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Abstract 

Previously studies have shown that apoptosis-related genes play an essential role in normal cell turnover, 
maintaining the immune system function, and inducing cell death. However, their prognostic roles in clear 
cell renal cell carcinoma (ccRCC) have not been thoroughly investigated. In the present study, 
apoptosis-related genes expression profiles from The Cancer Genome Atlas (TCGA) and International 
Cancer Genome Consortium (ICGC) database were used as training dataset and external validation 
dataset, respectively. According to the systematical analysis of the apoptosis-related gene expression 
profile, we constructed a gene signature to determine the role of apoptosis-related genes in the survival 
of ccRCC. We discovered that patients in the low-risk group have a better survival than high-risk group 
and the signature could serve as an independent prognostic factor. A nomogram, including a signature and 
clinical factors, were constructed to estimate the individual survival probability. The Gene set enrichment 
analysis (GSEA) identified some significant pathways which may contribute to understanding the 
underlying mechanism of ccRCC. In addition, the prognostic efficiency of the risk model was further 
validated in the disease free survival (DFS) and the ICGC dataset, respectively. We also identified three 
molecular subtypes (named C1, C2, and C3) based on apoptosis-related gene expression. We found that 
C1 was corresponding to a worse survival outcome and showed a high drug sensitivity of sorafenib and 
sunitinib. C2 and C3 were corresponding to a better survival outcome and presented a low drug 
sensitivity to sorafenib and sunitinib. Moreover, we found that C2 and C3 have more likelihood to be 
respond to immunotherapy. Together, the apoptosis-related gene signature and three molecular 
subtypes may promote the understanding of the underlying molecular mechanism of ccRCC, and 
provided reference for developing individualized treatment of the ccRCC patients. 

Key words: clear cell renal cell carcinoma, apoptosis, gene signature, nomogram, molecular subtypes, drug 
sensitivity, immunotherapy. 

Introduction 
Worldwide, renal cell carcinoma (RCC) is one of 

the most common types of cancers, which is 
responsible for 2-3% cases of all adult malignant 
tumors. Statistically, as the high heterogeneous 
tumor, ~270, 000 new cases are diagnosed per year [1]. 
According to the cytogenetic and histological features, 
RCC can be mainly classified into three subtypes 
including clear cell renal cell carcinoma (ccRCC), 

papillary renal cell carcinoma (pRCC) and 
chromophobe renal cell carcinoma (chRCC) type, of 
which ccRCC account for 70-80% RCC cases [2].  

Different from other RCC subtype malignancies, 
ccRCC shows resistance to conventional 
chemotherapy and radiotherapy, especially for the 
advanced ccRCC, which promotes the development 
of alternative therapies, such as targeted therapy and 
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immunotherapy. Currently, numerous promising 
immunotherapy drugs, including PD-1/PD-L1, 
interleukin-2 (IL-2), and interferon (IFN) blocking 
agents, have been approved for the treatment of 
ccRCC [3], and the overall therapeutic effect is 
satisfactory [4]. However, some patients still showed 
poor responses and developed to drug resistance [5]. 
Moreover, targeted therapy drugs, including sunitinib 
and sorafenib, have been approved for the treatment 
of metastatic RCC, with fewer side effects and better 
selectivity than immunotherapy [6, 7]. Despite these 
progresses, patients with ccRCC still showed drug 
resistance [2, 8]. Consequently, there is an urgent need 
to identify more effective biomarkers and novel 
therapeutic targets for the treatment of ccRCC.  

Apoptosis also called programmed cell death is a 
primary cellular mechanism for mammals to 
eliminated DNA-damage cells and maintained tissue 
homeostasis [9, 10]. There are two main pathways, 
including the extrinsic pathway and the intrinsic 
pathway, to activate apoptosis [11]. The tumor cells 
can evade apoptosis via many ways. For example, the 
up-regulation of anti-apoptotic BCL-2 proteins and 
loss of BAX and/or BAK can inhibit the apoptosis 
function and promote tumorigenesis [12]. Moreover, 
inhibiting caspase function also can prevent the 
apoptosis function [12]. The loss of apoptosis will 
increase tumor cells survival time and accumulate the 
mutations, which can enhance invasiveness during 
tumor cell progression, stimulate the angiogenesis of 
tumors, and promote cell proliferation [13]. 

In the present study, we aimed to systemically 
analyze the expression of apoptosis-related genes 
listed in the TCGA dataset and ICGC dataset. We 
developed and validated an apoptosis-related gene 
signature and demonstrated that it could serve as an 
independent prognostic biomarker in ccRCC. Also, 
we identified three molecular subtypes named C1, C2, 
and C3. The subtypes exhibit distinct drug sensitivity 
to the sunitinib and sorafenib and probability to the 
immunotherapy.   

Materials and Methods 
Data collection 

Firstly, a total of 630 ccRCC samples' expression 
profiles and corresponding clinical information were 
downloaded from The Cancer Genome Atlas database 
(TCGA, https://portal.gdc.cancer.gov/, N= 539) and 
the International Cancer Genome Consortium 
database (ICGC, https://icgc.org/, N=91), respect-
tively. In order to ensure a reliability of the survival 
result in the TCGA dataset, we excluded the patients 
with survival time less 30 days and incomplete clinical 
information (survival status, survival time, age, 

gender, smoking, stage, and grade). As a result, 512 
samples from TCGA with survival time ≥ 30 days and 
complete clinical information (survival status, 
survival time, age, gender, smoking, stage, and grade) 
were served as the training dataset. The similar 
screening criterion was also performed on the ICGC 
dataset, and finally 90 samples were included our 
analysis as the external validation dataset. Moreover, 
we also obtained 161 apoptosis-related genes from the 
Molecular Signatures Database (MSigDB V7.1, 
https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp).  

Risk model construction 
The univariate cox regression analysis was 

conducted on apoptosis-related genes in the TCGA 
dataset using the “survival” R package. To increase 
the reliability and feasibility of the clinical prognosis 
of genes, we then made a selection based on genes 
that screened from univariate cox regression analysis 
result with p-value ≤ 0.05. Robust likelihood-based 
survival (rbsurv) analysis was performed using the 
“rbsurv” R package [14]. The genes found to be 
significant from the result of robust likelihood-based 
survival analysis were further applied to multivariate 
stepwise cox regression analysis to obtain the 
coefficient. According to the coefficient, the risk 
formula was built as: 

Risk score =  � (Expi ∗ βi)
N

i=1
 

where Exp i represents each gene expression and β i 

represents the coefficient of each gene. 

Survival analysis 
The patients were categorized into the low-risk 

group and the high-risk group based on the median 
risk score. The survival difference between groups 
was identified using the kaplan-meier and log-rank 
test analysis in a “survminer” R package 
(https://cran.r-project.org/web/packages/survmine
r). The univariate cox regression analysis and 
multivariate cox regression analysis were performed 
to determine the signature risk score as an 
independent prognostic factor. The receiver operating 
characteristic (ROC) curves analysis was used to 
evaluate the sensitivity and specificity of gene 
signature in “survivalROC” (https://cran.r-project. 
org/web/packages/survivalROC) R package. The 
ICGC dataset was served as the validation dataset to 
confirm the predictive capability of the gene 
signature. Moreover, the nomogram and calibration 
plots analysis were conducted on the risk score and 
clinical traits (grade, stage, and age) in the TCGA 
dataset by using the “rms” R package. 
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Table 1. The clinical information of the 512 ccRCC patients in the 
TCGA dataset. 

Characteristic  Alive  
(N =343 ) 

Dead  
(N =169 ) 

Total  
(N=512) 

P value 

Age <65 237 89 326 0.0004 
>=65 106 80 186 

Stage Stage I 214 42 256 <0.0001 
Stage II 43 13 56 
Stage III 70 48 118 
Stage IV 16 66 82 

T T1 213 47 260 <0.0001 
T2 47 21 68 
T3 82 91 173 
T4 1 10 11 

M M0 303 103 406 <0.0001 
M1 15 63 78 
MX 25 3 28 

N N0 146 83 229 0.0034 
N1 5 10 15 
NX 192 76 268 

Gender Female 115 61 176 0.634 
Male 228 108 336 

Grade G1 11 0 11 <0.0001 
G2 176 43 219 
G3 131 72 203 
G4 20 53 73 
GX 5 1 6 

Smoking 1-year 161 104 265 0.0059 
2-year 20 5 25 
3-year 131 52 183 
4-year 23 3 26 
5-year 8 5 13 

Radiation Yes 4 1 5 0.8857 
No 339 168 507 

Pharmaceutical Yes 11 62 73 <0.0001 
No 332 107 439 

 

Table 2. The clinical information of the 90 ccRCC patients in 
ICGC dataset. 

Characteristic Alive (N= 29) Dead (N=61) Total (N=90) P value 
Age <65 15 41 56 0.2365 

>=65 14 20 34 
T T1 10 44 54 0.0072 

T2 6 7 13 
T3 12 9 21 
T4 1 1 2 

M M0 22 59 81 0.0018 
M1 7 1 8 
MX 0 1 1 

N N0 24 54 78 0.7255 
N1 1 1 2 
NX 4 6 10 

Gender Female 13 26 39 1.000 
Male 16 35 51 

 

Gene Set Enrichment Analysis (GSEA) and 
Gene Set Variation Analysis (GSVA) 

The GSEA analysis was performed to explore the 
association between the gene signature risk score and 
pathway. The “c2.cp.kegg.v7.1.symbols.gmt” file was 
selected as a reference gene set, and the permutations 
were performed 1,000 times for each analysis. 
Moreover, the GSVA analysis was performed to 
calculate the scores for each ccRCC patients based on 

the defined gene sets of pathways. The significant 
pathways were screened with the FDR < 0.05. 

Characterization of molecular subtypes of 
ccRCC 

The previously downloaded apoptosis-related 
genes were exploited to non-negative matrix 
factorization (NMF) clustering analysis [15]. Before 
NMF clustering, a filtering step was performed. We 
retained the top 100 variance features genes in TCGA 
and ICGC dataset. The NMF clustering was further 
performed on these genes using the "NMF" R 
package, and the optimal k value was selected when 
the cophenetic correlation coefficient began to decline 
[16]. Moreover, principal components analysis (PCA) 
was employed to estimate the classification effect 
using the R package "princomp". The Tumor Immune 
Dysfunction and Exclusion (TIDE, http://tide.dfci. 
harvard.edu/) algorithm and subclass mapping 
(SubMap) analysis were applied to predict the clinical 
response to immunotherapy and immune checkpoint 
blockade.  

The prediction of chemotherapeutic response  
The chemotherapeutic response of each sample 

in TGCA was predicted on the Genomics of Drug 
Sensitivity in Cancer (GDSC, https://www. 
cancerrxgene.org/) database. Two commonly used 
drugs, Sorafenib and Sunitinib, which have been 
approved for the treatment of RCC, were selected. 
The prediction procedure was performed by using the 
"pRRophetic" R package, and the half-maximal 
inhibitory concentration (IC50) was evaluated using 
the ridge regression analysis [17]. Prediction accuracy 
was assessed by 10-fold cross-validation based on the 
GDSC training set. 

Statistical Analysis 
All analysis was implemented in the R 3.6.2 

environment. The categorical data were used for the 
Fisher's exact test or chi-square test, while the 
continuous data were used for the Kruskal-Wallis test. 
For all statistical analyses, a P value ≤ 0.05 was 
regarded as statistically significant.  

Results 
Acquisition of apoptosis-related gene 

A total of 161 apoptosis-related genes were 
retrieved from the molecular signature database v7.1 
(MsigDB, https://www.gsea-msigdb.org/gsea/ 
msigdb). The expression profile of these genes was 
further obtained from TCGA and ICGC datasets, 
respectively. In total, 512 patients in TCGA and 90 
patients in ICGC with their corresponding clinical 
information were exploited in the downstream 
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analysis, among them the TCGA dataset was 
exploited as the training dataset and ICGC was the 
external validation dataset (Table 1 and Table 2). 

Construction of apoptosis-related gene 
signature 

After screening the genes shared in the two 
datasets, a total of 150 apoptosis-related genes were 
analyzed using univariate cox regression analysis, 
and a total of 81 significant genes were selected (p < 
0.05). We further used the robust likelihood-based 
survival analysis (rbsurv) to make a selection for 
target genes. We then exploited it in the multivariate 
stepwise cox regression analysis. As a result, 20 
significantly apoptosis-related genes were selected 
(Table S1). According to the cox regression coefficient, 
we established a 20-gene signature. We then 
calculated the risk score for each patient in the TCGA 
dataset and ICGC dataset based on risk formula. 
Thus, patients were divided into the high-risk and the 
low-risk group, respectively. As shown in Figure 1A 
and B, patients in the high-risk score were 
corresponding to more death cases, while patients 
with prolonged survival time tend to have a low-risk 
score. The kaplan-meier (K-M) curve and log-rank test 
results indicated that patients in the low-risk group 
and high-risk group have a significant survival 
difference in the TCGA dataset and ICGC dataset (p < 
0.001), respectively (Figure 2A-B). The receiver 
operating characteristic curve (ROC) results 
demonstrated that a gene signature has a good 
performance in prediction for the survival of ccRCC 
(Figure 2C-D). Despite the prognostic efficiency of the 
risk model was demonstrated in the ICGC validation 
cohort. Considering the importance of the disease free 
survival info, we further evaluated the accuracy of the 
risk model. As showed in Figure S1A, the K-M curve 

analysis result identified that a significant survival 
divergence between high-risk and low-risk group (p < 
0.001). The ROC analysis result indicated that the 
accuracy of the mode in 1-, 3-, and 5-year were 0.753, 
0.735, and 0.722, respectively (Figure S1B). In 
addition, we also demonstrated that the risk model 
can serve as an independent prognostic factor for the 
DFS in ccRCC through the univariate cox regression 
analysis (Figure S1C) and multivariate cox regression 
analysis (Figure S1D).  

Association between clinical traits and 
apoptosis-related gene signature 

The prognostic value of the apoptosis-gene 
signature in the ccRCC clinical features was 
investigated by performing the K-M curve analysis 
and log-rank test. As shown in Figure 3A-F, the 
apoptosis-gene signature exhibited a significant 
prognostic value in ccRCC patients stratified by age, 
grade, and stage, suggesting that the 
apoptosis-related gene signature can predict the 
overall survival of ccRCC without considering the 
clinical factors. Moreover, the univariate cox 
regression analysis and multivariate cox regression 
analysis were used to evaluate the independent 
prognostic value of apoptosis-related gene signature 
in the prognosis of ccRCC. As shown in Figure 4A and 
4B, the risk score of the stage, grade, and age was 
listed as the independent risk factor associated with 
poor overall survival of ccRCC. Besides, we 
discovered that the risk score was significantly 
increased in stage and grade while showed no 
apparent difference in age (Figure S2A-C). These 
results indicated that apoptosis-related gene signature 
might have a significant impact on the malignant 
progression of ccRCC. 

 
 

 
Figure 1. The apoptosis-related gene signature risk score analysis in the TCGA dataset (A) and ICGC dataset (B). The upper panel represent represent the risk distribution; 
middle panel represent the survival time (years) of ccRCC patients that ranked by the risk parameters in a descending order, lower panel showed the apoptosis-related gene 
expression for each patients. 
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Figure 2. Prognostic value of the apoptosis-related gene signature in ccRCC. (A) Kaplan-Meier overall survival curves analysis for the patients assigned to high-risk and low-risk 
group in TCGA dataset. (B) Kaplan-Meier overall survival curves analysis for the patients assigned to high-risk and low-risk group in ICGC dataset. (C) Receiver operating 
characteristic (ROC) analysis of the accuracy for the apoptosis-related gene signature based risk score in the TCGA dataset. (D) Receiver operating characteristic (ROC) analysis 
of the accuracy for the apoptosis-related gene signature based risk score in the ICGC dataset. 

 

 
Figure 3. Kaplan-Meier (K-M) survival analysis of the signature risk score in ccRCC patients stratified by age (A and B), grade (C and D) and pathological stage (E and F). 
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Figure 4. Forest plot of the univariate and multivariate cox regression analyses evaluating the independent prognostic value of apoptosis signature in ccRCC patients. 

 
Figure 5. GSEA enrichment analysis for the low risk group of the apoptosis-related gene signature. 

 

Gene set enrichment analysis for the 
apoptosis-related gene signature  

To further explore the potential pathways of the 
apoptosis risk group in the ccRCC, we performed 
gene set enrichment analysis between the high-risk 
group and the low-risk group. As shown in Figure 5, 
patients in the low-risk group mainly involved in the 
ERBB signaling pathway, MAPK signaling pathway, 
MTOR signaling pathway, WNT signaling pathway, 
insulin signaling pathway, and renal cell carcinoma 
pathway, etc. 

Construction of nomogram based on gene 
signature and risk factors 

Nomogram is a powerful tool used to estimate 
the prognosis of oncology and medicine. By 
integrating gene signature risk model and 
independent risk factors (age, stage, and grade), we 
built a nomogram for ccRCC (Figure 6A). The C-index 
value was 0.774, indicating the high accuracy of the 
nomogram. Moreover, the calibration curve result 
displayed a high consistency in the probability of 1-, 
3- and 5-year overall survival between the actual 

observation and the nomogram prediction (Figure 
6C-D). 

Association between the apoptosis-related 
gene signature and tumor immune 
microenvironment 

To investigate the association between 
apoptosis-related gene signature and immune 
infiltration level, we used the CIBERSORTx online 
tools to calculate the infiltration level of 22 immune 
cells based on the gene expression data. As shown in 
Figure S3, the gene signature risk score was positively 
correlated with T cells CD4 memory activated 
(spearman coefficient = 0.46, p vale < 0.0001). We 
further applied the gene set variation analyses 
(GSVA) to explore the association between 
apoptosis-related gene signature and T-cell immune 
response in ccRCC. We discovered that the 
apoptosis-related gene signature was positively 
correlated T-helper 1 type immune response, positive 
regulation of T-helper 1 type cytokine production. 
Also, it presented a negative correlation with positive 
regulation of T cell-mediated immune response to the 
tumor cell and regulation of T cell-mediated 
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cytotoxicity directed against tumor cell target, 
indicating that apoptosis plays a role in T-cell 
immunity to tumors (Figure 7).  

Identification of molecular subtypes of ccRCC 
To identify potential molecular subtypes of 

ccRCC, the previously downloaded apoptosis-related 
genes were selected as the NMF cluster analysis. The 
cophenetic correlation coefficients were calculated to 
determine the optimal k value, and k =3 was chosen 
as the optimal cluster number after a comprehensive 
consideration (Figure 8A, cluster names C1, C2, and 
C3). The principal components analysis (PCA) 
analysis result and cluster heatmap showed a clear 
difference when k =3, indicating the robust and 
reliable clustering of the samples (Figure 8B-C). Other 
subtype survival analysis result revealed that C3 was 
corresponding to a better survival outcome while C1 
associated with worse survival (P = 5.303e-09) (Figure 
8D). Also, a similar cluster result was validated in the 
ICGC dataset. However, the subtype survival result 
was not significant, possibly due to the small number 
of sample size (P-value = 0.204) (Figure 9). We also 
found that some genes were differentially expressed 
between subtypes (Figure 10).  

Correlation of ccRCC subgroups with 
mutation and immune checkpoint 

Cumulative evidence showed that the tumoral 
genomic landscape was tightly associated with 
anti-tumor immunity. To explore the difference in the 
somatic mutation frequency among three subgroups, 
we retrieved the somatic mutation data from the 
TCGA database. As shown in Figure 11A, VHL is the 
most common mutation gene in ccRCC, and we 
observed that subtype C3 was corresponding to the 
highest mutations, while subtype C1 and subtype C2 
were inclined to middle and lowest mutation 
frequencies. Besides, we investigate the relationship 
between subtypes and expression levels of immune 
checkpoint genes that were selected based on current 
drug inhibitors or have been approved for the 
treatment of cancers. We found that the expression 
level of CCL2 and CD274 (PD-L1) was significantly 
increased from subtype C1 to C3. The expression level 
of CTLA4, IL1A, LAG3 presented a decreasing trend 
from C1 to C3. The CD276 (B7-H3), CXCR4, IL6, and 
TGFB1 were showed a high expression level in C1 and 
exhibited medium and lower expression levels in C3 
and C2 (Figure 11B). 

 

 
Figure 6. Construction of individualized prediction model for the survival of ccRCC patients. (A) A nomogram prediction model that developed on the basis of risk score, age, 
stage, grade for the overall survival of ccRCC patients in 1-, 3- and 5-year. Calibration curves validation of nomogram for predicting overall survival in 1-year (B), 3-year (C) and 
5-year (D) of ccRCC patients. 
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Figure 7. The association between T-cell-related immunity and apoptosis-related gene signature. T-helper 1 type immune response (GO:0042088); T-helper 2 type immune 
response (GO:0042092); positive regulation of T-helper 1 cell cytokine production (GO:2000556); positive regulation of T-helper 2 cell cytokine production (GO:2000553); 
positive regulation of natural killer cell-mediated cytotoxicity directed against tumor cell target (GO:0002860); positive regulation of T cell-mediated immune response to tumor 
cell (GO:0002842); regulation of T cell-mediated cytotoxicity directed against tumor cell target (GO:0002852). 

 

Immuno/Chemotherapies for ccRCC subtype 
Previously studies have reported that sorafenib 

and sunitinib were applied to the treatment of 
metastatic RCC in 2005 and 2006, respectively. Thus, 
we further evaluate the response of the three subtypes 
to the two drugs. We use ridge regression to train a 
prediction model on the GDSC cell line dataset and 
evaluate the satisfactory prediction accuracy through 
10-fold cross-validation. We calculated the 
half-maximal inhibitory concentration (IC50) value for 
each sample in the TCGA dataset based on the 
predictive model of the two drugs. We found that a 
significant divergence in the IC50 between three 
groups and subtype C1 is more sensitive to the two 
drugs (Kruskal-Wallis P-value =5.6e-15 for sorafenib 
and Kruskal-Wallis P-value =7.8e-06 for sunitinib) 
(Figure 12A-B). Presently, although the 
immunotherapy drugs, including PD-1/PD-L1 
blocking agents, have been used to ccRCC treatment, 
some patients remain responded poorly. We therefore 
applied the TIDE algorithm to predict the probability 
of response to immunotherapy, and the result 
indicated that subtype C2 (42/117 = 0.359) and 
subtype C3 (65/237 = 0.274) are more likely to 
respond to immunotherapy compared to subtype C1 
(31/158 = 0.196). We also employed the submap tools 
to compare the expression profile of the three 
subtypes with a published melanoma dataset, which 
contained 47 patients that responded to 

immunotherapies. We discovered that subtype C2 is 
more sensitive to respond to anti-PD-1 therapy, and 
subtype C3 is more susceptible to anti-CTAL4 
treatment (Figure 12C).  

Discussion 
ccRCC is the most frequent subtype of RCC, 

which has a poor prognosis and lack of effective 
markers. In the current study, we collected the 
expression of apoptosis-related genes and 
corresponding clinical information from the TCGA 
dataset and ICGC dataset. By performing a series of 
bioinformatic analyses (univariate and multivariate 
cox regression analysis, and rbsurv analysis), we 
identified an apoptosis-related gene signature, and 
further validated its efficiency in the ICGC dataset. 
Our signature can efficiently stratify risk patients' 
overall survival in the TCGA dataset and ICGC 
dataset, suggesting the signature's stability and 
reliability. Moreover, the signature's risk score 
presented a significant increase in stage and grade, 
further confirmed robustness of our signature. By 
performing univariate cox regression analysis and 
multivariate cox regression analysis on the clinical 
traits and signature risk score, we demonstrated that 
the signature could be served as an independent 
prognostic signature for the survival of ccRCC. We 
further constructed a nomogram based on the 
signature risk score and significant risk factors. The 
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calibration plot for the survival probability indicated a 
good concordance on the 1-, 3-, and 5-years overall 
survival in the TCGA dataset. Our GSEA results for 
the gene signature revealed that many pathways were 
significantly enriched, of which most were 
cancer-related pathways. Interestingly, all the 
significant pathways were enriched in the low-risk 
group, and none of the significant pathways existed in 
the high-risk group. From this point of view, the 
low-risk group might benefit more from the 
cancer-related pathway. Together, these results 
provided a potential direction to reveal the 
underlying mechanism of ccRCC. 

Cumulative researchers have discovered that 
cytotoxic T lymphocytes (CTL, CD8 T cells) and 
natural killer cells can induce apoptosis by releasing 
pro-apoptotic mediators from cytotoxic particles, 
thereby defend against intracellular pathogens and 
tumors [18]. Our study evaluated the relationship 
between signature risk score and 22 immune cell 

infiltration level calculated by CIBERSORTx tools. We 
found that the risk score was positively correlated 
with CD4 T cells memory activated CD8 T cells. 
Considering CD8 T cells play an essential role in 
apoptosis, it's no surprise that CD4 T cells memory 
activated CD8 T cells were tightly correlated with 
gene signature. Also, we discovered that the risk score 
was presented a negative correlation with the 
pathways, including positive regulation of T 
cell-mediated immune response to the tumor cell and 
regulation of T cell-mediated cytotoxicity directed 
against tumor cell target. Some relevant studies on 
this point have suggested that apoptosis can promote 
T-cell-mediated tumor cell destruction [19, 20]. 
Besides, tumors also can evade immune recognition 
and destruction via the induction of apoptosis in 
activated T lymphocytes [20]. In short, apoptosis is 
closely associated with T cells' regulation in ccRCC, 
and this can't be ignored in the immunotherapy of 
ccRCC.  

 

 
Figure 8. Non-negative matrix factorization (NMF) clustering analyses for apoptosis-related genes in TCGA dataset. (A) The cophenetic correlation coefficient was calculated 
when k = 2 to k = 7. (B) Principal components analysis for the apoptosis-related genes, each dots represent a sample. (C) Non-negative matrix factorization clustering heatmap 
for apoptosis-related genes when k =3. (D) Kaplan-Meier survival analysis for the ccRCC patients when k =3. 
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Figure 9. Non-negative matrix factorization (NMF) clustering analyses for apoptosis-related genes in ICGC dataset. (A) The cophenetic correlation coefficient was calculated 
when k = 2 to k = 7. (B) Principal components analysis for the apoptosis-related genes, each dots represent a sample. (C) Non-negative matrix factorization clustering heatmap 
for apoptosis-related genes when k =3. (D) Kaplan-Meier survival analysis for the ccRCC patients when k =3. 

 
Figure 10. Association between subtypre and clinical feature in TCGA dataset (A) and ICGC dataset (B). 
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Figure 11. The relationship between ccRCC subtypes and mutations and immune check point. (A) Oncoprint of mutation frequencies for ccRCC subtypes. (B) the expression 
profile of known immune checkpoint of ccRCC subtypes. 

 
Figure 12. Differential putative chemotherapeutic and immunotherapeutic response for the ccRCC patients. The violine box plots of estimated IC50 for Sorafenib (A) and 
Sunitinib (B) in subtypes of ccRCC. (C) Submap analysis revealed that subtype C2 is more likely responded to programmed cell death protein 1 inhibitor (Bonferroni-corrected 
P value = .0280) and subtype C3 is more sensitive to cytotoxic T-lymphocyte-associated protein 4 inhibitor (Bonferroni-corrected P value = .0300). 

 
Although numerous ccRCC potential subtypes 

based on gene expression have been proposed in 
recent years, there is no current consensus about 
molecular taxonomy. To distinguish reliable 
molecular subtypes of ccRCC, we employed the 
apoptosis-genes to establish stable molecular 
subtypes of ccRCC. Three subtypes of ccRCC named 
C1, C2, and C3 were identified. The subtype C1 was 
corresponding to a worse survival outcome, while 
subtype C2 and C3 associated with a better survival 
outcome. Moreover, previous studies have shown 
that sorafenib and sunitinib are widely used to treat 
metastatic RCC patients. Thus, we evaluated the 
sensitivity of these two drugs by using the GDSC 
database and the result showed that subtype C1 was 
more sensitive to the drugs compared to subtype C2 
and C3, indicating that the patients in C1 may have 
more benefit from the two chemo drugs. In addition 
to drug sensitivity, we also focus on the likelihood of 
three subtypes responding to immunotherapy. We 
discovered that subtype C2 and C3 were more likely 

to respond to immunotherapy than subtype C1, 
suggesting that the C2 and C3 patients have more 
likelihood to be responded to the immunotherapy. 
These results may also partially explain why C2 and 
C3 may overall have a better prognosis.  

Briefly, we sought here to understand the 
relationship between apoptosis-related genes 
expression and ccRCC systematically. We constructed 
a gene signature that has some clinical significance to 
the prognosis of ccRCC patients. We also identified 
three molecular subtypes of ccRCC based on the gene 
expression, which may benefit the treatment of ccRCC 
patients. However, several limitation need to be 
acknowledged. First, the sample size in the ICGC 
dataset was small, lacking some essential clinical 
information (stage, grade), which limited the 
downstream analysis. Secondly, there is a lack of 
some experiments to validate and support our 
findings.  

In summary, we developed and validated an 
apoptosis-related gene signature of ccRCC. This 
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model can be served as an independent prognostic 
factor and have some essential functions and clinical 
significance, which may contribute to understanding 
the underlying molecular mechanism of ccRCC. To 
the best of our knowledge, this is the first attempt to 
make a comprehensively investigation of the 
prognostic value of the apoptosis-related genes in 
ccRCC. Besides, we also identified three robust and 
reliable molecular subtypes. Those patients in subtype 
C2 and C3 could benefit from immunotherapy and 
drugs, which may provide an essential reference for 
clinicians to develop a personalized treatment.  
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