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Abstract
Purpose Microsurgical techniques require highly skilled manual handling of specialized surgical instruments. Surgical
processmodels are central for objective evaluationof these skills, enablingdata-driven solutions that can improve intraoperative
efficiency.
Method We built a surgical process model, defined at movement level in terms of elementary surgical actions (n = 4)
and targets (n = 4). The model also included nonproductive movements, which enabled us to evaluate suturing efficiency
and bi-manual dexterity. The elementary activities were used to investigate differences between novice (n = 5) and expert
surgeons (n = 5) by comparing the cosine similarity of vector representations of a microsurgical suturing training task and
its different segments.
Results Based on ourmodel, the experts were significantlymore efficient than the novices at using their tools individually and
simultaneously. At suture level, the experts were significantly more efficient at using their left hand tool, but the differences
were not significant for the right hand tool. At the level of individual suture segments, the experts had on average 21.0 %
higher suturing efficiency and 48.2 % higher bi-manual efficiency, and the results varied between segments. Similarity of the
manual actions showed that expert and novice surgeons could be distinguished by their movement patterns.
Conclusions The surgical process model allowed us to identify differences between novices’ and experts’ movements and
to evaluate their uni- and bi-manual tool use efficiency. Analyzing surgical tasks in this manner could be used to evaluate
surgical skill and help surgical trainees detect problems in their performance computationally.

Keywords Microsurgery · Surgical process modeling · Bi-manual dexterity · Surgical education

Introduction

Small-scale procedures performed using a surgical micro-
scope require a high degree of uni- and bi-manual dexterity,
which thus form an essential part of surgical expertise.
Surgical expertise has traditionally been assessed using
mentor-trainee methods that suffer from subjectivity and
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time consumption issues [3,25,28] of human observers. With
advances in computational power and the emergence of new
sensing technologies, the focus has turned to developing
objective computer-assisted evaluation methods. [25]

A central requirement toward this goal has been the devel-
opment of surgical process modeling. [17] Surgical process
models are defined, for example, in terms of the actions of
the surgeon or the surgical team. [21–23] An early work of
MacKenzie et al. [19] showed a way to decompose a surgical
procedure into a sequence of higher- and lower-level activi-
ties. The level of abstraction atwhich the activities are defined
is called granularity. [11,23] The granularity of the model
can be defined in different ways. For example, MacKenzie et
al. defined the surgical procedure in terms of steps, sub-steps,
tasks and sub-tasks. Likewise, several different approaches
have been used to define the model structure. In addition to
the hierarchical scheme used by MacKenzie et al., another
approach that has been used by several authors is to define
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Fig. 1 Frame from one of the recorded videos, showing the four targets:
tools (1) (left: microforceps, right: needleholder), the needle (2), the
incision (3) and the thread (4). In this example, the activity label for the
needleholder would be<transport;incision> since it is transporting the
needle to the incision, while the microforceps would be labeled with
<hold still; incision>

the surgical activities as ordered lists (or n-tuples) of surgi-
cal actions, anatomical structures and instruments. (see, for
example [5,8,26]).

Surgical process modeling enables the quantitative analy-
sis of surgical processes. Such analysis, in turn, enables more
objective classification of surgical expertise [17], compari-
son of surgical procedures [6], evaluation of learning curves
[9], context-dependent support [21], prediction of surgeon’s
actions [7] and the remaining intervention time. [10] Alto-
gether, surgical process models are a precursor for intelligent
surgical systems.

Here, we expand on the previous approaches to surgi-
cal process models that modeled the activities as n-tuples.
[5,8,26] First, we define the surgical activities using only a
few elementary actions and targets, with the aim of discover-
ing if a surgical process model defined in such terms can still
reveal differences in the participants’ microsurgical skills.
As one of the activities, we include nonproductive move-
ments, which allows us to evaluate participants’ efficiency.
We then combine the annotation of elementary surgical activ-
ities with a segmentation of the surgical task into phases. By
applying the surgical process model to video recordings of
microsurgical training tasks, we can compare the similarity
and efficiency between performances during the whole task
andwithin the related segments, and thus evaluate overall dif-

ferences between participants, and to discover the segments
where the participant’s performance deviated the most.

We investigate if the surgical processmodel can be applied
to extract sufficient information fromamicrosurgical training
task to evaluate if: (1) expert surgeons will use their tools
more efficiently than novices, (2) expert surgeonswill display
a higher level of similarity among surgical segments than
novices and (3) experts’ will more frequently use their tools
bi-manually than novices do in the microsurgical tasks.

Methods andmaterials

Experiment

Eleven participants were grouped into novices and experts.
The experts (n = 6) were plastic surgeons who were
performing 30–60 monthly surgical operations using micro-
scopes or loupes, whereas novice participants (n = 5) had
medical training but no clinical experience in microsurgical
techniques. The experiment was approved by a local ethics
committee and conducted in accordancewith theDeclaration
of Helsinki.

The experiment was conducted in a surgical simulation
laboratory. The participants completed 12 sutures on amicro-
surgical training board. The board had two rows of 3 boxes,
each lined with a latex skin that had a pre-cut incision for
making the suture (Fig. 1). Before starting the experiment,
the participants were given instructions and asked to sign a
consent form.

The participants completed the sutures using microsurgi-
cal needle holders and suturing forcepswith 9.3mm3/8 taper
head needles attached to 7–0, 50 cm prolypropylenemonofil-
ament sutures. One expert and one novice participant were
left handed, but all participants held the microforceps in their
left hand and the needleholder in their right hand.Microscope
used in the experiment was a Zeiss OPMI Vario S88 and it
was equipped with a camera for recording the scene under
the microscope.

Surgical process model

Our surgical process model was developed as a combination
of top-down and bottom-up approaches. First, an expert neu-
rosurgeon split the sutures into segments (Table 1). Then,

Table 1 Suture segments with
explanations. The surgical task
also included cutting the ends of
the thread after the three knots
had been completed, but this
part was left out of the analysis

Order Suture segment Description

1 Needle transport A needle is picked up and transported to the incision

2 Piercing The needle pierces the incision on both sides

3-5 Knot 1-3 Three surgical knots with differing number of loops are completed
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Fig. 2 Examples of
nonproductive movements with
the microforceps (MF). First
row Microforceps are waiting
while the needleholder (NH)
attempts to grasp the thread.
Second row Microforceps are
holding the end of the thread
and waiting while the
needleholder is attempting to
grasp the other end

we defined a set of activities in terms of elementary surgical
actions and targets, and used them to describe the segments
(Fig. 3). We annotated the videos manually, labeling each
frame with action–target pairs for both hands. The surgeons’
left- and right-hand tool movements were labeled separately.

The activities were defined similarly to Forestier et al.
[5,7], who defined the surgical activities as n-tuples, a mathe-
matical term to describe a construction of a series of ordered
elements, including anatomical structures, surgical actions
and instruments. We replaced the anatomical structure with
a general class of targets consisting of the tool, the needle,
the thread and the incision.

For the actions, we created four possible categories:move,
transport, grab and hold still. Transport and movement are
distinct because in the former, the operator must control the
force used to handle the tool. The different labels are dis-
played in Table 2.

When the tool was not doing anything meaningful to
advance the suture, the activity was labeled having no tar-
get and the movements were considered nonproductive. This
commonly occurred when one tool was waiting for the sec-
ond tool to complete some activity, see Fig. 2 for examples.

The activities were annotated by one of the authors. First,
we determined a verbal description of what the tool is doing.
The description could, for example, be, ”transporting the nee-
dle to the the incision,” or ”grasping the thread.” From these
descriptive sentences, we would identify the action (”trans-
port” in the first example and ”grasp” in the second) and
the target of the action (”incision” in the first example and
”thread” in the second). Very short activities were merged
with the previous activity, such as if the tool paused briefly
(<0.5 s) during transportation. Likewise, short actions that
in previous studies have been described with separate verbs
were merged with the previous activity. For example, at the
start of the suture the participant transports the needle to the
incision and pierces the latex surface on both sides of the

Table 2 Terminology used in the surgical process model for defining
the surgical activities âckl . Because the tools remained the same, the
surgical activities are defined by the actions and targets

Tools Actions Targets

Microforceps Move Needle

Needleholder Transport Incision

Not visible Hold still Thread

Grasp Tool

No target/idle time

incision. This entire movement, until the needle is released,
was described with the activity < transport; incision >.

In the <action;target> tuples, target is understood to
be a ”target of interest,” i.e. the action does not necessar-
ily imply movement toward the target. For example, when
the thread is being extracted after piercing, the goal is to
transport the thread away from the incision, so the surgi-
cal action is transport, the target is incision and the label is
<transport;incision>.Altogether, there are 18possible activ-
ities (4 actions x 4 targets + nonproductive movements + tool
not visible), although some activities such as <grab;tool>
never occurred (Table 2).

The surgical activities are considered as basis vectors,
which are used to define vectors

svk =
[

β1âck1, . . . , βnâckn
]

(1)

The component βl is the duration of the elementary surgical
activity âckl , normalized so that the length of the vector svk
is 1. At segment level, we obtained a vector for each segment
in Table 1, and at suture level, we obtained one vector for
each suture.
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Fig. 3 Example of the surgical process model description of the sutures
for an expert and a novice. The figure shows the first two segments in
terms of their <action;target> pairs. The expert transports the needle
to the incision with the right hand while moving the left hand to the

incision to support it while the needle is being pierced. The novice on
the contrary fails to use both hands efficiently and has manymovements
without target

Similarity measure and classification

The similarity between two segment vectors is defined to be
the cosine similarity,

cos(θ) = svi · svj
||svi||||svj|| , (2)

or the projection of the vector svi on sv j . Since all vectors
have length 1 by definition, the similarity between two seg-
ments or sutures is the dot product of their respective vectors.
The similarity was calculated separately for left and right
hand tools.

For each suture, we calculated the similarity to every
other suture in the dataset, excluding the participant’s own
sutures. Then, we calculated each suture’s mean similarity to
novice and expert sutures. In otherwords, each suture has two
similarity values: a mean similarity to novices, and a mean
similarity to experts.Whether the suturewas closer to experts
or novices was determined by subtracting the novice simi-
larity from expert similarity: more negative values indicate
closer similarity to novices, whereas positive values indi-
cate closer similarity to experts. We compare the similarity
at suture and segment levels independently for the microfor-
ceps and the needleholder.

Efficiencymeasures

Having included the nonproductive movements as possible
surgical activities, we can define suturing efficiency as the

ratio of time spent on useful movements and total time:

Sef f = T − tw
T

(3)

where T is the total task duration and tw the time spent on
nonproductivemovements, i.e. the surgical activities that had
no clear targets or when the tool was not visible.

Similarly, we can define bimanual efficiency

Bef f = tB
T

(4)

where tB is the total time when both hands were simultane-
ously doing something productive, in other words the tools
were visible and the surgical activities had a definable tar-
get.

Validation analysis

Although the action–target pairs are technically based on
objective definitions, in some situations determining the cor-
rect target could leave room for interpretation. To assess the
sensitivity of the results to annotation errors, we created
new datasets by introducing artificial noise to the orig-
inal annotations. The noise was added by switching the
target labels with some probability ranging from 10% to
100%, with 10% point increments. The action labels were
not changed because, with few exceptions, it is clear if
the tool is moving, held still, transporting, grasping or not
visible. Using the noise datasets, we conducted the analy-
ses that were done with the original dataset to determine
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the highest percentage of noise (representing annotation
errors or disagreements arising from different interpre-
tations) that would invalidate the results. The validation
analysis is similar to the one used by Forestier et al. in
[5].

Statistical analysis

We used linear mixed effects models to model the effect
of expertise on efficiency and similarity. Both of these are
measured on a bounded interval, which could pose problems
with heteroscedasticity.However, at suture level the observed
values were far enough from the bounds that the effect of
heteroscedasticity was small. This was confirmed with diag-
nostics plots and Levene’s tests for each model. At segment
level, therewasmore variation in residuals between segments
and skill; therefore, the segment-level models used segment-
and skill-dependent variances for the random effects.

At suture level, the models were fitted with expertise as a
predictor for both efficiency and similarity. Hypothesis test-
ing was done using t tests with Satterthwaite’s method.

At segment level, we are not interested in predicting the
values for each segment, but in establishing whether seg-
ment and expertise have an interaction effect on similarity or
efficiency. Thus at segment level, the hypothesis testing was
done with type III ANOVA.

For both suture- and segment-level models, we included a
random intercept for each participant to account for repeated
measures. We compared visually the results of the two left-
handed participants within their respective expertise groups
and saw no indication that the handedness impacted their
results.

Annotations, pre-processing of the data and the statistical
analyses were done in Python using the Pandas data analysis
library [20] and R [24] using the lme4 package [1] and the
lmerTest package for hypothesis testing [16].

Results

Of the 11 participants, one expert participant had to be dis-
carded due to equipment failure. From the remaining 10
participants, we annotated the first 5 sutures where all the
segments were completed successfully. However, for two
novice participants we had to compromise by including three
sutures without the third knot, because the sutures were oth-
erwise successful, and other sutures from these participants
had other issues. A fully completed suture had 5 segments
(Table 1). Between piercing and the first knot (segments 2–
3), as well as after the third knot (segment 5), there were parts
where majority of the movement was outside the camera’s
field of view, and these parts were not included in the anal-
ysis. In total, the final dataset contained 50 sutures and 247
segments for both hands, or a total of 494 annotated segments.

Similarity

At suture-level, the experts were significantly more similar
to other experts and novices were closer to other novices in
both the microforceps and needle holder activities (Table 3).

At segment level, the interaction effect of segment and
skill on similarity was significant (F = 7.558, p < 0.001)
as well as the main effects of skill (F = 36.336, p < 0.001)
and segment (F = 14.059, p < 0.001) for the microforceps
activities. For needleholder the interaction effect (F = 36.936,
p<0.001) and the main effects of skill (F = 62.205, p <

0.001) and segment (F = 12.694, p < 0.001) were also
significant. Figure 4a, 4b show the mean expert and novice
overall similarities for sutures and segments, respectively.

Suturing efficiency

Suturing efficiency was measured as the percentage of pro-
ductive movements (tools were visible and the activity had
a target). At suture level, the results indicated that novices
have a lower efficiency with the microforceps (β = -0.200,
95% C.I. [−0.347, −0.052], variance of the random effect
of participant σ 2 = 0.1112) but not with the needleholder (β
= -0.095, 95% C.I. [−0.178, −0.013], variance of the ran-
dom effect of participant σ 2 = 0.0522). At segment level,
the interaction effect of skill and segment was significant for
the microforceps (F = 3.196, p = 0.014), as well as the
main effects of skill (F = 5.580, p = 0.046) and segment
(F = 9.465, p < 0.01). For needleholder, the interaction
effect was significant (F = 3.073, p = 0.017) as well as
the main effect of segment (F = 2.659, p = 0.033), but the
effect of skill was not significant, (F = 4.198, p = 0.075).
On average, the experts had 29.3 % higher efficiency in their
microforceps movements, and 12.6 % higher efficiency in
their needleholdermovements, or 21.0%higher efficiency on
average. Figure 5a, b show the overall efficiency for novices
and experts at suture and segment levels.

Bimanual efficiency

Bimanual efficiency was defined as the percentage of the
total suturing duration when the participants simultane-
ously used both hands with a target. For sutures, the novice
bimanual efficiency was lower (β = −0.255, 95% C.I.
[−0.438, −0.072], variance of random participant effect
σ 2 = 0.1422).

At segment level, type III ANOVA indicated a significant
effect of skill (F = 7.244, p = 0.027) and segment (F =
4.961, p < 0.01), but the interaction effect of expertise and
segment was not significant (F = 1.130, p = 0.343). On
average, the experts had 48.2 % higher bimanual efficiency.
Figure 6a, b show the bimanual efficiency for novices and
experts at suture and segment levels.
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Table 3 Similarity of experts
and novices at suture level, with
more positive values indicating
closer similarity to experts and
negative values closer similarity
to novices. The p column
indicates whether expertise had
a significant effect on similarity.
σ 2 is the variance of the random
effect of participant

Overall
Tool (hand) Group Similarity (95% C.I.) p σ 2

MF (left) Expert 0.228 (0.167, 0.290) *** 0.06

Novice −0.145 (−0.207, −0.084)

NH (right) Expert 0.206 (0.157, 0.255) *** 0.01<

Novice −0.101 (−0.150, −0.052)

∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01

Fig. 4 Overall similarity at
suture level (a) and segment
level (b), for the left hand tool
(microforceps, MF) and the
right hand tool (needleholder,
NH). More negative values
indicate closer similarity to
novices and positive values
closer similarity to experts

(a)

(b)

Validation results

For the similarity analysis, the validation analysis showed
that even with the noise dataset where 100% of the target
labels were changed, the differences between novices and
experts remained statistically significant at suture level for
microforceps (expert similarity = 0.047, novice similarity =
−0.043, difference statistically significant with t = −2.985,
p = 0.018) and the needleholder (expert similarity = 0.011,
novice similarity = −0.135, t = −7.931, p < 0.001). At
segment level, the results for microforceps were significant
for skill (F = 7.358, p = 0.027) and segment (F = 28.521,
p < 0.001), but not their interaction (F = 1.792, p =
0.131). For needleholder, the results were significant for skill
(F = 29.813, p < 0.001), segment (F = 2.648, p = 0.034)
and their interaction (F = 13.770, p < 0.001).

The results imply that the differences were based more
on the actions, and that novices and experts who participated
in this study could be distinguished even without consid-

ering the targets. To test this, we calculated the similarity
using only the four actions, tool not visible and idle time.
The results at suture level were significant for microfor-
ceps (expert similarity = 0.124, novice similarity = 0.011,
t = −2.840, p = 0.022) and needleholder (expert simi-
larity = 0.215, novice similarity = −0.172, t = −12.439,
p < 0.01). Because even determining the idle time can
require some interpretation of the ongoing task, we also cal-
culated the similarities using only the four actions, which
can be most objectively seen from the videos. The results at
suture level remained significant for the needleholder (expert
similarity = 0.196, novice similarity =−0.169, t = −11.550,
p < 0.01), but not for the microforceps (expert similarity =
0.052, novice similarity = 0.053, t = 0.054p = 0.958).

The difference in microforceps suturing efficiency rema
ined statistically significant in the dataset where 60% of
the target labels were changed (novice efficiency −0.1648,
t = −2.567, p = 0.0333. At segment level, the effi-
ciency difference remained statistically significant in the
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Fig. 5 Left hand tool
(microforceps, MF) and right
hand tool (needleholder, NH)
suturing efficiency at suture
level (a) and at segment level
(b)

(a)

(b)

(a)

(b)

Fig. 6 Comparison of bimanual efficiency for sutures (a) and segments
of suturing (b)

dataset where 30% of the target labels were changed for the
main effect of skill (F = 6.265, p = 0.0367), segment
(F = 5.596, p < 0.001) and their interaction (F = 3.165,
p = 0.015). Difference in bimanual efficiency remained
statistically significant with the dataset where 30% of the

labels were changed (novice efficiency−0.159, t = −2.686,
p = 0.028). At the same noise limit, the segment-level dif-
ferences were significant for skill (F = 5.596, p = 0.046)
and segment (F = 3.141, p = 0.015), but not for their
interaction (F = 2.061, p = 0.087).

Discussion

In this paper, we proposed and defined a newmovement-level
surgical process model and demonstrated how the model
reveals important differences in novice and expert surgeons’
uni- and bi-manual efficiency during a microsurgical proce-
dure. We were able to show that there is a clear difference
in how efficiently the novices and experts used their instru-
ments, and that the participants’ level of expertise can be
differentiated by their movement patterns even when the
surgical process model is defined with minimal number of
movement types.

By measuring the cosine similarity between surgical pro-
cess model descriptions of tool usage, we were able to show
significant differences between novices and experts. Our
results indicate that the movements with the microforceps
(left hand tool) were consistently different between the two
groups, and that the needleholder movements diverged more
during knotting (Fig. 4b). Using a similar surgical process
modeling approach than the one described here,Uemura et al.
[26] found that the differences between novices and experts
were larger for the left hand. A notable result is that it is the
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similarity to experts that actually separates novice and expert
surgeons. The likely reason is that the novices’ movements
are less consistent, i.e. there is no ”typical novice,” and there-
fore, no participant strongly resembles the novice, regardless
of skill.

Our suturing efficiency results show that 32.0 % of the
novices’ microforceps movements were nonproductive (Fig.
5a). Uemura et al. found that the novices spent more time
without the hands engaged in productive activities (which
they termed dwell time) during a laparoscopic training task.
[26] Their results indicated that novices spent on average as
much as 18.65 % of the task duration on dwell time. Our
definition included the time when the tools were not visible,
with the assumption that the participants would not be doing
anything productive without seeing their tools. However, in
someparts of the task the tool had to bemoved out of view, for
example, when the thread is being extracted after piercing.

The results on bimanual efficiency align with prior stud-
ies that focused on other surgical settings and used different
approaches to movement analysis. Hofstadt et al. defined
bimanual dexterity as the correlation between non-dominant
and dominant hand instrument velocities and found that
experts had significantly higher correlations than novices.
Likewise, they found that experts required fewer sub-
movements and were better than novices at using their
non-dominant hand, indicating better efficiency similar to
our results [12]. Other studies have also reported that novices
tend to neglect their non-dominant hand in laparoscopic tasks
[14,15,18]. Zulbaran-Rojas et al. reported that the novices’
non-dominant hand had not only less activity than the domi-
nant hand (measured by velocity and traveled distance), but
also more wasted movements, and suggested that the ability
to use both hands equally is a sign of expertise [30]. Similar
findings have been reported by Uemura et al., who defined a
novel surgical skill score metric based partially on bimanual
movements and found that experts were better at coordinat-
ing their movements bimanually [27]. Though the definition
of bimanual dexterity in these studies differs from ours, their
findings agree with our results.

A segment-level comparison of efficiency and similarity
showed that the differences between novices and experts var-
ied depending on the phase of the task (Figs. 4b, 5b, 6b).
Earlier research has shown that surgical trainees find some
parts of surgical procedures more difficult than others [4],
confirmed also by pupillary-response studies [2]. In [29], the
authors compared novice, intermediate and expert partici-
pants’ efficiency at task and segment levels, and found that
that the novice and intermediate participants were less effi-
cient in all segments, echoing our results (Figures 5b and 6b).
Interestingly, our results (see Fig. 5b) show that the experts’
efficiency in the first segment is actually slightly lower than
the novices’, though the difference is not significant. This
can be explained by the fact that the experts took more care

to adjust the needle’s position properly before insertion, and
even though these movements are important for ensuring a
high quality suture, the extra movements during adjustment
may contain movements that are counted as nonproductive.

Previous studies have defined surgical process models
using several different actions, targets/structures and instru-
ments. For example, Uemura et al. [26] used nine actions,
six instruments and four different structures. In the recent
MISAW challenge [13], where the goal was to recognize
surgical workflow at different granularity levels, the surgical
activities were defined using ten actions (”Verbs”) and nine
targets. Our results indicate that a model defined even with
extremely limited vocabulary can still differentiate novices
from experts in a simulation training task. TheMISAW chal-
lenge results showed that, of the different granularity levels,
activities were hardest to recognize. A limited vocabulary
of activies such as the one used in this work might be eas-
ier to recognize while still being useful for extracting basic
information about the participant’s surgical performance.

One limitation of this study is the fact there are sub-
tle mistakes that the surgical process model cannot reveal.
The small number of activities used to define the model
may lead to same similarity values for procedures even
when the precision of the movements—for example dur-
ing piercing—is different. This limitation is to some extent
inherent to any surgical process model; to detect the subtler
mistakes would require supplementing the surgical process
analysis with other sources of data. Here, we also compared
novices whose movements may be easily distinguishable
from experts. Whether this method would be able to detect
differences between experts and intermediate participants
has to be investigated in future studies.

Another possible limitation related to the choice of gran-
ularity is that when the elementary activities are defined
at basic movement level, the transition from one activity
to another can become less clear, and at the same time
the duration of the individual activities becomes shorter—
which means that errors in the annotations could affect the
results. To evaluate the results’ sensitivity to annotation
errors, we conducted several validation tests with artificial
noise datasets. The validation results showed that even with
serious disagreements between annotations, the novices and
experts were still distinguishable. In fact, some differences
remained significant even with a bare-bones model consist-
ing only of the four actions.

The surgical process model defined here combined two
different approaches. First, it consists of the top-down
description of surgical segments, which have a fixed order
and whose definition requires higher-level information of
the entire surgical process. Second, the model includes
the bottom-up description of elementary surgical activities,
determined using low-level information from short clips of
the surgical process. The elementary surgical actions com-

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:305–314 313

prised of a few basic actions and targets, yet allowed the
computational assessment of the surgeon’s bimanual dex-
terity and movement patterns not only at suture level, but
also in different segments of the suture. Constructing the
model in this manner means that the numerical results can be
more easily translated into qualitative feedback. For example,
a segment level comparison of similarity between surgical
trainee’s suture and expert’s suture could show that they dif-
fered mostly in the beginning of the suture, and comparing
the activities in this segment could show that the difference
arose mainly because the novice failed to use the left hand
tool efficiently. Although in our case the elementary actions
were analyzed manually by a human observer, the simplicity
of the actions facilitates their automated detection.

Future work requires the development of an automated
method for detecting the surgical activities. In microsurgery,
one way of accomplishing this would be by applying com-
puter vision methods to the videos recorded from modern
surgical microscopes. Automatic detection of the surgical
activities would allow the comparison of surgical trainees’
performance to that of typical expert surgeons. Comparing
the similarities at segment level will help the trainees to pin-
point troublesome parts of the procedure, in other words they
could be provided with automatic feedback that does not
require expert intervention. During clinical surgery, detec-
tion of overt differences of surgical actions when compared
to experts performing a similar case—or even to the sur-
geon’s own previous cases—could provide a safety measure
by detecting when the procedure is deviating from safe con-
duct.

Acknowledgements J.K. is grateful to Saastamoinen foundation for
the travel grant which enabled this research. The authors would like
to thank Dr. Hana Vrzakova and Dr. Feng Feng for comments on the
manuscript, and the University of Alberta, especially Dr. Eric Fung for
recruitment, and the Surgical Simulation Research Laboratory and the
Advanced Man-Machine Interfaces Laboratory for support during this
research.

Funding Open access funding provided by University of Eastern Fin-
land (UEF) including Kuopio University Hospital. Travel grant by
Saastamoinen Foundation.

Declarations

Conflicts of interest Jani Koskinen, Antti Huotarinen, Antti-Pekka Elo-
maa, Bin Zheng andRomanBednarik declare that they have no conflicts
of interest.

Ethical Approval The experiment was approved by a local ethics com-
mittee and performed in accordance with the 1964 Declaration of
Helsinki and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual
participants included in the study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear
mixed-effects models using lme4. J Stat Softw. https://doi.org/10.
18637/jss.v067.i01

2. Bednarik R, Bartczak P, VrzakovaH,Koskinen J, ElomaaAP,Huo-
tarinen A, de Gómez Pérez DG, von und zu Fraunberg M (2018)
Pupil size as an indicator of visual-motor workload and expertise
in microsurgical training tasks. In: Proceedings of the 2018 ACM
symposium on eye tracking research and applications, pp 1–5

3. Darzi A, Smith S, Taffinder N (1999) Assessing operative skill.
BMJ 318(7188):887–888. https://doi.org/10.1136/bmj.318.7188.
887

4. Dooley IJ, O’Brien PD (2006) Subjective difficulty of each stage of
phacoemulsification cataract surgery performed by basic surgical
trainees. J Cataract Refract Surg 32(4):604–608. https://doi.org/
10.1016/j.jcrs.2006.01.045

5. Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classifi-
cation of surgical processes using dynamic timewarping. J Biomed
Inform 45(2):255–264. https://doi.org/10.1016/j.jbi.2011.11.002

6. Forestier G, Lalys F, Riffaud L, Louis Collins D, Meixensberger
J, Wassef SN, Neumuth T, Goulet B, Jannin P (2013) Multi-site
study of surgical practice in neurosurgery based on surgical process
models. J Biomed Inform 46(5):822–829. https://doi.org/10.1016/
j.jbi.2013.06.006

7. Forestier G, Petitjean F, Riffaud L, Jannin P (2017) Automatic
matching of surgeries to predict surgeons’ next actions. Artif Intell
Med 81:3–11. https://doi.org/10.1016/j.artmed.2017.03.007

8. Forestier G, Petitjean F, Senin P, Despinoy F, Huaulmé A, Fawaz
HI, Weber J, Idoumghar L, Muller PA, Jannin P (2018) Surgical
motion analysis using discriminative interpretable patterns. Artif
Intell Med 91(July):3–11. https://doi.org/10.1016/j.artmed.2018.
08.002

9. Forestier G, Riffaud L, Petitjean F, Henaux PL, Jannin P (2018)
Surgical skills: Can learning curves be computed from recordings
of surgical activities? Int J Comput Assist Radiol Surg 13(5):629–
636. https://doi.org/10.1007/s11548-018-1713-y

10. Franke S, Meixensberger J, Neumuth T (2013) Intervention
time prediction from surgical low-level tasks. J Biomed Inform
46(1):152–159. https://doi.org/10.1016/j.jbi.2012.10.002

11. Gholinejad M, Loeve AJ, Dankelman J (2019) Surgical process
modelling strategies: Which method to choose for determining
workflow? Minim Invasive Ther Allied Technol 28(2):91–104.
https://doi.org/10.1080/13645706.2019.1591457

12. Hofstad EF, Våpenstad C, Bø LE, Langø T, Kuhry E, Mårvik R
(2017) Psychomotor skills assessment by motion analysis in mini-
mally invasive surgery on an animal organ.Minim InvasiveTherapy
Allied Technol 26(4):240–248. https://doi.org/10.1080/13645706.
2017.1284131

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1136/bmj.318.7188.887
https://doi.org/10.1136/bmj.318.7188.887
https://doi.org/10.1016/j.jcrs.2006.01.045
https://doi.org/10.1016/j.jcrs.2006.01.045
https://doi.org/10.1016/j.jbi.2011.11.002
https://doi.org/10.1016/j.jbi.2013.06.006
https://doi.org/10.1016/j.jbi.2013.06.006
https://doi.org/10.1016/j.artmed.2017.03.007
https://doi.org/10.1016/j.artmed.2018.08.002
https://doi.org/10.1016/j.artmed.2018.08.002
https://doi.org/10.1007/s11548-018-1713-y
https://doi.org/10.1016/j.jbi.2012.10.002
https://doi.org/10.1080/13645706.2019.1591457
https://doi.org/10.1080/13645706.2017.1284131
https://doi.org/10.1080/13645706.2017.1284131


314 International Journal of Computer Assisted Radiology and Surgery (2022) 17:305–314

13. Huaulmé A, Sarikaya D, Mut KL, Despinoy F, Long Y, Dou Q,
Chng C, Lin W, Kondo S, Sánchez LB, Arbeláez P, Reiter W, Mit-
suishiM, Harada K, Jannin PMicro-surgical anastomoseworkflow
recognition challenge report. CoRR (2021). https://arxiv.org/abs/
2103.13111

14. Islam G, Kahol K, Li B, Smith M, Patel VL (2016) Affordable,
web-based surgical skill training and evaluation tool. J Biomed
Inform 59:102–114. https://doi.org/10.1016/j.jbi.2015.11.002

15. Jimbo T, Ieiri S, Obata S, Uemura M, Souzaki R, Matsuoka N,
Katayama T, Masumoto K, Hashizume M, Taguchi T (2017) A
new innovative laparoscopic fundoplication training simulatorwith
a surgical skill validation system. Surg Endosc 31(4):1688–1696.
https://doi.org/10.1007/s00464-016-5159-4

16. Kuznetsova A, Brockhoff PB, Christensen RHB lmertest package:
Tests in linear mixed effects models. J Stat Softw, Articles 82(13),
1–26 (2017). https://doi.org/10.18637/jss.v082.i13. https://www.
jstatsoft.org/v082/i13

17. Lalys F, Jannin P (2014) Surgical process modelling: a review. Int J
Comput Assist Radiol Surg 9(3):495–511. https://doi.org/10.1007/
s11548-013-0940-5

18. Law KE, Jenewein CG, Gannon SJ, DiMarco SM, Maulson LJ,
Laufer S, Pugh CM (2016) Exploring hand coordination as a mea-
sure of surgical skill. J Surg Res 205(1):192–197. https://doi.org/
10.1016/j.jss.2016.06.038

19. Mackenzie L, Ibbotson JA, Cao CGL, Lomax AJ, Ibbotson JA
(2001) Hierarchical decomposition of laparoscopic surgery: a
human factors approach to investigating the operating room envi-
ronment. Minim Invasive Therapy Allied Technol. 10(3):121–127.
https://doi.org/10.1080/136457001753192222

20. McKinney W (2010) Data structures for statistical computing in
python. In: S. van der Walt, J. Millman (eds) Proceedings of the
9th python in science conference, pp 51 – 56

21. Neumuth T (2017) Surgical process modeling. Innov Surg Sci
2(3):123–137. https://doi.org/10.1515/iss-2017-0005

22. NeumuthT, Jannin P, StraussG,Meixensberger J, Burgert O (2009)
Validation of knowledge acquisition for surgical process models.
J Am Med Inform Assoc 16(1):72–80. https://doi.org/10.1197/
jamia.m2748

23. Neumuth T, Durstewitz N, Fischer M, Strauss G, Dietz A, Meix-
ensberger J, Jannin P, Cleary K, Lemke HU, Burgert O Structured
recording of intraoperative surgical workflows. In: Horii SC, Ratib
OM (eds) Medical imaging 2006: PACS and imaging informatics.
SPIE (2006). https://doi.org/10.1117/12.653462

24. R Core Team: R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria
(2019). https://www.R-project.org/

25. Reiley CE, Lin HC, Yuh DD, Hager GD (2010) Review of methods
for objective surgical skill evaluation. Surg Endosc 25(2):356–366

26. Uemura M, Jannin P, Yamashita M, Tomikawa M, Akahoshi T,
Obata S, Souzaki R, Ieiri S, Hashizume M (2016) Procedural sur-
gical skill assessment in laparoscopic training environments. Int
J Comput Assist Radiol Surg 11(4):543–552. https://doi.org/10.
1007/s11548-015-1274-2

27. Uemura M, Sakata K, Tomikawa M, Nagao Y, Ohuchida K, Ieiri
S, Akahoshi T, Hashizume M (2015) Novel surgical skill evalu-
ation with reference to two-handed coordination. Fukuoka Acta
Med. 106(7), 213–222 . https://linkinghub.elsevier.com/retrieve/
pii/S0039606009007156

28. van Hove PD, Tuijthof GJM, Verdaasdonk EGG, Stassen LPS,
Dankelman J (2010) Objective assessment of technical surgical
skills. Br J Surg 97(7):972–987

29. Vedula SS, Malpani A, Ahmidi N, Khudanpur S, Hager G, Chen
CCG (2016) Task-level vs. segment-level quantitative metrics for
surgical skill assessment. J Surg Educ 73(3):482–489. https://doi.
org/10.1016/j.jsurg.2015.11.009

30. Zulbaran-Rojas A, Najafi B, Arita N, Rahemi H, Razjouyan J,
Gilani R (2021) Utilization of flexible-wearable sensors to describe
the kinematics of surgical proficiency. J Surg Res 262:149–158.
https://doi.org/10.1016/j.jss.2021.01.006

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://arxiv.org/abs/2103.13111
https://arxiv.org/abs/2103.13111
https://doi.org/10.1016/j.jbi.2015.11.002
https://doi.org/10.1007/s00464-016-5159-4
https://doi.org/10.18637/jss.v082.i13
https://www.jstatsoft.org/v082/i13
https://www.jstatsoft.org/v082/i13
https://doi.org/10.1007/s11548-013-0940-5
https://doi.org/10.1007/s11548-013-0940-5
https://doi.org/10.1016/j.jss.2016.06.038
https://doi.org/10.1016/j.jss.2016.06.038
https://doi.org/10.1080/136457001753192222
https://doi.org/10.1515/iss-2017-0005
https://doi.org/10.1197/jamia.m2748
https://doi.org/10.1197/jamia.m2748
https://doi.org/10.1117/12.653462
https://www.R-project.org/
https://doi.org/10.1007/s11548-015-1274-2
https://doi.org/10.1007/s11548-015-1274-2
https://linkinghub.elsevier.com/retrieve/pii/S0039606009007156
https://linkinghub.elsevier.com/retrieve/pii/S0039606009007156
https://doi.org/10.1016/j.jsurg.2015.11.009
https://doi.org/10.1016/j.jsurg.2015.11.009
https://doi.org/10.1016/j.jss.2021.01.006

	Movement-level process modeling of microsurgical bimanual and unimanual tasks
	Abstract
	Introduction
	Methods and materials
	Experiment
	Surgical process model
	Similarity measure and classification
	Efficiency measures
	Validation analysis
	Statistical analysis

	Results
	Similarity
	Suturing efficiency
	Bimanual efficiency
	Validation results

	Discussion
	Acknowledgements
	References




