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Objective: To determine brain magnetic resonance imaging (MRI) measures of

cerebrospinal fluid (CSF) and whole brain volume of full-term and premature infants

following surgical treatment for thoracic non-cardiac congenital anomalies requiring

critical care.

Methods: Full-term (n = 13) and pre-term (n = 13) patients with long-gap esophageal

atresia, and full-term naïve controls (n = 19) < 1 year corrected age, underwent

non-sedated brain MRI following completion of thoracic non-cardiac surgery and

critical care treatment. Qualitative MRI findings were reviewed and reported by a

pediatric neuroradiologist and neurologist. Several linear brain metrics were measured

using structural T1-weighted images, while T2-weighted images were required for

segmentation of total CSF and whole brain tissue using the Morphologically Adaptive

Neonatal Tissue Segmentation (MANTiS) tool. Group differences in absolute (mm, cm3)

and normalized (%) data were analyzed using a univariate general linear model with age

at scan as a covariate. Mean normalized values were assessed using one-way ANOVA.

Results: Qualitative brain findings suggest brain atrophy in both full-term and pre-term

patients. Both linear and volumetric MRI analyses confirmed significantly greater total

CSF and extra-axial space, and decreased whole brain size in both full-term and pre-term

patients compared to naïve controls. Although linear analysis suggests greater ventricular

volumes in all patients, volumetric analysis showed that normalized ventricular volumes

were higher only in premature patients compared to controls.

Discussion: Linear brain metrics paralleled volumetric MRI analysis of total CSF and

extra-axial space, but not ventricular size. Full-term infants appear to demonstrate similar

brain vulnerability in the context of life-saving thoracic non-cardiac surgery requiring

critical care as premature infants.

Keywords: brain atrophy, cerebrospinal fluid, full-term, long-gap esophageal atresia, prematurity, sedation,

MANTiS, volumetric analysis
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INTRODUCTION

It is known that prematurity [defined as birth <37 weeks
gestational age (GA)], is associated with a plethora of
negative neurologic long-term sequelae, as previously shown
in studies spanning neurobehavioral (1–3), cognitive (4–6),
and neuroimaging domains (7). Indeed, emerging evidence for
developmental plasticity suggests early exposure to stressors
during neonatal intensive care, such as procedural pain or
prolonged exposure to analgesic medications, may disrupt
normal processes of brain maturation (8–11). Furthermore,
recent studies reported that altered regional brain development
was associated with critical illness (e.g., chronic lung disease,
necrotizing enterocolitis, patent ductus arteriosus, postnatal
infection, and need for mechanical ventilation) irrespective of
prematurity (12, 13).

Little is known regarding the impact of complex
perioperative care for non-cardiac congenital anomalies on
neurodevelopmental outcomes in full-term infants. As survival
rates continue to improve for critically-ill infants born with
non-cardiac congenital anomalies (14, 15), concerns have been
raised regarding incidence of brain injury (16) and long-term
neurodevelopmental delay (17, 18) following surgery and
complex critical care. Although the etiology is unknown, studies
in full-term infants with congenital diaphragmatic hernia have
implicated extracorporeal membrane oxygenation (ECMO) as a
potential risk factor for adverse neurodevelopmental outcomes
(19, 20). Currently, little is known regarding incidence of
brain abnormalities following neonatal surgical and critical
care treatment for thoracic non-cardiac congenital anomalies
in the absence of ECMO (16). At our institution, the premier
Esophageal and Airway Treatment Center offers the opportunity
to study a unique population of full-term and premature infants
born with thoracic non-cardiac gastrointestinal congenital
anomalies [viz. long-gap esophageal atresia (LGEA) (21, 22)]
that require surgical treatment without the confounds of ECMO.
The aim of this study was to evaluate qualitative and quantitative
measures of brain and cerebrospinal fluid (CSF) using magnetic
resonance imaging (MRI) in full-term and moderate-to-late pre-
mature (born between 28 and 36 weeks GA) infants undergoing
life-saving surgery for non-cardiac LGEA requiring critical
care (in the absence of any known neurological problems).
Quantitative measures included simple linear metrics (23–26)
and volumetric analysis (27). We hypothesized that both full-
term and premature critically-ill patients <1 year-old, compared
to healthy infants (as normative controls), would exhibit (1)

Abbreviations: ANOVA, analysis of variance; BPD-Bo, biparietal diameter, bone;

BPD-Br, biparietal diameter, brain; BVD, biventricular distance; CSF, cerebrospinal

fluid; EAS, extra-axial space; ECMO, extracorporeal membrane oxygenation;

FAST, FMRIB’s Automated Segmentation Tool; FSE, Fast Spin Echo; FOD-Bo,

fronto-occipital diameter, bone; FOD-Br, fronto-occipital diameter, brain; FOV,

field of view; FSL, FMRIB Software Library; GA, gestational age; ICC, intraclass

correlation coefficient; ICV, intracranial volume; IHD, interhemispheric distance;

LGEA, long-gap esophageal atresia; MANTiS, morphologically adaptive neonatal

tissue segmentation; MEMPRAGE, Multi-Echo Magnetization Prepared Rapid

Acquisition Gradient Echo; MRI, magnetic resonance imaging; PICC, peripherally

inserted central catheter; SPSS, Statistical Package for the Social Sciences; TE, echo

time; TR, repetition time.

higher incidence of brain findings consistent with brain atrophy,
(2) greater CSF, and (3) smaller brain tissue measures following
complex perioperative critical care.

METHODS

Study Design and Participants
We conducted a pilot infant MRI study with ethical approval
from Boston Children’s Hospital Review Board as a “no
more than minimal risk” study. Informed written consent
was obtained from parents before participation, in accordance
with the Declaration of Helsinki and Good Clinical Practice.
Patient eligibility criteria included <1-year-old born full-term
(37–42-weeks GA) or moderate-to-late pre-term (28–36-weeks
GA) infants who underwent thoracic non-cardiac surgery for
gastrointestinal congenital anomaly [viz. Foker process for LGEA
repair (21, 22)] that required complex perioperative critical care:
(1) prolonged sedation [>5 days, associated with development
of drug dependence (28, 29)], and (2) subsequent weaning
from sedation medications. Illustrative timeline of perioperative
critical care is summarized in Figure 1. Healthy full-term
naïve infants were recruited as a comparative baseline for
typical infant brain development. Exclusion criteria included: (1)
cardiac surgeries and/or ECMO exposure; (2) MRI incompatible
implants; (3) cranial ultrasound findings (e.g., ventricular
enlargement, hemorrhage); (4) chromosomal abnormalities (e.g.,
Down Syndrome); (5) neurological disease (e.g., seizures); (6)
prenatal drug exposure; and/or (7) extreme prematurity (<28
weeks GA). Subjects were categorized into 3 groups: full-term
patients, premature patients, or full-term naïve controls. Table 1
displays a summary of the number of subjects screened, excluded,
and enrolled by group.

MRI Acquisition
All infants underwent non-sedated research scan in a 3T TrioTim
MRI system equipped with 32-channel receive-only head coil and
body-transmission (Siemens Healthcare Inc., USA) following
completion of all perioperative care.

Preparation for Non-sedated MRI
To improve infant’s compliance during neuroimaging sessions in
the research setting, we followed previously described practices
of natural sleep technique and the “feed and wrap” approach (30–
33). All imaging was done during infants’ sleeping time (evenings
and night) and parents were encouraged to perform sleep routine
(e.g., nursing, rocking, singing, etc.). Infants were bundled and
cradled in MRI-safe Deluxe+ carrycot (DockATot, Wilmington,
NC), which allowed for easier moving and positioning of
sleeping baby into the scanner. Once on the scanner table,
smaller infants were swaddled into the beanbags (viz. gentle
vacuum bag immobilizer), while infants>3months were allowed
to assume more relaxed position (e.g., arms next to face)
before being covered and belted. Both foam earplugs (Newmatic
Medical, Birmingham, AL) and earmuffs (MRI-Safe Neonatal
Noise Guards, Universal Medical, Norwood, MA) were placed
for noise protection while sides of the head were padded
with sponges and soft sheets. All infants were continuously

Frontiers in Pediatrics | www.frontiersin.org 2 August 2019 | Volume 7 | Article 315

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Mongerson et al. MRI in Critically Ill Infants

FIGURE 1 | Schematic illustrates a single representative case of thoracic non-cardiac surgical [Foker process (21, 22)] and critical care treatment timeline for long-gap

esophageal atresia (LGEA) repair that includes prolonged sedation to maintain mechanical ventilation (white boxes), as well as subsequent weaning of sedation drugs

(gray boxes). Research brain MRI scan was done after completion of all treatment. EGD, esophagoduodenoscopy.

TABLE 1 | Recruitment and scanning summary.

n Naïve controls Full-term

patients

Pre-term

patients

Considered/(chart) reviewed 59 173 107

Eligible (% reviewed) 56 (95%) 63 (36%) 49 (46%)

Approached (% eligible) 53 (95%) 40 (63%) 23 (47%)

Consented (% approached) 19 (36%) 19 (48%) 18 (78%)

Scanned (% consented) 19 (100%) 13 (68%) 13 (72%)

Included/Analyzed

(% scanned)

19 (100%) 13 (100%) 13 (100%)

Table summarizes infant MRI study recruitment process by group (naïve controls, full-

term and pre-term patients). Major reasons for non-scanning of consented patients were

related to either infants’ health or scheduling factors. All successfully scanned subjects

were included in the analysis (100% scanned). Bolded text highlights the difference in

eligible number of subjects and those that underwent successful scans. Table 2 shows

further analysis details.

monitored for stable heart rate and oxygenation, and one of
the parents/guardians was always allowed to stay with the
baby in the imaging suite throughout MRI acquisition. Our
imaging success rate for healthy infants (76%; Table 1) was
similar to that previously reported in literature [see Review
(32)]. Our 100% scanning success rate with both patient
groups could be attributed to the fact that patients were more
acclimated to hospital environment (e.g., more noise; frequent
sleep interruptions, etc.) and the fact that we were able to reserve
a longer evening/nightMRI slot allowingmore time for infants to
fall asleep.

MRI Sequences
T1- and T2-weighted images were acquired using MEMPRAGE
sequence [TR/TE = 2,520/1.74ms; FA = 7◦; FOV = 192 ×

192 mm2; voxels = 1 × 1 × 1 mm3] and FSE sequence
[TR/TE = 12,624/110ms; FA = 120◦; FOV = 180 × 180
mm2; 63 slices, 2mm thickness; voxels = 0.35 × 0.35 mm2],
respectively. T1 images were successfully collected for all patients
(n = 13/group) and 17/19 controls. T2 images were successfully
collected for all patients (n = 13/group) and 13/19 controls.
Clinical characteristics of subjects included for each analysis are
summarized in Table 2.

Qualitative MRI
Both T1 and T2-weighted MRI scans (n = 13/per patient group;
n = 19 naïve controls; Table 1) were independently reviewed
for incidental findings by the pediatric neuroradiologist on call
and a neonatal neurologist (D. Pier). Findings were divided into
three categories based on likelihood of brain atrophy as follows:
(1) no atrophy (no incidental findings), (2) possible atrophy
(1–2 isolated findings), or (3) very likely atrophy (≥3 findings;
e.g., concomitant ventriculomegaly, widened Sylvian fissures, and
increased extra-axial space and/or interhemispheric fissure). The
latter is in accordance with the definition of cerebral atrophy:
compensatory enlargement of CSF spaces due to reduced brain
parenchymal volume.

Linear Brain Metrics
T1-weighted MRI images were reoriented for uniform head
alignment (Figure 2) using Freeview (v.2.0) from Freesurfer
(The General Hospital Corporation, Boston, MA) for which
5 landmarks were used: bilateral cochlea (left-right), obex
(inferior), posterior commissure (superior/posterior), and
anterior commissure (anterior) (34). Two blinded researchers
measured 6 linear brain metrics (mm) using ITK-SNAP
software (v.3.6.0) (35) as previously published (23–26, 36).
An axial section with basal ganglia and thalamus maximally
apparent (Figures 3A,A′) was used to measure fronto-occipital
diameters of the brain (FOD-Br) and bone (FOD-Bo) on the
right brain hemisphere. A coronal section at the level of the
foramen of Monroe (Figures 3B,B′) was used to measure
the interhemispheric distance (IHD), biventricular distance
(BVD), and biparietal diameters of the brain (BPD-Br) and
bone (BPD-Bo). An additional 4 measures were calculated as
follows: (1) %FOD-difference=((FOD-Bo – FOD-Br)/FOD-Bo)
x100); (2) %BPD-difference=((BPD-Bo – BPD-Br)/BPD-Bo)
x100); (3)%IHD-to-brain ratio=((IHD/BPD-Br) x100); and (4)
%BVD-to-brain ratio=((BVD/BPD-Br) x100).

Volumetric Analysis
T2-weighted image segmentation was performed using
Morphologically Adaptive Neonatal Tissue Segmentation
(MANTiS) toolbox (27). Although MANTiS was originally
designed for application in neonates, we have applied it to infants
<12-months-old. Additional FMRIB Software Library (FSL;
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TABLE 2 | Clinical characteristics of research subjects.

Characteristics Naïve controls (n = 19) Full-term patients Pre-term patients

T1-weighted (n = 17) T2-weighted (n = 13) Both scans (n = 13) Both scans (n = 13)

Sex (male), n (%) 15 (88%) 12 (92%) 7 (54%) 8 (62%)

Average GA at birth (weeks) (SD) 39.5 (0.9) 39.6 (1.0) 38.5 (1.1) 32.2 (2.9)

Median CA at scan [range]

(months)

3.2 [0.4–12.3] 2.8 [0.4–7.1] 4.7 [0.6–13.0] 3.8 [1.4–7.5]

Multiple births, n (%) 1 (6%) 1 (8%) 1 (8%) 2 (15%)

INCIDENCE OF MAJOR DIAGNOSES:

Isolated LGEA, n (%) 0 0 3 (23%) 3 (23%)

LGEA with TEF, n (%) 0 0 5 (38%) 9 (69%)

Other, n (%) 0 0 5 (38%) 1 (8%)

This table summarizes clinical characteristics of all subjects included in the quantitative (T1- and T2-weighted) analyses. Patients were stratified into clinical groups of non-cardiac

congenital anomalies: (1) isolated LGEA, (2) LGEA with TEF, and (3) other (included LGEA as part of VACTERL association (without cardiac involvement) and/or necrotizing enterocolitis).

GA, gestational age; CA, corrected age; LGEA, long-gap esophageal atresia; TEF, tracheo-esophageal fistula; VACTERL stands for vertebral defects, anal atresia, cardiac defects,

tracheo-esophageal fistula, renal anomalies, and limb abnormalities.

FIGURE 2 | T1-weighted images of a representative full-term infant before (A)

and after (B) manual realignment using Freeview (see Methods). Header

information (white letters) is inaccurate in (A) due to rotated and tilted head

position; corrected labels are shown in yellow letters for reference. A, anterior;

L, left; P, posterior; R, right.

v.5.0) tools were used for pre-processing and post-segmentation
editing (see below). Segmentation involved 4 major steps:

Preprocessing
(i) Intracranial space segmentation: T2 images were skull-
stripped using the unvalidated “Simple Watershed Scalping”
module in the MANTiS toolbox followed by manual editing
in FSLview; (ii) Bias field correction using FMRIB’s Automated
Segmentation Tool (FAST) (37); (iii) Setting image origin using
“Origin to the Center of Mass” module in the MANTiS toolbox.

MANTiS Segmentation
Preprocessed images underwent MANTiS segmentation
pipeline (27). This study focused on the CSF segmentation,
comprised of extra-axial space (EAS) and ventricular system.

Automated CSF segmentations were visually inspected and
subsequently edited to correct for any tissue misclassifications as
described below.

Post-segmentation Editing
Automated CSF segmentations were (i) masked to zero voxels
outside of intracranial space, (ii) thresholded at 40% to eliminate
voxels with <40% probability of representing CSF, and (iii)
converted to a binary mask. Additional complex editing was
undertaken due to frequent exclusion of CSF spaces and inclusion
of brain tissues. Subsequent partial volume estimate map of CSF
generated by FAST (37) was (a) thresholded at 50% to eliminate
voxels with <50% of their volume comprising CSF, (b) converted
to a binary mask, and subsequently (c) combined with MANTiS’
thresholded/binarized CSF mask. In this way, FAST’s CSF map
filled in CSF spaces missing in MANTiS’ CSF segmentation (e.g.,
cisterns, 4th ventricle, and sulcal spaces). This resulted in a
“comprehensive” CSF image, which underwent additional minor
manual editing to erase misclassified brain tissue. This final
total CSF segmentation was divided into EAS and ventricular
system by manually erasing ventricles from CSF segmentation to
produce EAS segmentation.

Volumetry
Figure 4 illustrates representative segmentations used for
volumetric analysis. The difference between intracranial and
total CSF (for whole brain volume), and total CSF and EAS (for
ventricular volume), were calculated. Volumes of each division
were reported as absolute volumes (cm3) and normalized values
as % intracranial volume (%ICV) to correct for interindividual
variation (38).

Statistical Analyses
Statistical analyses were performed using Statistical Package for
the Social Sciences (SPSS; v.23.0, IBM Corporation, Armonk,
New York). Since inter-observer reliabilities for linear brain
metrics were high (>0.8), measures obtained from two blinded
researchers were averaged. Normal distribution of continuous

Frontiers in Pediatrics | www.frontiersin.org 4 August 2019 | Volume 7 | Article 315

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Mongerson et al. MRI in Critically Ill Infants

FIGURE 3 | Illustration of linear brain metrics (see Methods) overlaid on T1-weighted axial (A,A’) and coronal (B,B’) sections for a full-term naïve control (A,B) and

full-term patient (A’,B’) that were both scanned at 9 months of age. 3V, third ventricle; BPD, biparietal distance brain (BPD-br) and bone (BPD-bo); BVD, biventricular

distance; Ca, caudate; FM, foramen of Monro; FOD, fronto-occipital difference brain (FOD-br) and bone (FOD-bo); GP, globus pallidus; IHD, interhemispheric distance;

L, left; LV, lateral ventricle; Pu, putamen; R, right; THM, thalamus.

variables was confirmed by Shapiro-Wilk test. Absolute measures
(mm, cm3) were related to group status using a general
linear model univariate analysis with corrected age at scan as
a covariate. Mean normalized measures (%) were compared
between groups using a one-way analysis of variance (ANOVA)
with Tukey’s honestly significant difference test. Statistical
significance was assessed at the α < 0.05.

RESULTS

Qualitative Evaluation
Qualitative evaluation revealed clinically significant incidental
MRI findings in both full-term (Figure 5) and premature
patients (not shown) without any previously known neurological
concerns. Both full-term and premature patients had qualitative
MRI findings suggestive of as either possible or very likely brain
atrophy (Figure 6).

Linear Brain Metrics Results
Analysis of T1 images allowed for linear brain metric analysis
(Figure 3) in full-term naïve controls (n = 17), and full-term
and premature patients (n = 13/group). The absolute values
of both brain and bone FOD [brain F(1,39) = 115.83, p <

0.001; bone F(1,39) = 103.01, p < 0.001; Figure 7A) and BPD

(brain F(1,39) = 58.85, p < 0.001; bone F(1,39) = 50.69, p <

0.001; Figure 7B) consistently increased with age, suggesting
growth of head and whole brain with age with no differences
between groups. However, mean % difference in FOD [F(2,40)
= 9.04, p < 0.001] and BPD [F(2,40) = 5.28, p = 0.09] was
significantly lower in controls compared with both full-term
and premature patients (p < 0.05; Figures 7A,B), suggesting
increased EAS in patients. Absolute IHD did not significantly
change with age [F(1,39) = 2.15, p = 0.15; Figure 7C], but
differed between groups [F(2,39) = 3.86, p = 0.03]. Mean %
IHD-to-brain ratio was higher in premature patients [F(2,40)
= 5.24, p = 0.01] compared to both full-term patients and
controls (both p < 0.05; Figure 7C) implicating increased
interhemispheric space in premature patients only. Finally,
while advancing age did not have a significant effect on
absolute BVD [F(1,39) = 2.5, p = 0.12; Figure 7D], we report
group differences [F(2,39) = 7.53, p = 0.002] between naive
controls and both full-term (p < 0.001) and premature (p
= 0.03) patients (Figure 7D) but not between patient groups.
Similarly, mean % BVD-to-brain ratio was significantly lower
[F(2,40) = 12.18, p < 0.001] in naïve controls compared to
both full-term (p < 0.05) and premature (p < 0.01) patients
(Figure 7D) implicating increased ventricular size in both
patient groups.
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FIGURE 4 | Representative T2-weighted image (A; gray-scale) and its final

edited MANTiS segmentations of intracranial space (B; red), total CSF

subdivided into extra-axial space (C; blue) and ventricular system (C; yellow),

and whole brain (D; orange) in a full-term patient scanned at 3.4 months of

age. Note increased CSF volume (asterisks in Panel A). L, left; R, right.

Volumetric Analysis Results
Structural segmentation of T2-weighted images (Figure 4)
allowed for volumetric analysis (n = 13/group) which shows
that absolute volumes of the intracranial space [F(1,35) = 131.44,
p < 0.001; not shown), whole brain [F(1,35) = 159.70, p <

0.001; Figure 8A), and total CSF [F(1,35) = 25.07, p < 0.001;

Figure 8B] increased with age for all groups. An interaction
between age at scan and group status was observed for absolute
volumes of intracranial space [F(2,33) = 4.10, p = 0.03; not
shown], whole brain [F(2,33) = 8.47, p = 0.001] and CSF
[F(2,33) = 3.65, p = 0.04], suggesting altered growth trajectories
between groups with advancing age. However, group status
was independently associated with only absolute whole brain
volume [F(2,35) = 8.03, p = 0.001; Figure 8A], suggesting brain
size is significantly greater in naïve controls compared to both
full-term and premature patients (both p = 0.001), with no
difference detected between patient groups (p = 0.94). Mean
normative whole brain and, reciprocally, CSF were significantly
different [F(2,36) = 9.03, p = 0.001; Figures 8A′,B′] between
controls and both full-term (p < 0.05) and premature (p <

0.01) patients. Subsequently, analysis of CSF distribution showed
that absolute EAS volumes significantly increased with age
[F(1,35) = 27, p < 0.001; Figure 8C], in contrast to ventricular
volumes which were relatively stable [F(1,35) = 2.12, p = 0.16;
Figure 8D]. While no group differences were found for absolute
EAS volume [F(2,35) = 2.07, p = 0.14; Figure 8C], ventricular
volumes were significantly greater [F(2,35) = 19.11, p < 0.001]
in both full-term and premature patients compared to naïve
controls (both p < 0.001) with no difference between patient
groups (p = 0.56; Figure 8D). No interaction was observed
between age at scan and group status for absolute EAS [F(2,33)
= 2.62, p = 0.09] or ventricular volumes [F(2,33) = 0.66, p
= 0.52]. When evaluated as %ICV, mean normative EAS was
significantly higher [F(2,36) = 7.09, p = 0.003; Figure 8C′] in
both full-term (p < 0.05) and premature (p < 0.01) patients
compared to naïve controls, whereas mean normative ventricular
volume was significantly higher [F(2,36) = 5.6, p = 0.008]
in premature patients compared to only controls (p < 0.01;
Figure 8D′).

DISCUSSION

To our knowledge, this is the first MRI study showing qualitative
and quantitative findings of greater CSF and smaller brain tissue
in both full-term and premature infants following life-saving
thoracic non-cardiac surgical and complex critical care compared
to controls. These results suggest similar risk for brain injury
and brain atrophy for full-term and premature infants in the
context of complex perioperative care for the LGEA. Despite
observed differences in global brain size in this study, total
intracranial volume was not significantly different among the
groups suggesting head circumferencemay not be a reliable index
of brain growth in selected group of infants born with LGEA.

Qualitative and Quantitative Brain Findings
Consistent with our qualitative findings, a recent study by
Stolwijk et al. (16) reported a high incidence of brain injury (viz.
non-parenchymal abnormalities, including intraventricular and
subdural hemorrhages) in patients following neonatal surgery
for major non-cardiac congenital anomalies (16, 18). With
respect to whole brain volumetry, one study found similar brain
volumes in premature infants free of any significant medical
problems at term-equivalent age compared to full-term infants
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FIGURE 5 | Representative T1-weighted images of full-term infants with typical brain structure (A,B) and those with altered corpus callosum (cc; C–F), increased

extra-axial space (arrowheads) and widened Sylvian fissure (open arrows; D–F), presence of cyst (asterisk; D), incidental subdural hematoma (double arrows; E), and

old venous hemorrhagic stroke (square boxes; F). L, left; GA, gestational age; R, right.
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FIGURE 6 | Both full-term and pre-term patients had similar qualitative MRI

findings of either possible [6/13 (46%) full-term and 5/13 (38%) pre-term

patients] or very likely brain atrophy [7/13 (54%) full-term and 8/13 (62%)

pre-term patients]. In contrast, possible signs of brain atrophy were observed

in only 1/19 (5%) full-term naïve controls.

(39). In contrast, there is an abundance of evidence suggesting
prematurity is associated with both risk of brain injury and
atrophy [see reviews (7, 40)]. Lower gestational age at birth has
been associated with smaller brain volumes, as estimated by head
ultrasound (41) and MRI (42–44).

Cerebrospinal Fluid
Our study also adds knowledge about higher CSF volumes in
a unique cohort of full-term and moderate-to-late premature
infants following complex thoracic non-cardiac perioperative
critical care for LGEA. Similar findings were observed in several
large cohort studies, reporting significantly greater CSF in pre-
mature infants compared to full-term infants at term-equivalent
age (42–45). In the present study, enlarged EAS was observed
in both full-term and pre-term patients compared to healthy
controls, whereas ventricles were only significantly enlarged in
pre-term patients relative to controls. Benign extra-axial fluid
enlargement (viz. idiopathic external hydrocephalus without
evidence of ventricular enlargement or hydrocephalus) has been
extensively reported in the literature (46–50) since the early 1980s
and has been associated with both prematurity (47, 49) and
previous ECMO exposure (51–53).

Significance for Neurodevelopmental
Outcomes
Future follow-up studies should determine the
neurodevelopmental outcomes of full-term and premature
infants born with LGEA in relation to their estimated brain and
CSF volumes.

Brain Volume Decrease
While efforts to elucidate typical brain development in full-
term infants using neuroimaging have emerged (54–56), the
significance of whole brain volume during the first year of life
in relation to long-term outcome remains poorly understood.
One study in moderate-to-late pre-term infants reported an

association between larger brain volumes at term-equivalent age
and higher cognitive and language scores at 2 years of age
(57). However, another study in full-term infants with neonatal
encephalopathy showed a significant association between brain
volumes at 6 months old and language scores, but not motor or
cognitive scores (58).

CSF Increase
Preterm infants with significantly greater CSF at term-equivalent
age are at increased risk of moderate-to-severe disability at 1
year of age (45) and cognitive and language scores at 2 years of
age (57). Another study of pre-term infants (n = 12) by Keunen
et al. (59) showed that ventricular volume at term-equivalent age
was inversely related to all measures of neurodevelopment, which
persisted through early school age. Furthermore, the presence
of greater extra-axial fluid has been associated with motor and
neurodevelopmental delays in premature infants (60–63). A
similar study in full-term infants (64) reported greater EAS in the
absence of ventricular dilatation thatmay represent an early brain
MRI phenotype of autism spectrum disorder (64). Specifically,
the authors reported significantly greater extra-axial fluid by 6–
9 months of age that persisted into the second year of life in those
infants later diagnosed with autism.

Underlying Disease
Children with congenital gastrointestinal anomalies experience
multiple stressors while hospitalized early in life (65). Early stress
and inadequate nutrition in infancy are linked to altered growth
patterns (66, 67) and later neurodevelopmental delays (68, 69).
It was shown that children with congenital gastrointestinal
anomalies have similar growth and body composition to
their peers (70). However, like pre-term-born children (71,
72), higher fat-free mass (but not fat mass) later in life is
associated with higher cognitive test scores in children with
congenital gastrointestinal anomalies (70). Authors in the latter
study concluded that closer tracking of body composition and
interventions aimed at increasing fat-free mass may improve
long-term outcomes in this population.

Neonatal Surgery
It was previously reported that neonatal surgery for major
birth defects was associated with neurodevelopmental
delay at 2 years of age, suggesting long-term
adverse sequelae in the setting of critical illness and
surgery (17, 18, 73).

Study Limitations
Findings reported in the present study must be interpreted in the
context of several limitations. As a pilot study, a small sample size,
slight incongruences in age range between groups, and diagnoses
within patient groups are potential limitations. This study lacked
a true control group due to the absence of infants with similar
non-cardiac LGEA that undergo alternative treatment. We were
unable to recruit infants that received only prolonged sedation.
Our recent study (74) showed that a very small number of full-
term infants that were admitted for treatment of pneumonia
were usually treated <5 days - before the onset of physical
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FIGURE 7 | Graphs display individual absolute linear brain measures (mm; A–D) and ratio (%) (C,D) for full-term (n = 13; gray circles) and pre-term patients (n = 13;

black circles), and full-term naïve controls (n = 17; open circles). Bar graphs (±SD) display either mean % difference (A,B) or % ratio (C,D). *p < 0.05. FOD,

fronto-occipital diameter; BPD, biparietal diameter.

dependence to sedation. Although motion during non-sedated
MRI scan acquisition remains a significant challenge (75, 76)
our efforts to refine scan protocols allowed for improved rates
of successful scan completion (100% of scanned patients).
Furthermore, gender differences have been previously reported
for brain tissue (43, 77, 78) and lateral ventricular volumes (64).

In this study, MRI scans for volumetric quantification were
dominated by male control infants, whereas sex distributions in
both patient groups were relatively even between the two sexes.
Understanding possible sex differences should be a subject of
future studies. In light of aforementioned limitations, it is not
feasible to say whether reported findings are due to (i) unknown
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FIGURE 8 | Graphs show individual absolute (scatter plots) and mean normalized volumes (SD; bar graphs) as % intracranial volume (ICV) for whole brain (A,A’) and

total CSF (B,B’), as well as CSF sub-divisions of extra-axial space (EAS; C,C’) and ventricular volume (D,D’). Graphs illustrate 3 groups analyzed: full-term (n = 13;

gray circles) and pre-term patients (n = 13; black circles), and full-term naïve controls (n = 13 open circles). *p < 0.05.

underlying biology/genetics, (ii) critical illness, (iii) aspects
of associated critical care treatment (e.g., neonatal surgery,
cumulative anesthesia, and prolonged sedation exposure), (iv)
altered feeding (viz. nitrogen balance in the setting of parenteral
nutrition), and/or (v) social deprivation. Future studies are

needed to establish the relationship between reported incidental
MRI findings, brain volumes and long-term neurodevelopmental
outcomes, as well as elucidate whether full-term infants from
our cohort have differential plasticity/adaptations in overcoming
such insults during the critical early period of brain development.
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