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Recent advances in the development of data structures to represent spiking neuron

network models enable us to exploit the complete memory of petascale computers

for a single brain-scale network simulation. In this work, we investigate how well we

can exploit the computing power of such supercomputers for the creation of neuronal

networks. Using an established benchmark, we divide the runtime of simulation code

into the phase of network construction and the phase during which the dynamical state

is advanced in time. We find that on multi-core compute nodes network creation scales

well with process-parallel code but exhibits a prohibitively large memory consumption.

Thread-parallel network creation, in contrast, exhibits speedup only up to a small number

of threads but has little overhead in terms of memory. We further observe that the

algorithms creating instances of model neurons and their connections scale well for

networks of ten thousand neurons, but do not show the same speedup for networks

of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel

network creation is due to inadequate memory allocation strategies and demonstrates

that thread-optimized memory allocators recover excellent scaling. An analysis of the

loop order used for network construction reveals that more complex tests on the locality

of operations significantly improve scaling and reduce runtime by allowing construction

algorithms to step through large networks more efficiently than in existing code. The

combination of these techniques increases performance by an order of magnitude

and harnesses the increasingly parallel compute power of the compute nodes in

high-performance clusters and supercomputers.

Keywords: multi-threading, multi-core processor, memory allocation, supercomputer, large-scale simulation,

parallel computing, spiking neuronal network

1. INTRODUCTION

Simulation has become an essential part of the scientific method. In neuroscience, it is employed
to investigate the relationship between anatomical and physiological data, to explore dynamical
systems not accessible by analytical methods, and to validate approximations made in theoretical
derivations. This was made possible by progress in computer hardware as well as in simulation
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technology for models ranging from the molecular dynamics of
ion channels via detailed compartmental models of individual
nerve cells (neurons) to brain-scale networks of simple neuron
models and field models. Today, simulation codes exist for all
of these levels, but the degree of usage by the community varies
(Carnevale and Hines, 2006; de Kamps et al., 2008; Helias et al.,
2012; Hepburn et al., 2012; Ritter et al., 2013).

Nerve cells interact primarily through stereotyped point
events called action potentials or spikes, which are transmitted
unidirectionally with delay from sending to receiving cell
through contacts known as chemical synapses. After the sending
(presynaptic) neuron emits a spike, the receiving (postsynaptic)
neuron experiences an excursion of the electric potential
difference between the inside and the outside of the cell, the
postsynaptic potential (PSP). Typically on the order of ten to one
hundred PSPs need to arrive within a fewmilliseconds in order to
elicit an action potential in the postsynaptic neuron (see Abeles,
1991; Sterratt et al., 2011, for textbooks).

The essential challenge for a simulation code aiming to
implement brain models based on simplified neuron and synapse
models is the number of network elements that need to be
represented in the computer. In the mammalian cortex, a neuron
receives some 10,000 local inputs. Since two neurons form a
connection with a probability of 0.1, the smallest network in
which both constraints are simultaneously fulfilled already has
100,000 neurons. The corresponding volume of roughly one
cubic millimeter of tissue can be considered as an elementary
unit of cortex. However, the local connections constitute only
about half of the input to a neuron, while the other half originates
from more distant locations (see Potjans and Diesmann, 2014,
and references therein). A substantial fraction of these long-
range connections directly links neurons from different areas in
the brain. The human brain is divided into some two hundred
areas per hemisphere, but an individual area is only connected
to a fraction of them (Glasser et al., 2016). The brain thus forms
recurrent networks at multiple levels of organization, and due
to this intricate coupling between the local and the global level
neuroscientists need to study brain-scale networks in order to
arrive at self-consistent descriptions of brain activity.

In the past decade, research on simulation technology for
spiking neuronal networks focused on data structures capable
of representing networks of increasing size. Morrison et al.
(2005) presented the first code capable of full-scale simulation
of local cortical networks, representing the 100,000 neurons
with their one billion synapses, using distributed computing
to aggregate the memory from some ten compute nodes (see
also Migliore et al., 2006, for work carried out at about the
same time). Whether downscaling or dilution of neuronal
networks preserves the dynamical state of a neuronal network
model has been a matter of debate. Recently van Albada et al.
(2015) found that the first-order statistics (e.g., spike rates)
can excellently be maintained, but distortions occur already for
second-order statistics (e.g., correlations). This observation is
relevant not only because correlations of spiking activity are an
important measure for the experimentalist and impact spike-
timing dependent plasticity (STDP), but also because correlations
in neuronal activity drive fluctuations on the population level

and thus determine meso- and macroscopic measures such as
the local field potential (LFP) and the EEG (Lindén et al., 2011;
Tetzlaff et al., 2012).

In light of the limited explanatory power of downscaled
network models, the technology of Morrison et al. (2005)
represents a breakthrough, because at the scale of 100,000
neurons each neuron is supplied with the number of synapses
found in nature. Larger networks are necessarily less densely
connected, and therefore from this threshold on memory
consumption grows linearly with network size, instead of
quadratically as is typical for down-scaled networks (see
Lansner and Diesmann, 2012, for details). Morrison and
colleagues already point out that the time required to construct
a neuronal network model in the main memory of the computer
may take up a considerable fraction of the total simulation time
and therefore one should make use of all the compute power
available. They show furthermore that network construction
is ideally parallelizable for a class of network structures.
Their technology enables new findings on the dynamics
and function of local cortical networks to the present day
(Potjans and Diesmann, 2014). Due to the progress in computer
hardware, networks of 10,000 neurons are today comfortably
studied on a laptop and networks of 100,000 neurons just require
one node of an HPC cluster.

Since 2005 (Morrison et al., 2005), improvements in neuron
(Kunkel et al., 2012) and connectivity (Kunkel et al., 2014)
representation in simulations of networks of spiking neurons
have expanded the range of brain models that can be simulated
on available computing hardware. The focus of those studies is to
minimizememory requirements without sacrificing performance
in the propagation of the network state for a given span of
biological time. Using supercomputers, networks with more than
one billion neurons and the corresponding number of synapses
can now be simulated. This already exceeds the number of
neurons in the brain of a mouse (100 million), but is still
two orders of magnitude away from the number of neurons
of the human brain (100 billion). These advances enable the
construction of multi-area models addressing the lack of self-
consistency in local cortical network models mentioned above
and making the link to meso- and macroscopic observables. First
neuroscientific results are emerging (Schmidt et al., 2016).

With the problem of network representation being solved for
the range of systems from laptops to petascale supercomputers,
increasing the speed of simulations becomes an urgent issue.
Simulation times for brain-scale networks are orders of
magnitude slower than real time, ruling out the investigation
of plasticity and learning which span minutes and hours of
biological time. As a first step toward faster simulation, we focus
on the time required to create instances of neuronal network
models in the main memory of modern computing hardware.

We distinguish between two different simulation use cases
that we address in this paper, both of which depend on fast
network instantiation. One use case is the rapid exploration of the
parameter space defining network model properties, including
systematic parameter optimization (Martínez-Cañada et al., in
press). This is useful to identify parameter ranges for which a
network model shows stable behavior, and typically combines

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2017 | Volume 11 | Article 30

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Ippen et al. Massively Parallel Network Construction

network instantiation with a short simulation run covering on
the order of a second of biological time. This use case requires
that instantiation is not significantly slower than simulation. The
other use case are models at the scale of entire brains, filling
petascale supercomputers with on the order of 100,000 CPU
cores. Network construction time on these systems is presently
in the range of 15min (Kunkel et al., 2014). Compute time on
such systems is a limited commodity and should not be wasted on
sub-optimal network instantiation. Furthermore, entire compute
nodes or even racks are often allocated for single jobs, implying
that usage is only efficient if a simulation employs all processor
hardware available in these units.

As we focus on network instantiation in this work, especially
on connection instantiation, we limit ourselves to simplified
neuron models, describing the dynamics of a neuron by a
small number of—often linear—ordinary differential equations
combined with a threshold and reset mechanism representing
the generation of action potentials. Our results apply also to
more complex neuron models, including multicompartment
models, provided that significantly less memory is required
to represent neurons than synapses, and that the number of
synapses is much larger than the number of neurons. We
further confine our investigation to the creation of connections
representing chemical synapses. While neurons interact also by
other biophysical mechanisms, some of which are supported
by current simulation technology (see Hahne et al., 2015 for
electrical synapses (gap junctions) and Potjans et al., 2010 for
neuromodulatory control of synaptic plasticity), these do not
pose any new challenges for network instantiation from a
simulation technology perspective.

In practice, neuroscientists formulate their simulation
setups using a high-level programming language designed for
expressiveness in the problem domain. Research on suitable
languages is ongoing. In common use are variants embedded
into the Python language (Davison et al., 2008; Eppler et al.,
2008) which has become a de facto standard in computational
neuroscience (Muller et al., 2015). Network models commonly
use combinations of deterministic and probabilistic rules to
specify the connectivity among subpopulations of neurons
(Crook et al., 2012). The script specifying a simulation essentially
consists of a sequence of collectiveCreate() commands for the
instantiation of populations of different cell types and collective
Connect() commands establishing and parameterizing the
corresponding synapses. The specifications of the use cases in the
present work follow this approach to perform all analyses under
realistic conditions.

Modern computing hardware beyond the desktop computer
typically consists of a number of compute nodes connected
by a fast interconnect such as Infiniband. Each compute
node contains a number of CPUs, which in turn contain a
number of cores that execute instructions. Since all cores within
a single compute node share a common main memory
and are managed by a single instance of the operating
system, it is possible to parallelize simulations within a
compute node using threads. A particular specification of
a programming model for multi-threading in widespread
use is OpenMP (OpenMP Architecture Review Board, 2008).

Parallelization across multiple compute nodes, on the other
hand, requires communication over a physical network.
In common use is the message passing interface MPI
(Message Passing Interface Forum, 2009).

As MPI-based parallelization commonly incurs a memory
and communication overhead compared to thread-based
parallelization, a combination of both technologies is desirable.
Initial work concentrating on the phase were the state of the
network is advanced in time was already carried out a decade
ago (Plesser et al., 2007). Here, each MPI process is split into a
number of threads and each such thread is called a virtual process
(VP). The present work builds upon these early explorations.

We consider first the time required to simulate a neuronal
network model of a size typically used in computational
neuroscience today. The computer is a single multi-core system
commonly used in theoretical laboratories. We call this network
model small, because it represents only 25% of the neurons within
the reach of the local connectivity in the mammalian cortex and
only 6.25% of the one billion synapses in a cubic millimeter of
cortex.

Figure 1 compares MPI- and OpenMP-based parallelization
and separates the total time for a simulation run into the time
required to construct the network (Figure 1B) and the time it
takes to simulate the network, i.e., to advance the dynamical
state of the network over the desired span of biological time
(Figure 1C). Simulation time declines with increasing number
of processes for both MPI (blue) and OpenMP (red) until the
simulation exhausts the number of computational cores (24). In
spite of hardware support for two parallel processes per core
(hyperthreading), simulation times increase at first when using
more than 24 processes. Even with 48 processes, simulation
times are only about 25% shorter than with 24 processes. Still,
simulation time is reduced from over five minutes for a single
process to slightly more than ten seconds for 48 processes.

Network construction (Figure 1B) shows very different
scaling for MPI and OpenMP. When using OpenMP,
construction times decline markedly only for up to four
threads, followed by a complex non-monotonic course and
saturate at a network construction time about five times as long
as with MPI. Parallel processes do not communicate during
network construction and therefore there is a priori no reason
why the two parallelization schemes should exhibit different
runtime performance.

It is instructive to inspect memory consumption shown as
a bar diagram in Figure 1A. While memory consumption is
independent of parallelization when using OpenMP, it increases
when using MPI, exceeding OpenMP by more than 60% for high
degrees of parallelization. The scenario may just be indicative of
the common runtime vs. memory consumption dilemma. Thus,
we need to find out whether the more compact representation
enabled by the shared memory access of OpenMP incurs runtime
costs due to the need to coordinate access to joint data structures.

Figure 2 compares the breakdown of memory consumption
for the two parallelization schemes at the highest degree of
parallelization studied in Figure 1. The major part of memory is
occupied by synapses and neurons and is of equal absolute size in
both schemes. The discrepancy is explained by the overhead for
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A

B

C

FIGURE 1 | Performance of a small neuronal network model on a

single shared-memory compute node. A balanced random network model

(Brunel, 2000) representing 25,000 neurons and 62.5 million synapses is

simulated for one second of biological time (small benchmark). The compute

node houses two CPUs with 12 cores each and up to two hardware threads

per core. Table 1 summarizes the configuration. For detailed system

specifications see Sections 2.2.1, and 2.2.2 for model specifications. (A)

Memory consumption and (B) runtime of network construction as a function of

the degree of parallelization. Red indicates parallelization using OpenMP

threads and blue using MPI processes. Virtual processes first bind to cores on

one CPU (up to 12 VPs), then on the second CPU (up to 24 VPs), and finally to

the second hardware thread on each core (up to 48 VPs). The data are

averages over five simulations with identical seeds of random number

generators. Error bars in (B) show one standard deviation of measurements.

(C) Runtime of the simulation of network dynamics, excluding the network

construction phase shown in (B). Same notation as in (B). The dashed vertical

line indicates the total number of physical cores of the compute node.

runningmultiple processes and the data structures of MPI.While
in the OpenMP scheme there is only one process, the overhead is
multiplied by a factor of 48 for MPI. As the analysis shows that
OpenMP does in fact not reduce the memory required for the
representation of the network, the runtime vs. memory dilemma
does not explain the inferior runtime of OpenMP.

This is the puzzle we need to resolve. Why does network
construction in the OpenMP scheme scale so much worse while
it does not use a more compact representation of the network
in memory and exhibits no disadvantage in the propagation
of the dynamical state? This question is relevant because on
future computer systems with hundreds of computational cores
but limited amounts of memory per core, we cannot afford to
spend the major part of memory on the overhead. A lightweight
parallelization scheme is required. At the same time, however,

FIGURE 2 | Map of memory consumption at the end of the network

construction described in Figure 1. For parallelization with OpenMP (top)

48 threads are used and, correspondingly, for MPI (bottom) 48 processes

(rightmost data points in Figure 1). The absolute contributions to the total

memory consumption are distinguished by color from left to right. In the case

of OpenMP these are: synapses (blue, 2 GiB), neurons (red, 72 MiB),

overhead at start of program (yellow, 6.4 MiB), initialization of MPI with

MPI_Init() (green, 9.4 MiB), and other NEST data structures (black,

7.9 MiB). MPI_Init() is not required for OpenMP parallelization and shown

for comparison with MPI parallelization only. The enlargement (indicated by

gray lines) shows the latter three contributions (total 23.7 MiB) multiplied by 48

(1138 MiB). In the case of the MPI simulation the data are sums over all

processes, the last three components occupying a total of 1184 MiB. Memory

consumption is measured by the resident set size (see Section 2.5).

without a corresponding scaling of construction time, systems
with many cores will not be of use either. As we can demonstrate
excellent scaling using the same representation of the network
on identical computer hardware, there seems to be no room
for a fundamental obstacle in simultaneously achieving efficient
usage of memory and scaling. In this study we explain the
observed poor scaling for OpenMP and show how to eliminate
this bottleneck.

The remainder of this paper is organized as follows: In
the methods section we first specify the simulation software
our quantitative data refer to. Next, we describe in detail
the neuronal network models and the computer systems used
throughout the present work. In order to validate the generality
of our conclusions we extend the benchmark scenario indicated
in Figure 1 to a large neuronal network model executed on
a supercomputer with thousands of compute nodes, where
each compute node harbors only a minor fraction of the
neurons. Subsequently, we introduce the state-of-the-art high-
level data structures representing a network instance in main
memory. When these data structures are created, the simulation
engine needs to acquire suitable pieces of memory from the
operating system. Section 2.4 explains commonly used allocation
strategies and how an application can select between them.
Finally, the methods section describes our protocol of obtaining
quantitative data and the tools for assessing runtime andmemory
consumption.

In the results section we present an analysis of contributions
of different components of the software to the total time
required for network construction. For small networks, the
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TABLE 1 | Parameters and properties of the small and the large

benchmark.

Small Large

COMPUTERS

System x86 HPC Cluster IBM BlueGene/Q

Partition Compute node Full supercomputer

Processor Intel Xeon E5-2680v3 IBM PowerPC A2

Clock (GHZ) 2.5 1.6

CPU/node 2 1

Cores/CPU 12 16

Hardware threads/core 2 4

Hardware threads/node 48 64

Memory/node 128 GiB DDR4 16 GiB DDR3

Memory/hardware thread (GiB) 2.7 0.25

OS CentOS Linux 7.1.1503 CNK

Compiler GCC v4.8.3 GCC v4.4.7

MPI OpenMPI v1.10.0 MPICH v1.5

OpenMP API version OpenMP 3.1 OpenMP 3.1

NETWORK PARAMETERS

N 25,000 2× 108

K 2,500 11,250

ǫ 0.8 0.8

BENCHMARK PROPERTIES

NK 62.5× 106 2.25× 1012

NVP 521 109

KVP 1,302,083 1,226,152

N∅
c 0 198,777,598

N1
c 0 1,218,658

N>1
c 25,000 3,743

The top part specifies the computers used for the two benchmarks and the center
part characterizes the respective neuronal networks. The high-performance cluster and
the supercomputer architecture execute the same network model with adapted total
number of neurons N, in-degree K, and share of excitatory neurons ǫ. The bottom part
summarizes properties of the benchmarks derived from combinations of computer and
network parameters: total number of synapses NK, number of local neurons per virtual
process Nvp, number of local synapses per VP KVP, expected number of source neurons
without targets, N∅

c , with exactly one target, N
1
c , and with more than one target, N

>1
c , on a

given VP. For derivation of the quantities, see Kunkel et al. (2014) (Section 2.4) Calculations
assume use of the maximum number of hardware threads per compute node (48, 64) and,
for the large benchmark, use of 28,672 compute nodes.

creation of connections between neurons dominates, but in the
large network setting other components consume the major
fraction of runtime. We then show that the standard method of
memory allocation serializes the creation of connections when
using OpenMP and explain the strategy of advanced allocation
algorithms to overcome this without loss of performance for
the simulation of the network dynamics. Subsequently we turn
to large networks distributed over thousands of compute nodes
and exhibit the loops over target neurons that only rarely find
local targets as the bottleneck. The reorganization of critical
loops eliminates this bottleneck, and combined with thread-
aware allocators ensures excellent scaling also for the large
benchmark.

In Section 4 we discuss our findings in light of the upcoming
massively-parallel compute nodes and exascale computers.
The technology described in the present article is available
in the open-source simulation software NEST version 2.12

(Kunkel et al., 2017). The conceptual and algorithmic work
described here is a module in our long-term collaborative
project to provide the technology for neural systems simulations
(Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS

2.1. Simulation Code
NEST, The Neural Simulation Tool (Gewaltig and Diesmann,
2007; Plesser et al., 2015) is a neuronal network simulation code
optimized for large networks of spiking model neurons with
relatively simple internal dynamics. In this framework, neuronal
networks are directed graphs with nodes representing neurons
and stimulation and recording devices, while edges represent
synapses between neurons and connections between neurons and
devices. NEST provides a range of model neurons and synaptic
dynamics, including spike-timing dependent plasticity (STDP).
Researchers create network models and specify simulations using
high-level commands of a built-in interpreter (SLI), a Python
interface (Eppler et al., 2008; Zaytsev and Morrison, 2014), or the
PyNN network simulator interface (Davison et al., 2008).

Internally, the simulation kernel, including all neuron and
synapse models, is implemented in C++. Neurons and synapses
are represented as instances of respective model classes, with
an emphasis on efficient neuron lookup and storage of graph
connectivity. To facilitate the simulation of brain-scale networks
represented by graphs of O(109) nodes (neurons) and O(1013)
edges (synapses), the code distributes the memory required for
network connectivity across many compute nodes (Kunkel et al.,
2014). For optimal exploitation of computer capabilities, a
hybrid parallelization scheme (Plesser et al., 2007) combines
MPI (Message Passing Interface Forum, 2009) for process-based
with OpenMP (OpenMP Architecture Review Board, 2008) for
thread-based parallelism. The concept of virtual processes
considers a simulation to be distributed over VP = M × T
entities, where M is the number of MPI processes and T the
number of OpenMP threads per MPI process, and guarantees
identical results for fixed VP, independent of the partitioning
between processes and threads. This insulates the neuroscientist
from parallelization details.

Global identifiers (GID) linearly enumerate network nodes
and distribute them among the virtual processes in a round-
robin fashion. This allows for a compact representation of
nodes across parallel processes, since each process only needs to
know details about local nodes and implements a simple load
balancing scheme (Morrison et al., 2005). For non-local nodes,
only information on the model class is retained (Kunkel et al.,
2012). Edges are represented solely on the virtual process
responsible for updating the edge target (Morrison et al., 2005)
using a specialized adaptive data structure minimizing memory
overhead even in the case of scaling to more than 500,000 virtual
processes (Kunkel et al., 2014); see Section 2.3 for details.

The benchmark data reported here are created using revision
38a9608 of NEST, available publicly on GitHub (https://git.io/
v1sHv), except for data on the alternative loop order (Listing 3,
Section 3.2) first implemented in revision 5e5cdd7 (https://git.
io/v1sHI, Figures 6, 7).
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2.2. Benchmark Scenario
2.2.1. Computing Hardware
Computational neuroscientists use simulations across a range
of computers, from low-end laptops for education and
small-scale simulations to brain-scale simulations on the largest
supercomputers available today (Kunkel et al., 2014). In the
present study, we explore the performance on two computer
architectures typical for demanding simulations: a compute node
of a modern high-performance cluster as used for parameter
scans on networks with biologically realistic connectivity (O(105)
neurons, Potjans and Diesmann, 2014), and a supercomputer as
required for spiking neuron simulations of brain-scale networks
(Schmidt et al., 2016). The details of the computer systems are
given in Table 1.

2.2.2. Neuronal Network Model
All benchmarks reported in this study are performed by
constructing and simulating a variant of a widely-used balanced
random network model (Brunel, 2000), which has also been
used in previous benchmarking studies (Morrison et al., 2007;
Helias et al., 2012; Kunkel et al., 2012, 2014), and is available in
NEST 2.12.0 as hpc_benchmark.sli (Kunkel et al., 2017).

The network consists of ǫ = 80% excitatory and 1 − ǫ =

20% inhibitory neurons driven by external random spike trains.
Each neuron receives input from nE excitatory and nI inhibitory
neurons, which are chosen at random from the respective cell
types for a total number of n = nE + nI inputs, also called
the in-degree. The total number of neurons N and the in-degree
n are scaled to adjust the network size to the compute node
and supercomputer hardware. During simulation, this network
exhibits asynchronous irregular spiking activity at a stationary
average firing rate. Connections between excitatory neurons
exhibit spike-timing-dependent plasticity (Morrison et al., 2007),
while all other connections are static. The Supplementary
Material includes the simulation scripts generating the raw data
of the present study.

Table 1 summarizes the parameters of the network model
scaled to compute node and supercomputer sizes. The table
also shows the expected number of neurons and synapses on
each virtual process, as well as details of the connectivity data
structures discussed in detail in Section 2.3.

2.3. Representation and Instantiation of
Network Structure
2.3.1. Representation and Iteration
Neuroscientists specify network structure by deterministic or
probabilistic rules. We discuss here how a simulation code
decides which nodes to connect, while Section 2.3.2 describes
the layout of the adjacency table representing the edges of the
instantiated network in the main memory of the computer
system.

The basic principle of network instantiation is that the virtual
process responsible for updating the state of a particular neuron
is also responsible for creating all incoming connections of this
(postsynaptic) target neuron and for representing them in its
share of the main memory of the computer; see Morrison et al.
(2005) for details and justification.

The instantiation of a network on the basis of connection rules
conceptually consists of the following steps:

1. Specify ordered sets of potential source and target neurons.
2. Specify a synapse model, possibly with parameters.
3. Specify a connection rule, possibly with parameters.
4. Perform preparations, which may entail communication

between MPI processes.
5. Iterate over source or target sets, or both, in a suitable fashion

and select source-target pairs to connect.
6. Create, parameterize, and store connection objects for all

selected pairs.

In order to illustrate how the iteration is organized in parallel
network construction, we limit our investigation to the fixed
in-degree rule because of its prominent role in computational
neuroscience in the last two decades (Amit and Brunel, 1997;
Brunel, 2000) and because it parallelizes perfectly in the
simulation engine architecture introduced in Section 2.1. The
fixed in-degree rule thus exposes the effect of loops over network
elements and of memory allocation costs on performance
without distraction by communication between compute nodes
during network creation or other overheads.

Listing 1 shows the details of the fixed in-degree
implementation. It iterates over all neurons in the target
population in parallel, with each VP skipping those target
neurons that are not managed by the VP. K source nodes are
then chosen at random and each is connected to the target
neuron by a call to the connect(source, target) function
which registers the actual connection with the simulator kernel
as described in Section 2.3.2. Here, we ignore details, such
as parameterization of the connection (weight, delay, etc.),
compatibility checks between source and target, and checks
preventing multiple connections for a given source-target pair
(multapses) or self-connections (autapses), since they do not
relate to the focus of the present work.

2.3.2. Instantiation in Main Memory
The simulation engine stores connections when a connection
algorithm calls connect(source, target); for details of the

1 for (

2 target = target_nodes.begin();

3 target != target_nodes.end();

4 ++target )

5 {

6 if ( not is_local(target) )

7 continue;

8 for ( size_t i = 0; i < K; ++i )

9 {

10 source = // draw random source from source nodes

11 connect(source, target);

12 }

13 }

Listing 1 | Implementation of the fixed in-degree rule. The algorithm is

executed in parallel by all virtual processes. If a target is not local to the

virtual process (line 6) it is skipped. Otherwise, the virtual process randomly

selects (line 10, blue), one by one, K of the source nodes (lines 8–12) and

connects them to the target (line 11, red). Iteration code is shown on yellow

background.
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underlying data structures and algorithms see Kunkel et al.
(2014). Briefly, each virtual process stores all connections with
targets local to the process in a hierarchical data structure,
mapping source neurons to connections. We need to consider
four cases:

1. A source neuron has no targets on a VP. This is marked by a
single zero bit in a sparse table (Silverstein, 2005).

2. A source neuron has fewer than Kcutoff = 3 targets on a VP
and all use the same synapse model. The connections
are stored in a homogeneous fixed-size connector,
implemented as a plain C-style array with one element per
target.

3. A source neuron hasKcutoff or more targets on a VP connected
using the same synapse model. The connections are stored in a
homogeneous variable-size connector, implemented as a C++

STL vector.
4. A source neuron has targets connected by different synapse

models. Connections are represented by a heterogeneous
connector, a C++ STL vector containing one homogeneous
connector per synapse model.

Table 1 displays the characteristic quantities of the benchmark
networks for the maximum number of VPs per compute node
and shows that cases 1 and 2 dominate for parallel simulations of
large networks.

Listing 2 sketches how a new connection is registered
in a homogeneous connector. The current connector of the
source neuron is obtained from the sparse table of the VP. If
the sparse table does not contain a connector, the algorithm
creates a connector of size K = 1 and stores the particular
connection. If the present size Kold of the connector is below
Kcutoff, the procedure creates a new connector of size Kold +

1, copies all existing connections, stores the new connection,
and finally deletes the old connector. The template argument
of the Connector class (see caption of Listing 2) selects the
implementation of the connector. If the new size Kold + 1 equals
Kcutoff, a connector with a dynamic number of connections is
created instead of the size-specific connectors used for lower
numbers of connections. Consequently, a connector with Kcutoff

or more elements is dynamic in size and the algorithm simply
appends the new connection. Finally, the procedure registers
the new connector for the source in the sparsetable. Dedicated
templatized Connector types for very short target lists do not
increase the complexity of the first steps of connector growth,
because the vector push_back() operation on line 22 of Listing 2
encapsulates an operation of similar complexity as the explicit
Connector replacement on lines 14–17.

Next we estimate the number of memory allocations
and deallocations (frees) required to build a network. We
consider the large benchmark first. Each neuron has a fixed
fan-in of K = 11,250 (see Table 1) and by symmetry on
average K = 11,250 outgoing connections. Each connection
is represented only on the virtual process on which its target
neuron resides. For M = 28,672 parallel processes a source
neuron has on average 0.006 (T = 64 threads per process)
to 0.4 (T = 1) connections per virtual process, so that on
any given virtual process almost all source neurons either
have no connection at all or only a single connection. Let N1

c

1 Connector* old_connector =

sparsetable->get_connector_for(source);

2 Connector* new_connector = 0;

3

4 if ( old_connector == 0 )

5 {

6 new_connector = new Connector<K=1>();

7 new_connector[0] = target;

8 }

9 else

10 {

11 size_t K_old = old_connector->size();

12 if ( K_old < K_cutoff )

13 {

14 new_connector = new Connector<K=K_old+1>();

15 new_connector->copy_from(old_connector);

16 new_connector[K_old] = target;

17 delete old_connector;

18 }

19 else

20 {

21 new_connector = old_connector;

22 new_connector->push_back(target);

23 }

24 }

25 sparsetable.store_connector_for(source,

new_connector);

Listing 2 | Dynamic selection of container class in dependence on number

of connections. The simulation engine executes this procedure every time it

stores a single connection from source to target. The listing states the

algorithm in pseudocode close to the C++ implementation. The angle

brackets enclose integer template arguments. These enable access to different

implementations of the class through specialization. For simplicity the code

assumes that the Connector is homogeneous before and after the new

connection is added. Furthermore, the connector stores only target, the

downstream GID, neglecting potential further parameters of the connection

such as weight and delay.

be the number of source neurons on a virtual process with
one connection. Storing this connection requires two steps:
creating a homogeneous one-element homogeneous connector
(one allocation) and registering it in the sparsetable, which in
turn requires one free and one allocation. The total number of
memory operations on each virtual process is thus approximately

nalloc ≈ 2N1
c (1)

nfree ≈ N1
c . (2)

For the small benchmark, we need to consider that excitatory
neurons connect to excitatory and inhibitory targets with
different synapse types, and thus require a heterogenous
connector containing one homogeneous connector for each
synapse type. Since ǫN neurons are excitatory, each neuron has
outgoing connections to on average KE = ǫK excitatory and
KI = (1 − ǫ)K inhibitory neurons, which are distributed across
all VP virtual processes. The average connector size is then for
excitatory-excitatory connections

kEE =
ǫK

VP
, (3)

for excitatory-inhibitory connections

kEI =
(1− ǫ)K

VP
, (4)
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and for all connections from inhibitory neurons

kI =
K

VP
(5)

as these use only a single synapse type and thus store all
outgoing connections in a single homogenous connector.
We find the shortest connectors for excitatory-inhibitory
connections at the maximum number of 48 VPs, in which case
kEI ≈ 10.4≫Kcutoff = 3. This means that in the small benchmark
all connectors are eventually stored using dynamically sized
containers .

Registration of the first connection for any source neuron
again requires one allocation and one free for sparsetable
registration and one allocation for the initial one-element
homogenous connector. This is replaced by a two-element
connector for the second connection (one allocation, one free)
and a dynamically-sized connector for the third connection
(one allocation, one free). Beyond this point, details of memory
management depend on the allocation strategy of the underlying
dynamic container. We assume that it doubles its capacity
when necessary, so that push_back() has amortized constant
complexity (Goodrich et al., 2011, Ch. 6.1.3). For an eventual
connector size k this requires ⌈log2 k/Kcutoff⌉ doublings with
one allocation and one free each. For excitatory source neurons,
registration of the first synapse of the second type requires
replacing the initial homogenous connector by a heterogenous
one at similar cost as registration in the sparsetable so that we can
use the same operation count estimate for connectors for both
synapse types. Creating the connectors for S source neurons with
an average connector size k therefore requires

nalloc ≈ 2S+ 2S+ S

⌈

log2
k

Kcutoff

⌉

=

(

4+

⌈

log2
k

3

⌉)

S (6)

nfree ≈ S+ 2S+ S

⌈

log2
k

Kcutoff

⌉

=

(

3+

⌈

log2
k

3

⌉)

S (7)

allocation and free operations. These values are approximations,
because the exact number of reallocations required depends on
the precise length of the target lists which varies for random
networks.

2.4. Memory Allocators
When a program written in C (or a language derived from
it) requires additional memory during runtime, it requests that
memory from the operating system by calling the function
malloc() or one of its variants (Kernighan and Ritchie, 1988).
After the memory is no longer needed, the program returns
the allocated memory with free(). When multiple threads
simultaneously read from or write to the same memory location,
race conditions may occur leading to unpredictable and possibly
incorrect behavior. For the same reason, simultaneous attempts
to allocate memory lead to overlapping memory regions being
handed out to different threads or an otherwise corrupted state
of malloc (Figure 4A). The default code implementing malloc
and free in glibc (Free Software Foundation, 2016) on Linux is
ptmalloc (Gloger, 2006), based on the work of Doug Lea (Lea,

2000; Kerrisk, 2010). The algorithm of ptmalloc solves these
concurrency issues by guards that limit access to the allocator
at the level of the interface functions to one thread at a time, as
illustrated in Figure 4B; while one thread is executing malloc()

any other thread calling the function needs to wait until the first
thread is done.

Alternative memory allocation frameworks that focus
on multi-threaded performance improve on ptmalloc: A
straightforward but rather inflexible design maintains a private
memory region for each thread. These regions do not need to
be guarded, as only the designated thread accesses a region.
Most memory allocations and frees are performed on the
private regions. In a second, more flexible design, all threads
share a memory pool that is accessed when no suitable piece
of memory is available in the private region of a thread. In this
case, chunks of memory larger than the typical size requested
by a single call to malloc() are exchanged between the memory
pool and the private region. This interaction happens seldomly
but needs to be guarded, as other threads also have access to
the pool. Lastly, an advanced design improves the behavior
for small memory requests, i.e., for objects comparable in size
to the administrative information required for each allocation
(Berger et al., 2000). Here, the allocator not only satisfies the
immediate request, but allocates in advance several objects of
the same size in a contiguous array. The size of the individual
object is stored only once, saving one to two words per object,
i.e., 4–16 byte depending on the computer architecture and
implementation. When the application allocates and deletes
objects of heterogeneous sizes, this strategy also reduces the
fragmentation of memory. The downside of this approach is
that an application can have an increased memory footprint if
the memory access pattern diverges from the described (and
expected) behavior.

We focus here on a set of widely used allocators that have
a proven track record in the field: tcmalloc, part of Google’s
gperftools version 2.5 (Ghemawat and Melange, 2007); jemalloc
version 4.2.1, the default allocator for FreeBSD’s libc since 2005
(Evans, 2006) and used by, e.g., Facebook (Evans, 2011); and
the allocator included with Intel’s Threading Building Blocks
(TBB) library version tbb44_20160526oss (Hudson et al., 2006;
Kukanov and Voss, 2007). These allocators can be used with
existing simulator code by dynamic preloading of or static linking
against the allocator library. We do not consider allocators
that are in a research or prototype stage, such as streamflow
(Schneider et al., 2006), ssmalloc (Liu and Chen, 2012), sfmalloc
(Seo et al., 2011), SuperMalloc (Kuszmaul, 2015), or scalloc
(Aigner et al., 2015).

Most modern operating systems such as Linux support
the use of alternative allocators without any changes to the
code of the application by providing a preloading mechanism
for shared libraries (Kerrisk, 2010, Ch. 42.5), typically by
setting the environment variable LD_PRELOAD to the shared
library file of the allocator. Alternatively, one can link the
alternative allocator statically to the application; this may
require additional linker flags to allow overriding of functions,
e.g., -Wl,--allow-multiple-definition on IBM BlueGene/Q
systems.
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2.5. Benchmark Protocol
We obtain the quantitative results reported here by building and
simulating the exemplary network model (Section 2.2.2) on two
different computing systems (Section 2.2.1) with corresponding
network sizes as specified in Table 1. In the following, one
execution of the network model is called a benchmark run. We
measure the execution time and the memory consumption at
different stages of the benchmark run and compute statistics
across multiple runs of the same configuration. If not stated
otherwise, all data points are means of five benchmark runs and
errors are the standard error of the mean.

The execution time of a benchmark run is measured at
two levels of detail. In the benchmark script, we use the
NEST commands tic and toc to obtain the time spent in
different sections of the code: creation of network nodes,
creation of connections, and propagation of the dynamical
state for the specified span of biological time. The commands
are implemented using the POSIX function times() (Kerrisk,
2010), providing approximately millisecond precision. To obtain
more fine-grained execution times of individual parts of the
network construction process at the C++-level, we use the
Stopwatch class provided as part of NEST. Stopwatch measures
time using the POSIX gettimeofday() function (Kerrisk,
2010), which approximately provides microsecond precision.
Since gettimeofday() incurs considerable run-time overhead,
especially on IBM BlueGene/Q, we use code instrumented with
Stopwatch only to dissect network construction times (Figures 3,
6), while all other figures are based on data from un-instrumented
code.

The memory consumption of a benchmark run is measured
using the NEST command memory_thisjob. On a Linux
operating system, such as the one investigated in the small
benchmark (Table 1), this returns the current resident set size
(VmRSS), i.e., the section of virtual memory that is mapped into
the main memory (RAM, see Kerrisk, 2010). On the system
under study in the large network benchmark (IBM BlueGene/Q,
Table 1), the function returns the heap and stack size using the
kernel function Kernel_GetMemorySize() and we report their
sum as the memory consumption.

The small network model is executed on a single compute
node. A benchmark run either systematically increases the
number of threads or the number of MPI processes, from
a single-threaded simulation to the maximal degree of
parallelization supported by the hardware. The different
allocators are evaluated by preloading them into the simulation
engine as a shared library (see Section 2.4) overriding the
standard functions malloc() and free() as described above.

We assume that the large network model is distributed over a
large number of compute nodes, running one MPI process each.
As each compute node constructs an equal share of the network
and network creation is independent of MPI communication,
a single compute node is sufficient for gathering the data on
memory consumption and construction time. We therefore use
the dryrun mode of NEST (Kunkel et al., 2014), which prepares
the simulation engine for a distributed simulation but starts
only a single process. For a constant number of MPI processes
the benchmark run again systematically increases the number

A

B

FIGURE 3 | Contributions to construction time for small and large

neuronal networks for different numbers of threads. The time required

for different construction steps is indicated by color and stacked: time for

creation of network nodes (gray) and connecting devices to neurons (green)

are shown in total, while the time for connecting neurons to each other using

the fixed-indegree algorithm is further divided into the random selection of

sources (blue), the instantiation of individual connections (red), and iteration

over nodes (yellow). Listing 1 shows correspondingly colored code for the

latter three components. A network of fixed size is distributed across

increasing numbers of OpenMP threads (strong scaling). The dashed vertical

line indicates the number of physical cores available on the compute node.

Network construction is performed with instrumented code incurring runtime

overhead compared to Figures 1, 5, 7, see Section 2.5. (A) Construction of

the small benchmark. Times required for creation of network nodes and for

connections between devices and neurons are not visible. Same network

model and machine as in Figure 1. (B) Construction of a balanced random

network model representing 200 million neurons and 2.25 trillion synapses

(large benchmark, Table 1, detailed model specification in Section 2.2.2) on

an IBM BlueGene/Q supercomputer (Table 1, detailed system specification in

Section 2.2.1). The benchmark emulates distributed computing on a constant

number of 28,672 compute nodes coupled by MPI while the number of

OpenMP threads on each node is increased using the dryrun feature of

NEST (Kunkel et al., 2014).

of threads on the compute node. Here the different allocators
are tested by statically linking them to the simulation engine,
overriding the standard functions malloc() and free().

3. RESULTS

Figure 3 shows the runtime contributions of different sections
of the network construction code for an increasing number of
threads per compute node; due to additional instrumentation as
described in Section 2.5, total times shown here are larger than

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2017 | Volume 11 | Article 30

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Ippen et al. Massively Parallel Network Construction

the corresponding times shown in Figures 1, 5, 7. The small as
well as the large network example exhibit appreciable scaling only
up to a small number of threads. The patterns of the distribution
of runtime contributions reveal, however, that the reasons are
entirely different. Most of the time required to construct the
small network is spent on instantiating individual connections
(Figure 3A, red), while the other components become negligible.
For the large network, in contrast, node creation (Figure 3B,
gray), device connection (green) and the iteration component
of the fixed-indegree algorithm (yellow) require constant or
increasing time with growing number of threads.

The portion of the network handled by each of the 28,672
compute nodes used for the large benchmark is comparable to the
size of the small benchmark, with approximately 7,000 neurons
and 78 × 106 synapses per node, compared to 25,000 neurons
and 62.5 × 106 synapses in the small benchmark. Nevertheless,
for the large benchmark network construction takes almost forty
(39.8) times longer than for the small benchmark network (single
thread, non-instrumented code).

These results suggest that the global network size imposes
limits on the performance of the algorithm creating the part of
the network local to the compute node. The hypothesis therefore
is that the scaling limit observed for large networks (Figure 3B)
overshadows the limit observed for small networks (Figure 3A).
As both limits have a different origin, different patterns in the
distribution of runtime contributions emerge.

In Section 3.1 we first investigate the nature of the bottleneck
for small networks before we turn to the case of large networks
in Section 3.2. Section 3.3 finally combines the optimizations
resulting from the analysis at the two network sizes.

3.1. Limits Imposed by Memory Allocation
In the small benchmark, the accumulated time of the connect()
calls take up most of the time (Figure 3A). A detailed description
of the connect algorithm is given in Section 2.3. In Section 2.3.2
we analyze the number of memory-related function calls
involved in network construction. From Equations (3–5) and the
parameters in Table 1, we obtain for VP = 48 virtual processes
connector sizes kEE ≈ 41.7 for excitatory-excitatory connections,
kEI ≈ 10.4 for excitatory-inhibitory connections and kI ≈ 52.1
for all connections with inhibitory source neurons. Inserting into
Equations (6) and (7) with SE = ǫN = 20,000 excitatory and
SI = (1−ǫ)N = 5,000 inhibtory source neurons respectively and
summing, we find that each virtual process must perform nalloc ≈
325,000 allocations and nfree ≈ 280,000 frees to construct the
small benchmark network.

Thus, each virtual process performs over 600,000 memory-
related function calls in parallel with the other VPs. This points
to memory allocation as a plausible candidate for the bottleneck
in scaling.

In case of serial or multi-process programs, or if there are only
few memory related function calls, memory allocation performs
well, as demonstrated by the blue curve in Figure 1B. In the
multi-threaded case with many parallel allocations within a short
time span, many threads idle, waiting for their turn to access the
memory guarded by the standard implementation of malloc().
Figure 4B illustrates this situation. Indeed, explorative analysis

Memory Cake

unguarded access to the cake 

can make consumers reach for 

the same piece

Memory Cake
consumers wait in a line

a waiter distributes 

cake pieces one by one

Memory Cake

a waiter makes sure that

all plates are filled

each consumer has a separate plate and 

can consume as much cake as available

A

B

C

FIGURE 4 | Shared memory access patterns. (A) Unguarded access to

memory in multi-threaded programs can result in assigning the same memory

region to different threads, causing unintentional overrides by the threads.

(B) The trivial solution is to implement a guard or barrier managing all

access to memory. This results in a bottleneck in case many threads access

memory in rapid succession. (C) Modern memory managers implement

thread-local regions, from which a thread can interact with memory:

Interaction with the global memory becomes necessary only if the region is

empty or overcrowded, and only this interaction needs to be guarded. This

removes the bottleneck for most cases.

with the HPCToolkit (Adhianto et al., 2010) indicates that calls
to malloc() and free() require a large amount of time (data not
shown). If this is true, improved memory allocation frameworks
using ideas illustrated in Figure 4C should increase performance.

Alternative allocators as described in Section 2.4 have
primarily been developed for multi-threaded web services. Let
us investigate how they perform under the conditions of a
production code for the simulation of biological neuronal
networks. Figure 5B summarizes the results for network
construction. The standard allocator exhibits irregular behavior.
After an initial reduction of runtime for two to four threads,
runtime varies in a complicated manner until it stabilizes beyond
24 threads. The total speedup at 48 threads compared to the
single-threaded application is just three (3.15). The allocators
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A

B

C

FIGURE 5 | Performance of a small neuronal network model using

different memory allocators. (A) Memory consumption after network

construction, (B) runtime required for network construction, and (C) runtime

for network simulation excluding network construction as a function of the

degree of parallelization at constant network size (strong scaling). Data are for

the same network model and machine as in Figure 1. The dashed vertical line

in each figure indicates the number of cores available on the compute node.

Results obtained with the standard allocator ptmalloc are shown in red

(parallelization with OpenMP) and blue (parallelization with MPI) and show the

same data as in Figure 1, while results for alternative allocation algorithms are

shown in green (tcmalloc), violet (tbb), and yellow (jemalloc) respectively; see

Section 2.4 for detailed specification of allocators. Data in (C) are shown in

double-logarithmic representation, with the black line indicating ideal scaling.

tcmalloc, tbb, and jemalloc all improve the performance to an
almost proportional scaling as observed for parallelization by
MPI. The latter scales well until all physical cores run one thread.
The subsequent increase in runtime when the cores need to run
two threads is only compensated toward the maximum number
of threads supported by hyperthreading. In this limit, the well-
scaling allocators reduce runtime by an order of magnitude
(speed-up 9.6 for jemalloc using 48 threads), an improvement
by a factor of three compared to the standard allocator. The
variability across runs is vanishing. MPI still exhibits a superior
17-fold speed-up. Around 40 threads, some allocators show
behavior deviating from the overall scaling trend, most likely due

to details of the interaction between model structure, memory
allocation and NUMA hardware.

The memory consumption (bars in Figure 5A) of the well-
scaling allocators is larger than the consumption of the standard
ptmalloc allocator, because the private memory regions require
pre-allocation and thus a certain overhead per thread and may
be less optimally exploited. With respect to MPI parallelization,
however, multi-threading reduces memory consumption as the
private regions require less memory than the overhead imposed
by MPI (detailed in Figure 2).

The advanced allocators have techniques to support the
creation of small objects (Section 2.4). These improvements are
not relevant for the small benchmark scenario as all connections
are stored in vectors, see parameter N>1

c in Table 1.
Independent of the choice of allocator or parallelization

method, the scaling of runtime of the simulation of network
dynamics time is close to optimal (Figure 5C). When the
physical cores are exhausted, runtime increases as the simulation
progresses according to the slowest thread. The neuronal
network needs to be distributed over many more threads before
a reduction in runtime is achieved compared to the value at
the maximal number of physical cores. Overall, parallelization
achieves a 27-fold speed-up in the simulation of network
dynamics, bringing down simulation time from about 5.5 min
to 12 s.

3.2. Limits Imposed by Loop Order
Let us now turn to the situation for large neuronal networks.
We already learned from Figure 3B that here runtime is not
dominated by the command establishing the connection between
two neurons. Other parts of the code creating the network
consume the major fraction of runtime. Listing 1 shows the
fixed in-degree algorithm introduced in Section 2.3. The colored
ranges of code lines correspond to the distribution of runtime in
Figure 3B. The outer loop iterates over all neurons in the network
because all neurons receive synapses in this network. All threads
are executing the loop in parallel, taking action only if a neuron
is local. In a large neuronal network, however, fewer than one
neuron in a million is local (N/NVP = 0.545, see Table 1 for
parameters). Most iteration steps terminate immediately without
doing any work. This extreme ratio suggests an alternative
strategy that reverses the structure and loops over the much
shorter list of local neurons for the price of a potentially more
costly test. Listing 3 shows the alternative algorithm in its general
form. The test needs to find out whether a given local neuron is in
the list of target nodes. For our particular neuronal network this
test is simple as the list of target nodes just contains all neurons
in the network and can therefore be represented as a continuous
range of integer values. The test is also efficient for more complex
lists of target nodes if the list is represented by a suitable data
structure such as a hash function or an ordered set.

Figure 3B reveals that connecting devices to neurons and
node creation also do not parallelize well. We address the former
issue by reorganizing iteration code of the all-to-all connection
algorithm, as well as other connection algorithms, along the same
lines as the fixed-indegree algorithm. The flat node creation time
observed for the large benchmark (Figure 3B, gray) is due to the
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fact that each virtual process needs to register some information
about each of the 200 million neurons in the entire network
to support source-target compatibility checks when creating
connections (Kunkel et al., 2012). We improve the scaling of
this process by registering non-local nodes en bloc instead of
individually.

Figure 6 shows the effect of the reorganization of loops
based onmeasurements using instrumented code. The previously
dominating parts of the code have vanished from the distribution
of runtime. The overall effect is shown in Figure 7 for
uninstrumented code (red vs. gray curve): When all 16 physical
cores are in use, runtime reduces to a fifth compared to the
original situation (from 248 s down to 53 s). At the maximum
number of hardware threads runtime even improves by nearly an
order of magnitude (from 314 s down to 33 s). In this case, the
excessive iterations with increasing number of threads lead to an
increasing runtime in the original algorithm while the runtime of
the remaining components continues to decrease.

The resulting pattern of the distribution of runtime now
resembles the one of the small neuronal network (Figure 3). The
connect calls dominate and because of the reasons explained
in Section 3.1 prevent a further reduction of runtime with
increasing number of threads. Loop order does not affect the
network construction time for the small network (data not
shown).

3.3. Combined Optimization of Memory
Allocation and Loop Order
Figure 7 shows the combined effect of the improved multi-
threaded memory allocation and the reorganization of loops
discussed in the previous two sections on the construction of the
large neuronal network. With the help of the advanced memory
allocators, runtime decreases linearly until the 16 physical cores
are exhausted, then decreases slightly slower until each core
runs two threads and improves minimally beyond this point.
Ultimately, runtime is about half of what is achievable with a
reorganization of loops only (from 33 s down to 16 s). The use
of multi-threading on the compute nodes of the supercomputer
leads to a speed-up of 26 compared to the usage of a single thread
per compute node. This is the difference between 7 min and just
15 s spent on network construction.

1 for (

2 target = local_nodes.begin();

3 target != local_nodes.end();

4 ++target )

5 {

6 if ( not target_nodes.contains( target ) )

7 continue;

8 for ( size_t i = 0; i < K; ++i )

9 {

10 source = // draw random source from source nodes

11 connect(source, target);

12 }

13 }

Listing 3 | Fixed in-degree algorithm with alternative loop order. Compared

to the original algorithm in Listing 1, the outer loop iterates over the local nodes

(lines 1–4) and ignores all target neurons not in target_nodes (lines 6–7).

FIGURE 6 | Time required for the construction of the large neuronal

network using the alternative loop order. Color code and data ranges are

the same as in Figure 3B showing the construction time prior to the

reorganization of loops. The times required to create the network nodes and to

connect devices and neurons are too small to be visible in the present graph.

Listing 3 illustrates the algorithm. The gray curve shows the total construction

time from Figure 3B for comparison. The dashed vertical line indicates the

number of physical cores available on a compute node. The double-logarithmic

representation of the same data in Figure 7 illustrates the scaling at large

numbers of threads. Network construction is performed with instrumented

code incurring runtime overhead compared to Figure 7, see Section 2.5.

For the large network the advanced allocators also improve
memory usage. Generally, memory consumption more than
doubles due to administrative overhead when scaling from one
to the maximal number of threads. Advanced allocators reduce
the administrative overhead, so that memory consumption at the
maximum number of hardware threads is 27% or 3 GiB lower
using tcmalloc than using the standard allocator. Consequently,
with the same amount of memory available, the number of
neurons on a compute node can be increased by more than a
third (1.375): four instead of three neurons can be represented.
This is achieved by a better handling of large numbers of small
objects by the advanced allocators (see Section 2.4).

4. DISCUSSION

Since Dennard scaling enabling the steady increase in processor
clock speed came to an end a decade ago (Chang et al., 2010),
progress in compute power comes frommulti-core architectures.
Computational neuroscience has taken up the challenge to
develop simulation code for spiking neuronal networks coping
with the increasing parallelism of the hardware.

Today, the dynamics of even rather small networks of
the size of a cortical microcolumn (O(105) neurons) can be
simulated with highly parallel code reducing the time required
for the simulation of one second of biological time from several
minutes to a few seconds. For brain-scale networks, petascale
parallelization is essential to aggregate themainmemory required
to represent trillions of synapses. The success of the community’s
efforts in developing technology for the parallel execution of
the dynamics rests on the natural microscopic parallelism of the
dynamics of neuronal networks: at a common level of description
in computational neuroscience, nerve cells are independent
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A

B

FIGURE 7 | Combined effect of improved memory allocation and loop

order on construction time and memory consumption for a large

neuronal network. (A) Memory consumption at the end of and (B) time

required for construction of the large network. The horizontal axis specifies the

number of threads per MPI process as in Figure 3B. Gray bars/curve indicate

the original implementation (same data as total time in Figure 3B), while red

indicates results with loops carried out over local nodes (Listing 3, same data

as total time in Figure 6). The green and yellow bars/curves combine this loop

order with the memory allocators tcmalloc and jemalloc, respectively. The

black curve in (B) indicates ideal scaling. The dashed vertical line indicates the

number of physical cores available on a compute node.

dynamical systems interacting with each other only by delayed
point-like events.

However, before a particular neuronal network can be
simulated it needs to be instantiated in the memory of
the computer system. If this phase of the simulation does
not parallelize to the same degree as the phase concerned
with the dynamics of the network, network construction
ultimately limits the scaling of the application. Just at the
time when Dennard scaling ended, researchers pointed out the
importance of parallel network construction (Morrison et al.,
2005). The Message Passing Interface (MPI) provided a
mechanism to distribute a neuronal network simulation over
the compute nodes of high-performance clusters. For the
small number of processors per compute node and the
small network sizes considered, the resulting code indeed
showed excellent scaling of network construction on clusters
and shared memory machines. Consequently this software
architecture became the backbone of spiking neuronal networks
simulators.

In the present study we uncover fundamental limitations in
the parallelization of network construction on cluster nodes with

many compute cores and for networks orders of magnitude larger
than previously considered.

For small networks (we remind the reader that small in this
context means 25,000 neurons) simulated on a modern compute
node, we find excellent strong scaling up to the limits of themulti-
core architecture when using MPI for parallelization, although
at the price of significant memory overhead (almost 50%).
Using OpenMP threads for parallelization instead avoids the
memory overhead, scales perfectly in the simulation of network
dynamics, but does not scale beyond four parallel processes in
network construction. This is disappointing as CPUs already
have dozens of compute cores each equipped with hardware
supporting multiple threads while fast memory remains limited.
It is therefore essential to find technologies exploiting multi-
core architectures without the growing memory overhead which
parallelization by MPI entails.

Our study traces the lack of scaling of OpenMP in the
construction phase of small networks to memory allocation:
Constructing the adjacency tables representing network
connectivity requires a large number of small object allocations
and deallocations. When more than four threads perform such
allocations and deallocations simultaneously, the ptmalloc
memory allocator used by default in current Unix-based systems,
significantly slows parallel construction as all threads need
to synchronize every time a single thread obtains or returns
memory. Using modern allocators optimized for multi-threaded
memory operations, such as tcmalloc, jemalloc, and tbb,
practically eliminates the locking between threads and restores
scaling.

An alternative approach to reducing thread contention due
to memory allocation is to reduce the number of allocations
and frees by creating each connector object as a dynamically-
sized container with sufficient memory capacity as soon as the
first synapse is registered for any source neuron. Tests with
a pre-allocation of 64 elements showed better performance
for intermediate thread numbers but no advantages for large
numbers of threads and signficantly worse performance than
when using modern allocators without pre-allocation (data not
shown).

The absolute performance of thread-based parallelization is
still 60% worse than MPI-based parallelization for more than
twelve processes, see Figure 3B for 24 and 48 virtual processes.
The origin of this effect is not yet fully understood, but may be
related to the non-uniformmemory access (NUMA) architecture
of modern computers (Hager and Wellein, 2011, Ch. 4): Each
processor has local main memory but can also access the local
memory of other processors, albeit with higher latency. For an
MPI-program, the operating system usually attempts to hold all
data for each process in the memory local to the CPU running
the process. When a multi-threaded program runs on several
CPUs, though, memory may be allocated by different threads in
different parts of the main memory, requiring threads to access
data in non-local memory, thus incurring delays.

For large, brain-scale networks simulated on supercomputers,
thread-based parallelization is vital: these computers typically
provide significantly less memory per compute core than HPC
clusters and are thus de facto limited to a single MPI process
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per compute node. We find no or negative scaling beyond 16
threads per compute node. Here, however, the effect found for
small networks is overshadowed by an entirely different problem.
The connection algorithm spends most of its time iterating
over potential target neurons it is ultimately not responsible
for, thereby effectively serializing the processing. Reorganization
of the loop order for the price of a slightly more complex
test removes the serialization and excellent scaling is achieved
up to the full number of threads supported by the hardware.
Combining the new algorithmwith allocators designed for multi-
threading further improves the performance.

Overall, we have reduced network construction times for
microcolumn-sized networks on 48 threads by a factor 3.4, from
about 5.3 times to just 1.6 times slower than MPI, while reducing
memory consumption by about 25% compared to MPI. At this
level of parallelization, network construction now contributes
only 1.6 s to the total runtime while it takes 11 s to simulate
1 s of biological activity. Further improvements will thus have
less impact. Reducing the network construction times also leads
to, albeit minimally, improved times for network simulation, as
indicated by Figure 5C.

The improvements for the large (brain-scale) benchmark
are more significant: The original code requires about 247 s
to construct the brain-scale network in the best case (32
threads). After optimization, the code scales much further,
constructing the network in just 16 s using 64 threads, an
improvement by more than a factor of 17. This difference
matters: It reduces the time required to construct a brain-scale
network on the entire supercomputer by nearly 4 min, or about
30,000 core hours, almost 1% of a typical 5 million core hour
allocation for a supercomputing project. Brain-scale simulations
on supercomputers are not feasible without the improvements in
network construction presented here.

The quantitative data shown here are obtained using
a concrete implementation of network construction and
simulation code in the NEST simulator. The conclusions
obtained are however generic. The instantiation of model
neurons takes up negligible time and models are only
distinguished by the number of state variables. Therefore, our
results also hold for more complex neuron models than the
integrate-and-firemodel used throughout the study. The creation
of synapses contributes considerably to the time required for
network creation. With respect to network creation, synapse
models supporting long or short-term plasticity differ from static
synapses only in the number of state variables per synapse.
Consequently, there is no effect on the scaling of network

creation. More complex network structures typically require a
larger number of calls of high-level connectivity routines issued
from the serial simulation script. This does not reduce the
improvement of allocation but an additional serial component
reduces the total gain in performance.

The advantage of MPI parallelization over multi-threading
observed previously is not due to a typical runtime vs.
memory consumption dilemma. Multi-threaded code achieves
excellent scaling when used with modern memory allocators at
considerably lower memory consumption than MPI. In brain-
scale network simulations, the number of neurons represented
on a single compute node is orders of magnitude smaller than
the total number of neurons in the entire network. Connection-
generating algorithms need to be designed such that loops extend
over local elements only, independent of whether parallelization
is realized using MPI or multithreading.
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