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Blood vessels are indispensable for host survival and are protected from inappropriate
inflammation by immune privilege. This protection is lost in patients with autoimmune
vasculitides, a heterogeneous group of diseases causing damage to arteries, arterioles,
and capillaries. Vasculitis leads to vascular wall destruction and/or luminal occlusion,
resulting in hemorrhage and tissue ischemia. Failure in the quantity and quality of
immunosuppressive regulatory T cells (Treg) has been implicated in the breakdown of
the vascular immune privilege. Emerging data suggest that Treg deficiencies are disease-
specific, affecting distinct pathways in distinct vasculitides. Mechanistic studies have
identified faulty CD8+ Tregs in Giant Cell Arteritis (GCA), a vasculitis of the aorta and the
large aortic branch vessels. Specifically, aberrant signaling through the NOTCH4 receptor
expressed on CD8+ Treg cells leads to rerouting of intracellular vesicle trafficking and
failure in the release of immunosuppressive exosomes, ultimately boosting inflammatory
attack to medium and large arteries. In Kawasaki’s disease, a medium vessel vasculitis
targeting the coronary arteries, aberrant expression of miR-155 and dysregulated STAT5
signaling have been implicated in undermining CD4+ Treg function. Explorations of
mechanisms leading to insufficient immunosuppression and uncontrolled vascular
inflammation hold the promise to discover novel therapeutic interventions that could
potentially restore the immune privilege of blood vessels and pave the way for urgently
needed innovations in vasculitis management.
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INTRODUCTION

Vasculitides are autoimmune diseases defined by tissue-destructive inflammation in the vessel wall,
resulting in wall destruction or wall remodeling leading to alterations in the vascular lumen. The
pathogenic remodeling of blood vessels restricts the supply of nutrients and oxygen to peripheral
tissues, causing organ damage and death (1). Vasculitides can be classified into diverse types
according to the size of the affected vessels (2) and share some common phenotypes, such as wall
infiltration of inflammatory cells, aneurysm formation, and luminal compromise (3). Decades of
studies have yielded insights into the various mechanisms underlying the autoimmune
org February 2022 | Volume 13 | Article 8443001
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inflammation of arteries. Arteries are also the target of
uncontrolled inflammation in auto-inflammatory syndromes,
emphasizing the delicate relationship between immune cells
and the conduits that carry them to the peripheral tissues (4).

A more detailed understanding of the immunopathogenesis of
vasculitis is available for Giant Cell Arteritis (GCA), an
inflammatory vasculopathy of medium and large arteries. In
GCA, aberrant NOTCH signaling appears to have high
pathogenic relevance and contributes to the breakdown of the
immune privilege (5, 6). Inappropriate production of MMP9 by
constituent myeloid cells adds another element to the loss of the
tissue barrier (7). Additional pathways of pathogenic relevance
include a state of hypermetabolism imposed by excessive CD28
signaling (8), the loss-of-function of the immunosuppressive PD1/
PDL1 checkpoint (9), and the longevity of tissue-resident memory
T cells that sustain chronic inflammation (10). This panel of
malfunctioning pro-inflammatory pathways is complemented by
the failure of anti-inflammatory mechanisms. Specifically, CD8+

Treg cells fail to provide proper inhibitory function inGCApatients
(11–13). CD8+ Treg cells exert their immunosuppressive role by
packaging NADPH2 oxidase 2 (NOX2) into exosomes and
releasing these exosomes to control the function of neighboring T
cells. In GCA patients, exosomal NOX2 is low, due to a defect of
directing intracellular vesicles. The rerouting of vesicles is a
consequence of inappropriate signaling through the NOTCH4
receptor (12, 13).
REGULATORY T (TREG) CELLS

Regulatory T (Treg) cells are a subset of T lymphocytes, occupying
about 5% to 10% of the circulating T cell pool (14). In contrast to
effector T cells, Treg cells mediate immunosuppression to ensure
that the immune defenses against exogenous and endogenous
antigens are accurately controlled in time and space. Treg cells
accomplish their suppressive function through numerous
mechanisms, such as secretion of inhibitory cytokines, induction
of apoptotic cell death, direct transfer of inhibitory signals, and the
delivery of extracellular vesicles (15–17).

A shift in either quantity or quality of Treg cells will lead to a
disbalance in immune homeostasis, resulting in a variety of
disease states. In tumor-bearing hosts, Treg cells are enriched
at the tumor site, suppress anticancer immunity, protect the
tumor from immunosurveillance and promote tumor
development (18, 19). In contrast, patients with autoimmune
disease, including vasculitis, suffer from defective Treg cell
protection, promoting a breakdown of tissue tolerance and a
lack of timely downregulation in ongoing immune responses (20,
21). Accordingly, massive efforts have been undertaken to turn
Treg cells into therapeutic agents or enhance Treg function in
patients. These investments have resulted in the development of
novel Treg-based therapeutic strategies, which will eventually
provide novel alternatives for immune-modulatory interventions
(22, 23). In this review, we will summarize current knowledge of
the phenotypes of Treg cells, their protective roles in vasculitis,
and potential strategies for harnessing Treg cell function.
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Treg Phenotypes
Here, we will provide an overview of what is known about shared
phenotypes found on most Treg cells, including the Treg cell
marker (FOXP3), specific subtypes of Treg cells, e.g. CD8+ Treg
cells, and the molecular mechanism behind Treg-induced
inhibition. There is agreement in the field that Treg cell
populations are heterogenous when it comes to phenotype and
function (24). In addition, there is recognition that Treg cells
have considerable plasticity, which may be particularly
important when they are exposed to inflammatory signals (25–
27). Multiple factors, including the tissue environment in which
the Treg cell lives and functions, the extent of antigen-induced T
cell receptor signalling, the input of co-stimulatory and co-
inhibitory signalling may all contribute to the stability and the
plasticity of Treg cells.

FOXP3
The transcription factor forkhead box P3 (FOXP3) is the best
known Treg biomarker and is recognized as the master regulator
of Treg cell generation and function. As a transcription factor,
FOXP3 induces the expression of Treg-associated genes,
including IL-2, CD25, CTLA-4, and miR-155 (28, 29). More
than a recognitional marker, FOXP3 possesses the ability to
control the switch between Treg cells and effector T cells. Ectopic
FOXP3 expression transforms T cells into suppressor cells, while
the failure of constant FOXP3 expression impairs the potency to
inhibit effector cells (30–32). Based on FOXP3 expression, Treg
cells can be dissected into three subpopulations: CD45RA(+)
FOXP3(lo) resting Treg cells (rTreg cells), CD45RA(-)FOXP3
(hi) activated Treg cells (aTreg cells) and cytokine-secreting
CD45RA(-)FOXP3(lo) nonsuppressive T cells. Both rTreg cells
and aTreg cells are effective suppressor cells in vitro. aTreg cells
die rapidly but rTreg cells proliferate and convert into aTreg
cells (24).

Due to FOXP3’s indispensable role in Treg biology, the
regulation of FOXP3 expression has drawn considerable
attention. Several transcription factors have been reported to
induce FOXP3 transcription, including Forkhead transcription
factor of the O class (FOXO)1, FOXO3, c-Rel, Smad2, and
Smad3 (33–39). Interestingly, the glycolytic enzyme enolase
(ENO)-1 inhibits FOXP3 transcription through binding to the
promoter region (40), suggesting a major role in the direct
metabolic control of Treg cell function. At the post-
transcriptional stage, several microRNAs are predicted to
directly bind to the FOXP3 3’-UTR. Specifically, changes in the
abundance of miR-31 and miR-15a/16 have been associated with
significant modulation of FOXP3 expression (41–44). FOXP3
can also be regulated through post-translational modifications.
High expression of the deubiquitinase (DUB) ubiquitin specific-
processing protease (USP)7 in Treg cells is required for sustained
FOXP3 expression (45). Vice versa, the E3 ubiquitin ligase Stub1
leads to FOXP3 ubiquitination and degradation (46, 47).
Uncontrolled FOXP3 ubiquitination has been proposed as a
relevant mechanism in autoimmune diseases. In patients with
psoriasis, the (C-C motif) ligand (CCL)3 and the protein kinase B
(PKB)a/Akt1 pathway induce polyubiquitination of FOXP3,
February 2022 | Volume 13 | Article 844300
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which is highly associated with defective Treg function (48).
Besides ubiquitination, FOXP3 is also regulated by other
modifications, including acetylation (by SIRT1 and TIP60) and
phosphorylation (by CDK2 and NLK) (49–54). In the
autoimmune disease rheumatoid arthritis (RA), instability of
FOXP3 expression and the subsequent failure of Treg-dependent
immunosuppression are due to the insufficient expression of the
histone acetyltransferase TIP60 (55).

CD8+ Treg Cells
Although CD25+FOXP3+ T cells amongst CD4+ T cells are often
considered to be classical Treg cells, the compartment of CD8+ T
cells also contains a regulatory subset. Like CD4+ Treg cells,
CD8+ Treg cells express FOXP3, but at a lower level (56, 57).
Recent studies have emphasized that it is not accurate to identify
CD8+ Treg cells based only on CD25 expression (58, 59). Instead,
additional cell surface markers, such as CD39+ and CD26- are
now considered useful markers of CD8+ Treg cells (60, 61). The
subpopulation of CD8+CD39+CD26- T cells represents a highly
purified Treg cell subset, which possesses strong inhibitory effects
in T cell activation assays (12).

Similar to CD4+ Treg cells, CD8+ Treg cells may be reduced in
number or quality in patients with autoimmune disease.
Specifically, lowered numbers of CD8+ Treg cells have been
reported in patients with systemic lupus erythematosus (SLE)
Frontiers in Immunology | www.frontiersin.org 3
and recovery of CD8+FOXP3+ Treg cells after transplantation of
autologous hematopoietic progenitor cells has been associated
with good control of disease activity (62). In patients with giant
cell arteritis (GCA), frequencies of circulating CD8+ Treg cells
are largely maintained, but an altered gene expression program
results in impaired suppressive capacity and unopposed
inflammatory activity of pathogenic CD4+ T cells. Experiments
designed to repair the expression of relevant gene products in
patient-derived CD8+ Tregs have been sufficient to restore fully
functional Tregs in vitro and in vivo, which prevented the
invasion of the vessel wall by inflammatory cells (13).

Mechanisms of Treg Cell Function
Determination of the mechanisms of how Treg cells function is
critical to understanding the role of these specialized T cells in
protective and pathogenic immunity. Ever since Treg cells were
initially described, attention has been directed at uncovering,
both on the cellular and molecular level, how these cells can
inhibit signaling to affect the survival of their target cells. Here,
we are going to summarize the spectrum of mechanisms used by
Treg cells to exert their immune-regulatory role (Figure 1).

Cytokines
Inhibitory cytokines secretion may be one of the most efficient
mechanisms of Treg cell-mediated suppression of immune
FIGURE 1 | Suppressive Mechanisms of regulatory T (Treg) cells. Regulatory T cells perform suppressive function mainly through five basic mechanisms: 1. Inhibitory
cytokines, such as TGF-b and IL-10; 2. Metabolic disruption, including CD39- and CD73-generated adenosine and gap junction-mediated cAMP delivery; 3. Cytolysis,
utilizing granzyme B- and perforin- dependent mechanisms; 4. Exosomal delivery of immunosuppressive biomolecules, such as NOX2 and Let-7; 5. Competition for IL-2.
February 2022 | Volume 13 | Article 844300
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responses, but this is complicated by nonselectivity. Although
multiple inhibitory cytokines have been discovered, interleukin-
10 (IL-10) and Transforming growth factor-b (TGF-b) remain
on top of the list and are considered part of the basic repertoire in
Treg cell biology (Figure 1).

The IL-10 family has nine members, including IL-10, IL-19,
IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29 (63) and is
now recognized as a critical element in protecting tissues from
excessive inflammatory responses (64). Upon binding to its
receptors IL-10R1 and IL-10R2, IL-10 regulates downstream
pathways through cascade phosphorylation, utilizing the JAK-
STAT signaling pathway (65, 66). IL-10-dependent activation of
the JAK-STAT signaling pathway leads to nuclear translocation
of STAT3, initiating downstream target gene expression (67, 68).
IL-10 has also been reported to activate other signaling pathways,
such as PI3K-AKT and MAPK pathways (69–72). Abnormal
expression of IL-10 has been reported in some vasculitides. Tesar
et al. found that IL-10 is highly expressed in patients with active
ANCA-associated vasculitis (AAV), but not in patients in
remission (73). The upregulation of IL-10 with disease activity
might be reflective of the host’s attempt to suppress
inappropriate immunity. The authors also reported that
patients in remission who then relapsed produced significantly
lower levels of IL-10 compared to those without relapse,
indicating that IL-10 could be a useful biomarker for long-
term disease prediction (73).

TGF-b mediates its anti-inflammatory function through two
routes: 1. Inhibition of inflammatory cells; 2. strengthening of
Treg cells (74). TGF-b has been reported to suppress T cell
proliferation by blocking production of interleukin-2 (IL-2) (75)
and preventing T cell differentiation to Th1 and Th17 cells (76–
78). In addition, TGF-b promotes the generation and function of
Treg cells by inducing FOXP3 expression in both CD4+ and
CD8+ T cells (79–81). Although TGF-b has three isoforms, TGF-
b1 is dominantly expressed in the immune system (82). Twelve
TGF-b receptors with serine/threonine kinase subunits have
been enumerated, including 5 type I and 7 type II
transmembrane receptors (83). Upon TGF-b stimulation, the
signaling cascade of SMAD proteins causes the transcription of
target genes, such as MYC and P21 (84, 85). Other non-SMAD
pathways have also been implicated in TGF-b signaling, such as
the RAS-ERK pathway and the PI3K-AKT pathway (86).

An alternative mechanism through which Treg cells modulate
the function and behavior of T effector cells relates to the
competition for resources. Specifically, Treg cells can inhibit
the proliferation and survival of effector T cells by depriving
them of IL-2 (87).

Inhibition Through the Transfer of Metabolites
Data have accumulated supporting the concept that metabolites
generated and released by Treg cells impose an inhibitory effect
on targeted T cells.

Adenosine, generated by CD39 and CD73 in the extracellular
space or released from the intracellular compartment, suppresses
effectorT cells bybinding to the adenosine receptor 2A (A2AR) (88–
90) (Figure 1). Evidence has been provided that adenosine
Frontiers in Immunology | www.frontiersin.org 4
promotes the generation of Treg cells by inhibiting IL-6
generation and enhancing TGF-b production. In mice, A2AR
stimulation results in the inhibition of Th1 and Th17 cell
differentiation and the enhancement of FOXP3+ Treg cell
generation (91). No data are available on whether this mechanism
has relevance in inflammatory vasculopathies. Notably,
methotrexate, an immunosuppressive medication used broadly in
the treatment of autoimmune diseases by amplifying adenosine
production, has only limited application in patients with
autoimmune vasculitis.

Alternative pathways through which Treg cells control the
functionality of effector T cells involve cyclic AMP (cAMP)
(Figure 1). Treg cells harbor a high concentration of cAMP
and form a cell contact-dependent gap junction with effector T
cells to deliver intracellular cAMP (92). Subsequently, cAMP
inhibits T cell proliferation and IL-2 synthesis (92).

Cytolysis
An alternative mode through which Treg cells inflict their
suppressive function relies on perforin/granzyme-dependent
cytolysis (Figure 1). Although cytotoxicity mediated by perforin/
granzyme has mostly been considered an exclusive function of
natural killer (NK) cells and CD8+ T cells, it is now accepted that
Treg cells and CD4+ T cells can utilize this mechanism to regulate
the function of neighboring cells. Recent studies have provided
convincing evidence that some human CD4+ T cells also exhibit
cytolytic function (93, 94). Granzyme B has been detected in CD4+

Treg cells and has been associated with functional fitness.
Granzyme B appears to be highly expressed in CD4+FOXP3+

Treg cells and deficiency for granzyme B or perforin paralyzed
Treg cells in a mouse model (95).

Exosomal Delivery
Exosomes are extracellular vesicles secreted by cells, with sizes
ranging from roughly 50 – 150 nm. Exosomes contain cell-specific
proteins, lipids, metabolites, and genetic materials, and can be
selectively absorbed by neighboring or distant cells based on
surface protein recognition (96, 97). Exosomes play a critical
role in immune regulation but seem to be of special relevance
for Treg cells since Treg cells outperform other cell types in the
production of exosomes. Treg-derived exosomes are indispensable
for Treg cell function and disruption of exosome release through
pharmaceutical or genetic mechanisms effectively blocks the
suppressive function of Treg cells (16, 98, 99).

Exosomes exhibit their function through the biomaterial they
contain, such as lncRNA (e.g., Let-7d) (100) or inhibitory
molecules (e.g., CD73) (101). In the large vessel vasculitis, GCA,
CD8+ Treg cells inhibit CD4+ T cells activation and proliferation
by secreting NADPH oxidase 2 (NOX2) containing exosomes (12,
13) (Figure 1). Blocking exosome secretion or interfering with
NOX2 function halted CD8+ Treg cell function. Enhancing the
loading of NOX2 into the exosome restored CD8+ Treg cells’
function and attenuated vascular inflammation in chimeric mice
engrafted with human arteries. These data support the concept
that Treg-derived exosomes may provide a novel tool to
reestablish tissue tolerance in vasculitis (12, 13).
February 2022 | Volume 13 | Article 844300
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Treg Cells in Autoimmune Vasculitides
Giant Cell Arteritis
Giant Cell Arteritis (GCA) is the most common autoimmune
vasculitis, with incidence and prevalence rates growing as the
population ages. Patients with GCA suffer from aggressive wall
inflammation in medium and large arteries, including the aorta,
subclavian arteries, axillary arteries, extra-cranial branches of the
carotid arteries, and vertebral arteries. Infrequently, GCA is
diagnosed in lower extremity arteries. Clinically, the most
feared disease manifestations are ischemic stroke of the optic
nerve and the posterior brain. Potentially fatal consequences
such as aneurysm formation, dissection and rupture are related
to the destruction of the aortic wall. On a cellular level, the
disease is characterized by the formation of granulomas within
inflamed arteries, assembled from CD4+ T cells, macrophages
and multinucleated giant cells (102, 103).

Numeric and qualitative deficiencies in Treg cells are well
recognized in GCA. Terrier and colleagues reported decreased
frequencies of CD4+FOXP3+ Treg cells in the peripheral blood of
GCA patients and FOXP3 was suspiciously absent in T cells
infiltrating vasculitic lesions (104).

Recent cellular and molecular studies have shifted attention
from CD4+ Treg cells to the CD8+ Treg cell subset. CD8+ Treg
cells contain a functionally specialized subpopulation that
imposes immunosuppression by secreting NOX2 containing
exosomes that are absorbed by nearby CD4+ effector T cells to
suppress their activation and proliferative expansion (12). In
patients with GCA, the frequency of CD8+ NOX2+ Treg cells is
diminished, and, in addition, their function is essentially
paralyzed. Molecular mechanisms underlying the loss of
functional fitness in patient-derived CD8+ Treg cells have been
uncovered and are closely related to a defect in exosome
production (13) (Figure 2). Both, the loading of NOX2 into
the exosomes and the generation of exosomes were attenuated
due to the rewiring of the endosomal system. The endosomal
machinery is critically involved in processes of protein quality
control and is responsible for the trafficking of intracellular
proteins between different cellular compartments and the
release of proteins through exosomes. New insights into the
different vesicular trafficking pathways have emerged, and
the endosomal sorting complex required for transport (ESCRT)
pathway is now recognized as the pathway for the formation of
intraluminal vesicles and multivesicular bodies (MVB) (105).
Exosomes are born by intraluminal budding of the MVB (106).
The multiprotein complex of the ESCRT machinery regulates the
invagination of vesicles into the MVB while recognizing,
capturing, and sorting ubiquitinated protein cargo.
Sequestering of ubiquitinated membrane proteins can occur at
the endosomal membrane as well as the plasma membrane.
When the MVB fuses with the plasma membrane, exosomes can
be secreted into the extracellular space. Much has yet to be
learned about the trafficking, docking and membrane integration
of exosome carrying MVB, but several Rab GTPases within the
endolysosomal trafficking machinery, including Rab27a and
Rab27b, are associated with exosome loading and secretion
(107). In essence, effector proteins recruited by Rab GTPases
Frontiers in Immunology | www.frontiersin.org 5
ultimately determine the collection of cargo, the movement of
vesicles throughout the subcellular compartments, the docking of
MVBs to the target membrane and the delivery of exosomes. In
the case of CD8+ Treg cells derived from GCA patients,
hyperactivation of NOTCH4 signaling disrupts the exosomal
secretion of NOX2 through transcriptional control of Rab
GTPases. Precisely, NOTCH4hiCD8+ Treg cells upregulate the
expression of RAB5A and RAB11A but repress RAB7A,
accumulating NOX2 in the intracellular compartment,
including the early and recycling endosomes. GCA CD8+ Treg
cells fail to translocate NOX2 to MVBs and the cell surface,
disrupting the exosomal release of immunosuppressive NOX2
(Figure 2). Ultimately, dysfunctional CD8+ Treg cells are unable
to control the expansion of pro-inflammatory CD4+ T cells,
paving the way for the invasion of an immune privileged tissue
site (13). These data will allow the development of new strategies
to modulate the balance between pro and anti-inflammatory T
cells in GCA. Inhibition of NOTCH signaling repaired CD8+

Treg function in vitro and in vivo and ameliorated vascular
inflammation in NSG mice carrying human arteries (13) provide
a rationale for drug targeting of this vaso-inflammatory pathway.

Takayasu Arteritis (TAK)
Takayasu’s arteritis (TAK) is an inflammatory vasculopathy that
primarily affects young women and leads to aortitis and vasculitis
of the primary aortic branch vessels (108). While the
histopathology of vascular involvement and the consequences of
vascular inflammation have similarities in GCA and TAK, there
are also differences in the cel lu lar and molecular
immunopathology of the two vasculitides (103). The percentage
of circulating activated Treg has been reported to be lower in TAK
patients than in healthy age-matched controls, while resting Tregs
are similar (109, 110) suggesting the possibility of abnormal Treg
cell maturation. On account of their plasticity, Treg cells can
acquire new effector functions, e.g. differentiating into Th1, Th2,
or Th17-like cells (20). But this transformation of Treg cells can
possibly strengthen the inflammatory processes and further
diminish physiological immunosuppression. Another possibility
based on recent studies proposes that Tregs derived from TAK
patients insufficiently differentiate into Th2-like cells, thereby
detracting from IL-4 and IL-13 production and contributing to
excess inflammation (110).

Polyarteritis Nodosa (PAN)
Polyarteritis nodosa, formerly known as periarteritis nodosa, is a
systemic necrotizing vasculitis affecting medium and small-sized
vessels (111). Vascular damage occurs preferentially in the
gastrointestinal tract, skin and peripheral nervous system. Unlike
GCA and TAK, PAN patients have been reported to have increased
Treg cells in their blood (112). However, in co-culture experiments
with effector T cells the suppressive abilities of Tregs from PAN
patients are significantly depressed, and this loss of function
appears to be associated with lower expression of CTLA-4.
Studies comparing Treg cell competence in patients treated with
prednisolone or prednisolone plus cyclophosphamide have found
normalization of Treg cell frequencies (112).
February 2022 | Volume 13 | Article 844300

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jin et al. Treg Cells in Vascular Inflammation
Kawasaki Disease (KD)
Kawasaki disease (KD) is a vasculitis of early childhood targeting
medium and small-sized vessels. A classical complication of KD
is the formation of coronary artery aneurysms. In the acute phase
of KD, Treg cells frequency is lowered by 50% compared to age-
matched healthy controls, regardless of whether the patients had
coronary artery lesions (CAL) or not (113–115). The gold
standard of therapy for KD is now the infusion of
immunoglobulins (IVIG), which modulates abnormal
immunity through the antibody-dependent pathways and
increases the number of circulating Treg cells (116).

Fc-specific Treg clones have been generated from sub-acute
KD patients without arterial complications following IVIG
therapy. These Treg clones display an unusual phenotype,
secreting IL-10 and IL-4 but not TGF-b. However, KD patients
with CAL even despite IVIG treatment seem to be unable to
expand these Fc-specific Treg populations (117). Similar Treg
fine specificities have been isolated from IVIG-treated KD
patients and healthy controls, suggesting that the absence of
Fc-specific Treg cells in acutely ill KD patients may be an
inflammation-imposed abnormality (118). Patients with a
history of KD in their childhood did not respond to Fc protein
in vitro, suggesting that the IVIG-induced Treg response in KD
patients is short-lived. Infliximab, a chimeric monoclonal
antibody targeting TNF-a, can increase Treg cell frequencies
during acute KD, while Infliximab-resistant patients lack an
adaptation of Treg cell frequencies (119). All of these
observations support the hypothesis that an inflammatory state
Frontiers in Immunology | www.frontiersin.org 6
can alter the frequencies of CD4+ FOXP3+ cells in the
circulation and can possibly strip these cells of their
suppressive capabilities.

In KD, FOXP3 mRNA levels appear to be regulated by the
miR-155/SOCS1 and the miR-31 signaling pathways. In patients
with acute KD, decreased CD4+FOXP3+ Treg cells might be
associated with decreased expression of miR-155, leading to
aberrant SOCS1/STAT5 signaling and overexpression of miR-
31. This abnormality may also represent an inflammation-
imposed deviation as it can be corrected by IVIG (114).

HCV-Associated Cryoglobulinemic Vasculitis
Vasculitis associated with Cryoglobulinemia is an immune
complex disease that unfolds primarily in small-sized vessels,
such as the capillaries of renal glomeruli. All patients with
cryoglobulinemic vasculitis require evaluation for chronic
hepatitis C virus (HCV) infection (120). Early studies showed
that patients with symptomatic HCV-associated cryoglobulinemic
vasculitis have both reduced numbers and diminished function of
Treg cells (121), consistent with the hypothesis that systemic
inflammatory states are characterized by redistribution and
functional impairment of Treg cells.

A French team of investigators has evaluated the effectiveness of
different therapies on the Treg cell population in 3 prospective trials.
PEGylated interferon alfa-2b plus ribavirin treatment induced a
significant and stable increase of Treg cell frequencies compared
with baseline in patients with clinical and viral remission (122).
In contrast, Treg cell frequencies did not differ after treatment for
FIGURE 2 | Molecular defects in CD8+ Treg cells from GCA patients. Aberrant NOTCH4 signaling in GCA CD8+ Treg cells enhances expression of RAB5A and RAB11A
and suppresses expression of RAB7A through HES1. RAB5A and RAB11A high expression promotes formation of early and recycling endosomes, keeping NOX2 in
an intracellular, non-secretory storage compartment. RAB11 suppression results in deficient generation of specialized endosomes, the multivesicular bodies (MVB) and
subsequent reduction in exosome biogenesis. Consequently, NOX2 is trapped intracellularly and no longer available to be loaded into immunosuppressive exosomes.
February 2022 | Volume 13 | Article 844300
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non-responders or partial responders. The frequency of Treg
cells was positively correlated with plasma complement levels
and inversely correlated with cryoglobulin levels, again
indicating that circulating CD4+ FOXP3+ T cells are a sensitive
biomarker of systemic inflammation. Since Treg cells are
dependent on IL-2 as a growth and survival factor, therapeutic
trials have tested the potential benefit of supplementing low-dose
IL-2 (aldesleukin) in patients refractory to conventional antiviral
therapy and/or B cell depletion therapy. Monitoring of
peripheral Treg cells following treatment with exogenous IL-2
has shown numeric and functional improvements (123).
Beneficial effects and reversal of Treg deficiency have also been
reported for combination antiviral therapy with sofosbuvir plus
daclatasvir (124).
Henoch-Schoenlein Purpura (IgA Vasculitis)
Henoch-Schoenlein purpura (HSP), also known as IgA vasculitis,
is the most common small vessel vasculitis in children (125).
Target organs include skin, kidneys, gastrointestinal tract, and
joints. Like most systemic vasculitides, HSP patients have lower
numbers and weak suppressive function of Treg cells (126–129).
As a reflection of a shift in the balance between pro-
inflammatory effector T cells and suppressive Treg cells, the
Th17/Treg ratio has been positively correlated with the
erythrocyte sedimentation rate, kidney lesions, and multiorgan
involvement (126). Treg cells that secrete IL-10 and TGF-b
accumulate in the vasculitic tissue lesions in the kidneys (129).
FOXP3 staining is preferentially localized in renal interstitial
areas but does not correlate with proteinuria, serum albumin
levels, and the histological classification of vasculitic involvement
(130). In a recent study, miR-1-3p, miR-19b-1-5p, and miR-29b-
1-5p were found to be up-regulated in peripheral blood
mononuclear cells (PBMCs) of HSP patients, while miR-483-
5p and miR-1246 were down-regulated. This shift was correlated
with the Th17/Treg ratio (131). Again, numeric and functional
alterations in peripheral blood Treg cells may simply reflect the
high inflammatory status.

Behçet’s Disease (BD)
Behçet’s disease (BD) is an auto-immune/auto-inflammatory
syndrome that can lead to vasculitis. The risk for BD is highest
amongst individuals living along the Silk Road and the prototypic
lesions are mucosal and genital ulcerations. BD stands out
amongst the vasculitides by its often concurrent venulitis (132).
Like other vasculitides, Treg cells are decreased in BD and
correlate with disease activity (133–138). Imbalances in miRNA
expression and excessive IL-21 have been considered to be key
underlying abnormalities leading to Treg cell dysfunction (135,
138). Infliximab, but not colchicine or cyclosporine, increases the
percentage of FOXP3+ cells in BD (134). Observation studies have
reported that treated BD patients with low circulating Treg
populations experience more ocular inflammation than those
higher numbers (134). T cells exposed to infliximab had
increased expression of FOXP3 and TGF-b and suppressed the
activation of bystander T cells in in vitro experiments (134).
Frontiers in Immunology | www.frontiersin.org 7
Antineutrophil Cytoplasmic Antibody (ANCA)-
Associated Vasculitis (AAV)
AAV is a necrotizing vasculitis affecting mostly small-sized vessels.
Typically, few or no immune complex deposits are seen in affected
tissues. The term AVV encompasses three disease entities:
granulomatosis with polyangi it is (GPA, Wegener ’s
granulomatosis), microscopic polyangiitis (MPA) and
eosinophilic granulomatosis with polyangiitis (EGPA, Churg-
Strauss syndrome) (139, 140). These three vasculitides are
associated with specific autoantibodies, antineutrophil
cytoplasmic antibodies (ANCA) that target either proteinase 3
(PR3) or myeloperoxidase (MPO). Each vasculitic entity has a
specific phenotype with a particular pattern of organ damage. GPA
is more often associated with anti-PR3 ANCAs and manifests with
necrotizing granulomatous inflammation involving the upper and
lower respiratory tract and necrotizing glomerulonephritis. MPA is
typically associated with anti-MPO antibodies. Granulomatous
inflammation is not a feature of MPA which presents with
necrotizing glomerulonephritis and pulmonary capillaritis.
Patients with EGPA have asthma, eosinophilia, and eosinophil-
rich, necrotizing granulomatous inflammation often involving the
respiratory tract. While the respiratory tract and the kidneys are
targeted in most AAV patients, manifestations in the skin and the
peripheral nerves are not unusual (141, 142).

Patients with AVV follow the general rule that systemic
inflammation is associated with low numbers and functional
impairment of Treg cells (143–146). Some studies have shown
increased numbers of Treg cells (147, 148). Treg cells from GPA
patients are still able to suppress proliferation of T cells from
ANCA-negative patients, which has led to the hypothesis that
part of the Treg deficit derives from target cell resistance (149). In
AAV patients, expression of a FOXP3 isoform lacking exon 2 has
raised suspicion of Treg cell instability (143). Also, miR-142-3p is
upregulated inmemory Tregs in GPA (150). In vitro overexpression
of miR-142-3p produces functionally impaired Treg cells
characterized by decreased cAMP levels. Pharmacological
induction of cAMP production restores suppressive capacity
(150). In MPA, attention has focused on the potential impact of
diminished serum tryptophan and elevation of the tryptophan
metabolite, kynurenine. Inhibition of tryptophan degradation
enhances immune responsiveness, with a tendency to more severe
glomerulonephritis (151). Correlative studies associating
improvement of CCR4+FOXP3+ Treg cell frequencies with drug-
free remission have supported the concept that ultimately, Treg cell
frequencies are sensitive markers of the inflammatory status (152).
In a mouse model, blocking IL-6 activity ameliorated the disease
and increased the migration of Tregs into the kidney and the
regional lymph nodes (152). In both GPA and MPA, B cell
depletion therapy and conventional immunosuppressants yielded
similar CD4+ Treg cell numbers (153).

Eosinophilic Granulomatosis and Polyangiitis
Patients diagnosed with Eosinophilic Granulomatosis and
Polyangiitis (EGPA) typically present with the triad of asthma,
eosinophilia, and necrotizing vasculitis (154). Whether
eosinophils are causally involved in the damage of small blood
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vessels remains unresolved. Compared to asthma control
patients, EGPA patients have lower frequencies of Treg cells
(155, 156). Production of IL-10, TGF-b, and expression of
CTLA-4 by Treg cells are correlated to the inflammatory
activity of the disease (156, 157). Relapsing patients, compared
to those in remission, have a lower proportion of inducible Treg
cells (134) and IL-2 production is predictably low. There is some
evidence that the expression of the immunosuppressive molecule
indoleamine 2,3-dioxygenase (IDO) is diminished in EGPA.
IDO is thought to cause immune suppression through the
breakdown of tryptophan. In relapsing EGPA, Treg cells are
positively correlated with the CD19+ B cell count and inversely
related to CD80+CD19+ B cells (156). Percentages of Treg cells,
Treg-derived IL-10 and TGF-b are positively correlated with the
percentage of CD83+ dendritic cells and inversely correlated with
CD206+ DCs (158). These data suggest that Treg cells might play
a role in DC and B cell biology.

Rheumatoid Arthritis (RA) and Systemic Lupus
Erythematosus (SLE)
As autoimmune disorders, vasculitides share features with other
autoimmune diseases raising the possibility that Treg cell
dysfunction is critically involved in the loss of self-tolerance. We
will briefly review the current state of knowledge about Treg cell
biology in the two classical autoimmune diseases, rheumatoid
arthritis (RA) and systemic lupus erythematosus (SLE).

CD4+FOXP3+ T cells have been extensively studied in RA
patients, but the mechanistic implications continue to be debated.
Much of the discussion has focused on the methodologies of Treg
analysis. One meta-analysis arrived at the conclusion that
numbers of Treg cells in peripheral blood are diminished but
the cells redistribute and accumulate in synovial fluid (159).
Similarly, functional studies have supported the idea that
systemic inflammation results in reduced numbers and reduced
function. Functional analyses have shown that inhibitory
competence is partially impaired. Specifically, Treg cells isolated
from the peripheral blood of RA patients block the proliferation of
effector T cells but fail to limit pro-inflammatory cytokine
production (160). This effect can be partially reversed by anti-
TNFa therapy, which successfully restores the capacity of Treg
cells to inhibit cytokine production, and in parallel, supports
recovery of Treg cell numbers in peripheral circulation (160).
Attempts at defining the underlying mechanism have implicated
reduced expression of CTLA-4 and enhanced expression of IL-6
(161, 162). Work analyzing the stability of FOXP3 has yielded
valuable insights into the post-translational modification of the
transcription factor as a determining feature of Treg phenotype
and fitness. Specifically, loss-of-function of the histone
acetyltransferase TIP60 (KAT5) has been associated with the
instability of FOXP3, impaired Treg cell differentiation and
failed immunosuppression (55) (Figure 3).

Systemic Lupus Erythematosus (SLE) is the prototypic multi-
organ autoimmune disease that affects the skin, kidneys, lungs,
joints, and the central and peripheral nervous systems. SLE
patients follow the classical pattern and have lower frequencies
of Treg cells in their blood (163). Excellent progress has been
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made in defining the molecular abnormalities that produce Treg
cell deficiency. A prime defect of SLE Treg cells lies in the low
availability of IL-2, which is required for the expansion and
survival of these immunoinhibitory T cells (Figure 3). In SLE
patients, the cAMP responsive element modulator-a (CREMa),
a transcriptional repressor of the IL-2 promoter, is hyperactive,
resulting in silencing of IL-2 and reduced FOXP3 expression
(164). An alternative mechanism has been found for IL-2
deficiency in SLE. Mutations in the transcriptional repressor,
Ikaros (165), lead to elevated protein phosphatase 2A (PP2A)
expression in SLE T cells, restraining IL-2 expression (166).
PP2A knockdown increased the expression of phosphorylated
cAMP response element-binding protein (pCREB), restoring IL-
2 expression (167). However, specific ablation of PP2A in murine
Treg cells caused the development of autoimmunity in an
mTOC-dependent manner (168), demonstrating that PP2A
mediates different signaling pathways in effector and regulatory
T cells.

Treg Cell-Targeted Therapy
Targeting the immunosuppressive function of Treg cells holds great
promise not only for the field of autoimmunity but also in tumor
therapy, wherein excessive Treg-derived immunosuppression
undermines the host’s immune response. Ultimately, the goal is
to have a therapeutic armamentarium, which would allow
readjustment in the numbers and the function of Treg cells in
vivo. Below we will review the different approaches that are
currently under development to exploit Treg biology for novel
strategies of immunomodulatory therapy. An overview is provided
in Figure 4.

Cytokine Based Therapy
Recombinant IL-10
The anti-inflammatory cytokine IL-10 is one of the most
important immuno-suppressive molecules that Treg cells
secrete. Studies have explored the potential of recombinant IL-
10 as a treatment for autoimmune disease, most extensively in
rheumatoid arthritis (RA) (169). In a clinical trial, IL-10
treatment of RA patients was able to suppress the key pro-
inflammatory cytokines TNFa and IL-6. However, IL-10 also led
to B cell activation and subsequent autoantibody production,
which has been a limiting side effect (170).

Low Dose of IL-2
A prototypic biomarker of Treg cells is the constitutive surface
expression of CD25, the alpha-chain of the IL-2 receptor, which
binds the cytokine with low affinity. Interleukin-2 (IL-2) is the
main cytokine supporting Treg cell development, survival, and
suppressive activity. Treg cells cannot supply their own IL-2 but
depend on exogenous IL-2. Hence, there is a strong rationale to
utilize IL-2 supplementation to improve Treg cell function. IL-2
not only binds to the alpha chain but with even high affinity to
beta and gamma chain complexes expressed on memory T-cells
and NK cells. Therefore, IL-2 supplementation could have pro-
inflammatory effects. However, low-dose IL-2 preferentially
targets Treg cells with high CD25 expression, providing a
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favorable window for IL-2 treatment in autoimmune disease
(171). There is some support that this may be occurring in
patients. In HCV-induced vasculitis patients, “ultra-low” doses
of IL-2 induced expansion of CD4+CD25+FOXP3+ Tregs, while
effector T-cells appeared relatively unaffected, encouraging the
use of IL-2 as a therapeutic strategy in other vasculitides (123).

TNF Receptor Agonism
Tumor necrosis factor receptor 2 (TNFR2, CD120b) is one of the
receptors for the pro-inflammatory cytokine, TNFa, which is a
critical mediator in many autoimmune diseases. Unlike TNFR1,
which exhibits pro-inflammatory effects, TNFR2 is considered to
have an anti-inflammatory function and is highly expressed on
Treg cells. Activation of TNFR2 enhanced the expansion and
function of Treg cells (172), suggesting the possibility of using
TNFR2 agonism for immunomodulatory therapy of
autoimmune diseases. In purified T cells from patients with
type1 diabetes, TNFR2 agonism successfully killed autoreactive
CD8+ T cells, but not CD4+ T cells (173). Targeting TNFR2 on
Treg cells awaits translation into the clinic.
Frontiers in Immunology | www.frontiersin.org 9
Cell-Based Therapy
Ex Vivo Expanded Treg Cells
Basically, cell-based therapy with Treg cells relies on the
extraction, ex vivo expansion, activation, and reinjection of
autologous Treg cells back into the patient to restore the
balance between pro and anti-inflammatory immune cells.

Because of its relatively low technical challenges, ex vivo
expanded Treg cell therapy has been the first Treg-targeted
strategy in clinical trials. A series of clinical trials have been
performed, exploring Treg replacement in different autoimmune
diseases. One clinical trial in type 1 diabetes mellitus (T1DM)
patients reported potential improvement in the longevity of
pancreatic islets. Also, excellent disease control in some patients
without severe side effects has been reported (174). A major
concern about the transfer of ex vivo expanded Treg cells is the
risk of significant immune repression producing compromise of
host defense against exogenous pathogens and malignancies. To
date, these concerns remain theoretical. In one clinical trial of SLE
patients, ex vivo educated Treg cells traffic to and accumulate in
inflamed tissue sites, where IFNg and IL-17 expression was
FIGURE 3 | Mechanisms underlying Treg deficiency in different autoimmune diseases. Abnormalities in Treg frequency and function are observed in most
autoimmune diseases, including Giant Cell Arteritis (GCA), Rheumatoid Arthritis (RA), and Systemic Lupus Erythematosus (SLE), but molecular mechanisms
underlying the deficiency are disease specific. In GCA, hyperactivity of NOTCH4 signaling in CD8+ Treg cells reroutes the intracellular vesicle trafficking and blocks
the production of NOX2-containing exosome, leading to impaired immunosuppressive function. In RA, low expression of the histone acetyltransferase TIP60 in Treg
cells causes abnormal post-translational modification and instability of FOXP3, impairing Treg cell differentiation and immunosuppressive ability. In SLE, deficiency of
Treg cells mainly results from the low availability of IL-2, a consequence of defective IL-2 expression by surrounding cells, such as effector T cells.
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successfully suppressed (175). Overall, there remains optimism
that ex vivo expanded Treg cells could be developed into a
powerful therapeutic tool, reestablishing tissue tolerance in
autoimmune diseases. It has also been proposed that the efficacy
of transferring ex vivo-expanded Treg cells could be enhanced by
combining cell-mediated therapy with cytokine activation therapy,
e.g., IL-10, IL-2, or TNFR2 agonism. One limitation of this
approach is centered on the observation that the Treg cells
grown in tissue culture become addicted to IL-2, thereby
jeopardizing their survival following transfer into an IL-2-poor
environment. A remedy may lie in genetically engineered
transferred Treg cells programmed to make their own IL 2.

Engineered Antigen-Specific Treg Cells (TCR-Treg)
Ideally, interference with Treg function would be targeted to the
specific autoantigens driving autoimmunity. To achieve this goal,
Tregs can be engineered with a predetermined antigen-specificity
by transfecting them with a viral vector encoding a specific T cell
receptor (TCRs). Whereas polyclonal Treg cells with unknown
Frontiers in Immunology | www.frontiersin.org 10
antigen specificities can induce unwanted effects, specifically,
systemic immunosuppression, using antigen specific Treg cells
could avoid this side effect. Also, antigen specific Treg cells have
been found to outperform polyclonal Tregs in terms of
immunosuppression. In a model system of murine T1DM, a low
number of TCR-Tregs could successfully prevent and even reverse
the disease (176). The limitation of this therapy lies in the difficulty
of identifying relevant autoantigens. In the case of tumor cells,
shared antigens, such as CD19 can be used to target engineered T-
cells to a specific site. To date, no autoantigens have been used in
clinical trials to suppress inappropriate immunity in autoimmune
disease because the design of a high-affinity autoantigen-specific
TCR to be transduced into Treg cells has remained a challenge.
Single-cell sequencing applied to identify relevant TCRs may
overcome some of these technical obstacles. Harnessing this
technique, thousands of TCR sequences from sites of
autoimmune tissue inflammation could be identified to create
personalized and specific Treg cells for patients with difficult-to-
manage autoimmune disease (177–179).
A

B

D

C

FIGURE 4 | Treg cells as Therapeutic Tools – Approaches in Development. Based on increasing understanding of Treg cell biology, several approaches are in
development to harness the immunosuppressive capabilities of Treg cells. Current attempts to develop versatile, effective and functionally competent cells and
reagents that can be applied as immunomodulatory treatments in autoimmune disease fall into four categories: (A) Cytokine-based therapy applying suppressive
cytokines (e.g., IL-10) or providing growth factors for Treg expansion (IL-2). (B) Ex vivo expansion of Treg cells. (C) Engineering of highly competent, antigen-specific
or chimeric antigen receptor Treg cells. (D) Exploitation of exosomes, small membrane vesicles derived from multivesicular bodies and released at the plasma
membrane. Treg cells package a diverse cargo into exosomes to communicate with their cellular neighbors and such exosomes can be generated as cell-free
reagents for precise delivery of information to other immune cells and to tissue cells.
February 2022 | Volume 13 | Article 844300

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jin et al. Treg Cells in Vascular Inflammation
Engineered Chimeric Antigen Receptor Treg (CAR-Treg) Cells
Analogous to CART cells in tumor therapy, Treg cells can be
efficiently engineered with a predetermined antigen-specificity by
transfecting them with chimeric antigen receptors (CARs). CARs
typically possess a single-chain variable fragment, usually a
binding moiety of a monoclonal antibody, combined with an
extracellular hinge, a transmembrane region, and, finally, an
intracellular signaling domain. The major advantage of CAR-
modified Tregs cells is that they can be engineered in a non-HLA
restricted manner and are therefore broadly applicable. Compared
to the wild-type TCR intracellular domain, the chimeric TCR
intracellular domain has a higher capacity to activate T cells
without co-stimulation and CAR-Treg cells are believed to
require less IL-2 for long-term survival. Thus, the introduction
of CARs into Treg cells provides both additional antigen
specificity and the required signals to fully activate Treg cells
and exploit their suppressive activity (180). Conversely, enhanced
receptor signaling equips CAR-Treg cells with greater activity than
polyclonal or TCR-Treg cells but may lead to too much
immunosuppression. If the targeted autoantigens are not solely
expressed in the inflamed site, the intense activation signaling of
CAR-Treg cells may have avoidable side effects and this has to be
weighed against the modest suppressive capacity of TCR-Treg
cells. Also, the independence of CAR-Treg cells from co-
stimulation may turn them into aggressive suppressors and their
inherited strengths of activation may make them more likely to
reach exhaustion. So far, CAR-Treg cells have not been used in
humans, but promising CAR-Treg therapies have been reported in
animal models of transplantation and autoimmunity (181).
Human T cells engineered with a chimeric antigen receptor
were able to eliminate autoantigen-specific B cells in pemphigus
vulgaris (182).

Exosomes as Potential Immunosuppressive Tools
Exosomes are nanosized extracellular vesicles (EV) that originate
in the endosomal system and are secreted to the extracellular
space when multivesicular bodies fuse with the cell membrane.
As lipid bilayer membrane-enclosed vesicles, exosomes are a
heterogeneous population, able to transport and deliver a
multitude of proteins and nucleic acids. Exosomes are taken up
by recipient cells, thus imposing strong immunomodulatory
effects. Release of exosomes is one of the major mechanisms
through which Treg cells communicate with surrounding cells
(Figure 1). CD8 Treg cells function by secreting NOX2-
containing exosomes that then suppress membrane-proximal
TCR signaling in nearby CD4+ T cells. The loss of NOX2-rich
exosomes defines the loss of Treg activity in GCA (12, 13). In
recent years, the concept of replacing dysfunctional Treg cells by
transferring exosomes has attracted attention, as it might be
possible to harness these vesicles for the therapeutic delivery of
RNAs, peptides, proteins, and synthetic drugs. As cell-free
reagents, therapeutic exosomes have numerous advantages, but
challenges remain in achieving proper targeting and delivery.
Some progress has been made in realizing the idea of therapeutic
exosomes. One example are exosomes derived from anti-tumor
CAR-T cells. Such exosomes were capable of attacking cancer
cells in a CAR-T cell-free manner (183).
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Methods have been developed to produce exosomes or exosome-
like nanoparticles with defined payloads and progress is being made
in designing ways of delivering the microvesicles (MV) to specific
cells, thus increasing local concentrations and minimizing systemic
side effects. Given the potent immunosuppression imposed by
NOX2-containing exosomes, NOX2-loaded MV or exosome-like
nanoparticlesmayprovide themeans tomimicTreg function in vivo.
This approachwould offer numerous advantages: (1) Better access to
inflamed tissue sites because of the much smaller size of exosomes
compared to Treg cells; (2) Potentially higher suppressive capacity.
Treg cells need tousemost of their energy andbiosyntheticmolecules
for cellularmaintenance, but artificial exosomes containingonly their
payloadcandeposithigh local concentrationsof suppressiveproteins;
(3) Easier control of unintended systemic immunosuppression. In
cell-based Treg therapy, it is impossible to completely remove
transduced Treg cells when generalized immunosuppression
becomes a problem. In contrast, exosomes are short-lived. (4)
Tight management of suppressive ability. Both cytokine and Treg
therapy rely on the response of the immune cells in the host to
produce the ideal effect. In patients that are immunocompromised,
this goal may be difficult to reach. However, exosomes can directly
manipulate the targeted cell population, thereby avoiding the
intermediate steps, bringing about a more controllable result; (5)
Low risk of contamination and rapid turnaround for production. Ex
vivo cell engineering is demanding, complicated by possible
contamination with pathogens and is a very time-consuming
process. Production of exosomes can be achieved under
industrialized conditions, can provide therapeutic reagents in a
short time, with a low badge to badge variability; (7) Finally,
exosomes can be designed to be independent of HLA restriction
and could thus be used in the majority of patients.

Summary and Conclusions
Autoimmune vasculitides are a heterogeneous group of disorders
that share in common that immune-mediated processes damage
blood vessels, almost always capillaries, arterioles, and arteries. In
some of the vasculitides, vascular injury results predominantly from
T-cell dependent pathways, in others, autoantibodies participate in
vessel wall destruction. The age range at disease onset is broad, most
patients require aggressive immunosuppressive therapy and some
of the disease manifestations are fatal or associated with severe
organ failure. Like in most autoimmune diseases, how self-tolerance
is lost remains enigmatic. Hence, disease management is limited to
broad and nonspecific suppression of host immunity, associated
with a high risk to compromise protective immunity against cancers
and infections. New therapeutic approaches in managing these
chronic and destructive autoimmune diseases are urgently needed.

Available data indicate low numbers and defective function of
circulating Treg cells in most patient populations. The common
denominator appears to be loss or redistribution of Treg cells, a
phenomenon shared with other autoimmune diseases (Table 1).
Given the diversity of target tissues, pathomechanisms and
immune cell abnormalities in the vasculitides, reduction in
circulating Treg cell numbers and their functional impairment
are almost certainly a consequence of systemic inflammation.
Accordingly, Treg cell numbers, phenotypes and ex vivo
functional competence often improve with immunosuppressive
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therapy. Dynamic changes in Treg cell numbers and fitness
argues against intrinsic defects in the patients’ Treg cells and
supports the concept that the inflammatory environment
critically shapes Treg cell survival, trafficking and competency.

Detailed information on the molecular mechanisms
underlying Treg cell dysfunction in vasculitides is mostly
lacking, with the exception of giant cell arteritis, in which loss
of function of immunosuppressive exosome production has been
attributed to the rerouting of intracellular vesicles (Table 1).
Precisely, patients’ CD8 Treg cells aberrantly express the
NOTCH4 receptor and excessive NOTCH signaling leads to a
defect in the formation of multivesicular bodies (MVB), thus
disrupting the production and release of immuno-inhibitory
exosomes. Such exosomes are loaded with NOX2 and are
highly efficient in controlling the responsiveness of CD4 T cells
and the overall size of the CD4 T-cell compartment.

It is possible that some of the vasculitides share abnormalities
in Treg cell function with other autoimmune diseases, particularly,
RA and SLE (Figure 3). Lack of interleukin 2, the most important
cytokine in Treg cell generation, expansion and survival is now
recognized as a disease mechanism in SLE (Figure 3). Here,
exogenous IL-2 emerges as a potential therapeutic intervention.
In RA, instability of the lineage-determining transcription factor
FoxP3 renders Treg cells short-lived and dysfunctional (Figure 3).
Mechanism-oriented investigation will be needed to uncover the
pathways that cause Treg cell loss-of-function in each of the
vasculitides. Progress in the field will require turning towards
molecular explorations of relevant Treg populations in secondary
lymphoid tissues as well as in the disease lesions.

The major appeal of increasing the knowledge of Treg cell
biology in the vasculitides derives from the potential to translate
Frontiers in Immunology | www.frontiersin.org 12
such knowledge into new and molecularly defined therapeutic
interventions. Multiple options exist, all exploiting the key
mechanisms through which Treg cells impose their
immunoregulatory capacity (Figure 4): treatment with inhibitory
cytokines; supplementation of IL-2; cell-based therapy transferring
ex vivo expandedor appropriately engineeredTreg cells and,finally,
replenishing immune-suppressive exosomes. Participation of
exosomes in the induction and maintenance of self-tolerance
emphasizes their potential to replace Treg cells in autoimmune
disease. They exhibit desirable features, such as a high delivery
efficiency, a long circulating half-life, an intrinsic ability to target
tissues, they are biocompatible and have minimal toxicity.
Appropriate clinical trials need to test the applicability of Treg
derived exosomes in vivo.
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TABLE 1 | Treg Dysfunction in Autoimmune Vasculitis.

Vasculitis Treg Phenotype Molecular Mechanisms

Frequency Ex vivo Function

GCA impaired aberrant NOTCH4 signaling
rerouted trafficking of intracellular vesicles
suppressed formation of multivesicular bodies
suppressed exosome biogenesis

TAK

activated Treg

impaired
loss of Th2-like Treg cells

PAN impaired
loss CTLA-4 expression

KD impaired
lack of Fc-specific Treg

decreased miR-155, increased miR-31
altered SOCS1/STAT5 signaling

Cryoglobulinemic Vasculitis impaired

HSP impaired
shifted Th17/Treg ratio

up: miR-1-3p, miR-19b-1-5p, miR-29b-1-5p,
down: miR-483-5p miR-1246

BD impaired
excessive IL-21

dysbalanced miRNA expression

AAV impaired GPA: FOXP3 lacking exon 2
GPA: upregulated miR-142-3p
MPA: diminished serum tryptophan

EGPA impaired
low CLTA-4, IL-10, TGF-b

diminished IDO
Arrow up, upregulated in patients; arrow down, downregulated in patients.
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