreover, PS-

MPs (5 µm) exposure (0.1 mg/day) for 24–26 days by oral gavage
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has perturbs folliculogenesis such as disrupted follicles

maturation, differentiation, and increased number of atretic

and cyst follicles in Wistar rats (Haddadi et al., 2022). In

addition, estrous cycle disruption due to exposure to MPs has

also been reported in female rats (Haddadi et al., 2022). PS-MPs

(5 µm) led to a significant decrease in the duration of the fourth

estrus cycle and reduced the duration of the metestrus phase

compared to control rats (Haddadi et al., 2022). Further, the

continuous exposure to PS-MPs (30 mg/kg) for 35 days impaired

the follicles development, quality, and maturation of oocytes in

the ovaries of mice (Liu Z. et al., 2022). Furthermore, the

accumulation of MPs (0.5 µm) in granulosa cells of rats has

been reported to interfere with the normal functioning, growth,

and differentiation of oocytes and lead to female reproductive

toxicity via apoptosis, pyroptosis, and fibrosis (An et al., 2021;

Hou J. et al., 2021). Therefore, extensive exposure to MPs

aggravates various toxicities such as decreased diameter and

number of oocytes, decreased or empty follicles, inflamed

ovaries, and reduced ovarian reserve (Yan et al., 2020; Hou

J. et al., 2021; Liu Z. et al., 2022).

Overall, these studies suggest that MPs are associated with

negative effects on the female reproductive system (Figure 1).

MPs-induced developmental toxicity

Developmental toxicity is defined as any reversible or

irreversible functional or structural alteration caused by

environmental insult, diet, and toxic chemicals or physical

factors that affect organisms’ normal growth, differentiation,

development, or behaviour (Hougaard, 2021). In this section,

we have discussed the development and growth effects such as

fetal growth, deformities, and death in offspring whose parents

are exposed to MPs for an extended period. A recent study

investigated four generations (F0, F1, F2, and F3) of

developmental effects in Daphnia magna with 21 days of

exposure to MPs and reported a significantly reduced

population growth rate and reproduction (Martins and

Guilhermino, 2018). Furthermore, there is a slow recovery up

to F3 generation, which accounts for the developmental toxicity

in the Daphnia magna population (Martins and Guilhermino,

2018). Moreover, a transgenerational study of PS-MPs in the

marine medaka (Oryzias melastigma) has reported a delayed

incubation time and gonads maturation, hatching rate, and body

length of offspring at the dose of 20 and 200 mg/L (Wang et al.,

2019). Findings of aquatic studies have also been translated into

rodents. The results of 90 days of repeated exposure (0.125, 0.5,

2 mg/day) to PE-MPs (40–48 µm) have shown a significant

reduction in the number of live births/dam, sex ratio, and

pups’ body weight in the Institute of Cancer Research (ICR)

mice (Park et al., 2020). In addition, MPs have disrupted

maternal-fetal connection in allogenic pregnant mice, as

evident by increased embryo resorption rate and decreased

number and diameter of uterine arterioles (Hu et al., 2021).

This finding indicates that MPs may pose a threat to fetus

development. Several studies have reported the developmental

and reproductive toxicities of MPs in different species,

summarized in Table 1. However, more studies are required

to decipher the mechanisms of MP-associated developmental

toxicity and how MPs could cross the placental barrier and

impact growth in utero and postnatal stages.

Potential signaling pathways involved
in MPs-induced male and female
reproductive toxicity

So far, MPs and their effects on reproductive and

developmental organs have been reported in different model

systems, primarily in laboratory experiments. MPs-induced

reproductive toxicity, dysfunctions, and impairments in

fertility are associated with many signaling pathways (Figure 1).

Oxidative stress and MAPK signaling
pathway

Oxidative stress is a primary mediator in male and female

reproductive dysfunctions (Khan et al., 2011; Agarwal et al., 2014;

Ahmad et al., 2017). Excessive reactive oxygen species (ROS)

generation creates an imbalance between oxidant and

antioxidant status, leading to lipid peroxidation, DNA

damage, and protein breakdown (Ahmad et al., 2017; Yu

et al., 2018). Several experimental studies have confirmed that

microplastics cause ROS production, which increases oxidative

stress in gonads (An et al., 2021; Kim et al., 2021;Wei et al., 2021).

In addition, mitogen-activated protein kinases (MAPK)

pathways are activated through different stimuli, viz. chemical

agents and UV-induced damage, cytokines, and oxidative stress

(Stramucci et al., 2018). Xie et al. reported that MPs exposure

activated MAPK signaling via oxidative stress in the mouse testis

(Xie et al., 2020). Moreover, PS-MPs exposure for 6 weeks

induces ROS generation and increases the phosphorylation of

p38 and JNKMAPK in the testis of Balb/c mice (Xie et al., 2020).

Nuclear factor erythroid 2-related factor 2(Nrf2) is a critical

transcription factor and acts as an antioxidant which is negatively

regulated by Kelch-like ECH-associated protein 1 (Keap-1)

(Kovac et al., 2015). Li et al. have shown that PS-MPs

increase oxidative stress, activate the p38 MAPK, and deplete

the nuclear Nrf2 pathway, which leads to poor quantity and

quality of sperms and compromised BTB integrity (Li et al.,

2021). The integrity of the BTB junction is regulated via

N-clathrin during internalization, while selective infiltration is

regulated by occludin through tight connections of BTB (Mruk

and Cheng, 2010; Lie et al., 2013). Interestingly, PS-MPs have

been reported to damage BTB and significantly decrease the
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TABLE 1 Summary of experimental studies showing developmental and harmful effects of MPs in different species and their offspring.

S.N Type of
toxicity

Model
systems

MPs types MPs sizes
and concentrations
used

Reported effects
and inferences

Reference

1 Developmental toxicity
(postnatal)

Daphnia magna Pristine polymer
microspheres

1–5 μm (0.1 mg/L) Decreased growth, reproduction, and
population growth rate led to the
extinction of F1 generation

Martins and
Guilhermino,
(2018)

MPs deposition was seen until
F3 generation

2 Developmental toxicity
(postnatal and prenatal)

Marine medaka
(Oryzias
melastigma)

PS- MPs 10 µm (20 and 200 mg/L) Delayed incubation time reduced the
heart and hatching rate and length of
body of the offspring

Wang et al.
(2019)

3 Developmental toxicity
(postnatal)

Marine medaka
(Oryzias
melastigma)

PS-MPs
(Phenanthrene)

10 μm (2–200 μg/L) Higher dose deposited on the chorion
reduced the growth and hatching rate
and delayed hatching time. MPs at
low dose do not accumulate
phenanthrene

Li et al. (2020)

4 Developmental toxicity
(prenatal and postnatal),
and reproductive toxicity

Marine medaka
(Oryzias
melastigma)

MPs + Phenanthrene 13 μm (200 μg/L) Exacerbated bradycardia in embryos,
causing transgenerational toxicity
from mother to offspring

Li et al. (2022)

5 Developmental toxicity
(postnatal)

Zebrafish (Danio
rerio)

Polyamide (PA) MPs 6.37–8.13 μm 200 mg/L Reduced hatching rate and inhibited
musculoskeletal development in
zebrafish larvae

Zou et al. (2020)

Macrophages induced
proinflammation, apoptosis, and
multi-xenobiotics resistance

6 Developmental toxicity
(postnatal)

Zebrafish (Danio
rerio)

Pristine PE-MPs
(Medium density)

20–60 μm (6.2, 12.5, 25.0,
50.0 and 100 mg/L)

Harmful effects such as bigger swim
bladder, increased yolk sac, and
reduced hatching rate of larvae

Malafaia et al.
(2020)

Larvae at concentrations of 50 and
100 mg/L MPs showed more
significant external morphological
changes and higher teratogenic
abnormality rates

7 Developmental toxicity
(prenatal and postnatal)

Zebrafish (Danio
rerio)

Pristine PS- MPs +
Butylated
hydroxyanisole (BHA)

65 nm to 20 μm, (2 mg/
L) and (BHA, 1 mg/L)

MPs aggravate the accumulation of
BHA in zebrafish larvae viz. reduced
hatching rates, increased
malformation rates, and decreased
calcified vertebrae

Zhao et al. (2020)

8 Developmental toxicity
(prenatal and postnatal)

Zebrafish (Danio
rerio)

Pristine PE-MPs and
spiked with benzo α
pyrene (MP-BaP)

20–27 µm (1% w/w in the
fish diet)

MPs and MP-BaP 30 and 90 dpf (day
post-fertilization) lead to altered
growth parameters such as reduced
fecundity, egg morphology, and yolk
area

Tarasco et al.
(2022)

Impairment in the development of
caudal fins and bone quality

9 Developmental toxicity
(prenatal and postnatal)

Zebrafish (Danio
rerio)

PS- MPs 10 μm (200 particles/mL) Larvae development deformities,
moderate hatching rate, and altered
antioxidant and cellular function

De Marco et al.
(2022)

10 Developmental (prenatal)
and reproductive toxicity

Prawn PS-MPs (2 and 20 mg/L) The quality of testicular germ cells
and sex hormones are altered, causing
decreased hatching success and
survival of F1 larvae. PS-MPs
bioaccumulated in different tissues of
larvae and decreased immunity due to
paternal exposure

Sun et al. (2022)

11 Developmental and
(prenatal and postnatal)
reproductive toxicity

Mice PS nanoplastics 100 nm (0.1, 1 and
10 mg/L)

Prenatal and postnatal PS-NPs
exposure declines birth and postnatal
body weight in offspring

Huang et al.
(2022)

Transgenerational testicular toxicities
in offspring (reduced testis weight and
sperm counts)

(Continued on following page)
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expressions of connexin-43, claudin, and N-cadherin in rats (Li

et al., 2021). In a nutshell, the MAPK-Nrf2 pathway and

oxidative stress-associated mechanism seem to be involved in

MPs-induced reproductive dysfunctions (Figure 1). However,

more investigations are needed to identify the precise role of this

signaling in MP-induced reproductive adverse effects.

Akt and mTOR signaling pathway

Mammalian target of rapamycin (mTOR) plays a vital role

in the cellular processes by providing energy and cytoskeletal

structure. mTOR forms two complexes, mTORC1 and

mTORC2, and exerts opposite physiological functions by

binding with raptor and rictor (Jesus et al., 2017; Wang

and Zhang, 2019). Moreover, it plays a crucial role in the

maintenance and process of spermatogenesis (Jesus et al.,

2017). The ribosomal protein S6 (rpS6), a downstream gene

of mTORC1, has been reported to disorganize the F-actin,

resulting in leaky BTB via the rpS6-Akt-MMP-9 signaling

pathway (Mok et al., 2014; Mok et al., 2015). Also, rictor helps

to develop F-actin organization and maintains the BTB

integrity via protein kinase C alpha (PKC-α) and gap

junctions (Mok et al., 2013). A recent study has shown that

PS-MPs trigger ROS-mediated imbalance of mTORC1 and

mTORC2 signaling, which alter the expression of actin-

related protein 3 (Arp3) and epidermal growth factor

receptor pathway substrate 8 (Eps8) actin-binding proteins,

eventually disrupting BTB integrity and spermatogenesis

(Wei et al., 2021). The current research is still in the

infancy phase and requires more studies to validate the role

of Akt and mTOR signaling pathways in MPs-associated

reproductive toxicity.

Inflammasome (NLRP3) and fibrotic
signaling pathways

NLRP3, NOD-like receptor protein 3, is a multi-protein that

acts as the defense mechanism against microorganisms,

endogenous damage, and toxic stimuli but is also involved in

male and female infertility (de Rivero Vaccari, 2020; Sano et al.,

2022). The activation of NLRP3 triggers an apoptotic and

inflammatory response by converting pro-caspase-1 to

caspase-1 and pro-interleukin-1 (pro-IL-1β) and pro-

interleukin-18 (pro-IL-18) into interleukin-1β (IL-1β) and

interleukin-18 (IL-18), respectively (Charan et al., 2022). A

recent study has ascertained that PS-MPs trigger the NLRP3/

caspase-1 signaling pathway by oxidative stress, leading to

decreased ovarian reserve in rats (Hou J. et al., 2021).

However, limited findings are reported on NLRP3-mediated

biological effects of MPs.

Fibrosis is a process of development of connective tissue as a

repairing response to injury and affects organ structure and

function, including the reproductive organs (Amargant et al.,

2020). A recent study has reported that PS-MPs exposure causes

fibrosis in ovaries via activation of toll-like receptor-4/NADPH

oxidase-2 (TLR4/NOX2) signaling (Wu et al., 2022). This study

has also reported an increase in oxidative stress, which

consequently leads to activation of NOTCH and transforming

growth factor-β (TGF-β)-mediated fibrosis in the endometrial

epithelial cells and uterus (Wu et al., 2022). Furthermore, PS-

MPs have elevated the expression of Wnt/β-catenin, alpha-

smooth muscle actin (α-SMA), TGF-β, and fibronectin in

ovarian granulosa cells, thereby leading to ovarian fibrosis (An

et al., 2021). Therefore, inflammatory and fibrotic signaling

might be involved in the MPs-induced reproductive toxicity,

particularly in females (Figure 1).

TABLE 1 (Continued) Summary of experimental studies showing developmental and harmful effects of MPs in different species and their offspring.

S.N Type of
toxicity

Model
systems

MPs types MPs sizes
and concentrations
used

Reported effects
and inferences

Reference

12 Developmental toxicity
(postnatal)

ICR Mice PS- MPs 0.5 and 5 µm (100 and
1,000 μg/L)

Risk of metabolic disorders in
offspring

Luo et al. (2019)

Intergenerational effects on the
F1 offspring

13 Developmental (prenatal
and postnatal)
reproductive toxicity

Male and female
ICR mice

PE-MPs 40–48 μm (0.125, 0.5, and
2 mg/mouse)

Reduced number of live births/dam,
sex ratio, and body weight of pups

Park et al. (2020)

Immune disruption in the offspring of
PE-treated maternal or paternal mice

14 Developmental toxicity
(prenatal)

C57BL/6-mated
Balb/c mice
(Allogenic mice)

PS-MPs 10 μm (250 μg/mouse) Increased resorption rate and reduced
number and diameter of uterine
arterioles

Hu et al. (2021)

Immunological barrier homeostasis
disruption in the peripheral blood,
placenta, and spleen

Frontiers in Toxicology frontiersin.org06

Dubey et al. 10.3389/ftox.2022.901798

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2022.901798


Cell death and apoptotic signaling
pathways

Apoptosis pathways are the most explored in MPs-induced

male and female reproductive toxicity (Qiang and Cheng, 2021;

Liu Z. et al., 2022). Qiang et al. have reported that MPs induced

the caspase-dependent apoptosis in zebrafish testis, which is

mediated via the upregulation of several caspases and p53

(Qiang and Cheng, 2021). Furthermore, PS-MP exposure for

35 days leads to perturbed mitochondrial membrane potential

and increased inflammatory and apoptotic markers (caspase-

3 and Bax) that result in ovarian inflammation and poor quality

of oocytes in mice (Liu Z. et al., 2022). Hence, these studies

suggest that both (intrinsic and extrinsic) apoptotic pathways are

involved in MPs-induced cell death and apoptosis in

reproductive organs (Figure 1).

Steroidogenic and endocrine signaling
pathways

Testosterone is crucial in spermatogenesis and is secreted by

Leydig cells and regulated by LH signaling (Ramaswamy and

Weinbauer, 2014). LH binds to its receptor (LHR) at the Leydig

cell membrane, which, in turn, increases cAMP and other

downstream pathways such as protein kinase A (PKA), StAR,

and steroid synthases (Tremblay, 2015). Of note, Jin et al. have

reported that chronic exposure to PS-MPs reduce testosterone,

LH, and FSH contents in rat serum and downregulate the

expression of StAR via inhibiting the AC/cAMP/PKA pathway

in vitro (Jin et al., 2022). However, the effects of MPs on

steroidogenic and endocrine signaling pathways are meager.

Conclusion

MPs have been shown to accumulate not only in various

organs in experimental models but also in human organs such

as blood, lymph, placenta, meconium, and lungs (Segovia-

Mendoza et al., 2020; Amato-Lourenco et al., 2021; Braun

et al., 2021; Cobanoglu et al., 2021; Ragusa et al., 2021; Jenner

et al., 2022). However, MPs accumulation is not identified in

the reproductive organs of humans. Assessment of MPs-

associated adverse effects in humans is challenging. The

concentration and size of MPs and the duration of

exposure used in experimental models might be quite low

and/or high compared to human exposure to MPs. However,

marine organisms can be one of the indirect sources of MPs

accumulation in humans from seafood and other packaged

food materials. Thus, more regulations and awareness are

required to curb the generation of MPs in industries and

landfill sites.

The toxic effects of MPs are mainly studied in rodents and

aquatic experimental models, but the implication of these

findings to the human population is still debatable. MPs

might trigger their adverse effects via oxidative stress,

apoptosis, inflammatory and fibrotic response, and altering

hormonal balance. Other than these findings, the

mechanism(s) of MPs toxicities remain largely unknown.

The current understanding of MPs-associated reproductive

toxicity is limited and is a nascent area of research, which

needs future mechanistically focused investigation to

understand the harmful effects of MPs on male and female

reproductive organs, including the risk of developmental

effects.
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Glossary

AC Adenylyl cyclase

Akt Ak strain transforming

Arp3 Actin-related protein 3

αSMA Alpha-smooth muscle actin

Bax B-cell lymphoma 2–associated X protein

BTB Blood–testes barrier

3β-HSD 3-beta hydroxysteroid dehydrogenase

17β-HSD 17β-hydroxysteroid dehydrogenases

cAMP Cyclic adenosine monophosphate

DNA Deoxyribonucleic acid

FSH Follicle-stimulating hormone

ICR Institute of Cancer Research

JNK c-Jun N-terminal kinase

LH Luteinizing hormone

LHR Luteinizing hormone receptor

MPs Microplastics

p38 MAPK p38 mitogen-activated protein kinase

MMP 9 Matrix metallopeptidase 9

mTOR Mammalian target of rapamycin

mTORC1 mTOR complex 1

mTORC2 mTOR complex 2

NOX 2 NADPH oxidase-2

Nrf2 Nuclear factor erythroid 2-related factor 2

NLRP3 Nod-like receptor family pyrin domain containing 3

P450scc Cholesterol side-chain cleavage enzyme

PE Polyethylene

PET Polyethylene terephthalate

PP Polypropylene

PS Polystyrene

PKA Protein kinase A

ROS Reactive oxygen species

SD Sprague Dawley

rpS6 Ribosomal protein S6

StAR Steroidogenic acute regulatory protein

TGF β Transforming growth factor-β
TLR4 Toll-like receptor 4

UV Ultraviolet

Wnt Wingless-related integration site.
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