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ABSTRACT

An excessive hyperinflammatory response-caused septic shock is a major medical problem 
that is associated with pathogenic bacterial infections leading to high mortality rates. The 
intestinal microbiota and the associated elaborated metabolites such as short chain fatty 
acid butyrate have been shown to relieve pathogenic bacterial-caused acute inflammation. 
Butyrate can down-regulate inflammation by inhibiting the growth of pathobionts, 
increasing mucosal barrier integrity, encouraging obligate anaerobic bacterial dominance 
and decreasing oxygen availability in the gut. Butyrate can also decrease excessive 
inflammation through modulation of immune cells such as increasing functionalities of M2 
macrophages and regulatory T cells and inhibiting infiltration by neutrophils. Therefore, 
various approaches can be used to increase butyrate to relieve pathogenic bacterial-caused 
hyperinflammation. In this review we summarize the roles of butyrate in attenuating 
pathogenic bacterial-caused hyperinflammatory responses and discuss the associated 
plausible mechanisms.

Keywords: Butyrate; Septic shock; Hyperinflammation; Pro-inflammatory cytokines; 
Macrophages; Regulatory T-cells

INTRODUCTION

The adverse health outcomes associated with systemic pathogenic bacterial invasion 
depend on the virulence of bacteria and host immune responses. Pathogens can cause 
tissue damage while host immune responses are activated that then strive to neutralize the 
infective agents. The process may result in the elimination of the infective agents, leading to 
complete recovery; or to an acute or persistant chronic infection with a hyperinflammatory 
response. Excessive inflammatory responses to infective agents can lead to adverse health 
sequalae such as septic shock, an outcome with a high morbidity and mortality (1). The rate 
of mortality with septic shock has been reported to be as high as 20%–50% in hospitalized 
patients (2). The pathogenesis of sepsis undergoes a rapid inflammatory response phase 
that is characterized by an increase in the level of IL-17 to an immune tolerance phase that is 
characterized by an increase in the level of IL-10 (3). A rapid increase in hyperinflammation 
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is causal for mortality in the early stages of sepsis (3). Therefore, it is critical to maintain 
appropriate immune responses that do not reflect an excessive level of inflammatory activity 
following infections with pathobionts.

The gut microbiota plays a key role in the pathogenesis of pathobiont invasion. The 
commensal cohort of bacteria can inhibit the increased colonisation and proliferation 
of pathogens and pathogen-progressed inflammation (4). In contrast, disregulated gut 
microbiota (dysbiosis) can cause dysfunction of the gut barrier and bacterial translocation 
across the intestinal wall, resulting in increased local and systemic inflammatory responses 
which could lead to sepsis in severe cases (5). In addition, pathogenic bacterial toxins such 
as LPS, lipoproteins (LPP) as well as dietary Ags can also cross the leaky gut to cause various 
disease states (6). The anti-inflammatory effect of commensal bacteria has been identified to 
be mediated by short chain fatty acids (SCFAs) that include acetate, propionate and butyrate 
(7). Although all these SCFAs have anti-inflammatory effects, butyrate is the key mediator 
among the SCFAs and is the entity which has been extensively studied. In this review, we 
summarize important aspects of butyrate in pathogenic bacterial infections that are causal 
for excessive inflammation and the associated mechanisms that drive the elimination of 
pathogenic bacteria and pro-inflammatory effects.

INHIBITORY EFFECT OF BUTYRATE ON PATHOGENIC 
BACTERIAL INFECTION
Many studies have shown that butyrate supplementation can reduce the severity of pathogenic 
bacterial infections. For example, using a mouse model of Citrobacter rodentium infection, Jiminez 
et al. (8) demonstrated that supplementation with high concentrations (140 mM) of butyrate 
reduced the severity of a pathogenic bacterial infective insult. Further, the bacterial infection-
associated intestinal inflammation was reduced and intestinal barrier permeability improved. 
Compared with a control group, the butyrate-treated mice had increased weight gain and 
feeding on day 14 at the peak phase of infectivity (8). Butyrate was also reported to reduce the 
abundance of an infective bacterial insult in a mouse model of Corynebacterium pseudotuberculosis 
infection (9). In an in vitro macrophage culture system butyrate at the concentration of 2 mM 
was also able to reduce the concentration of infecting bacterial counts (9).

Given that butyrate presents with an unpleasant taste, a butyrate derivative, namely 
phenylbutyrate has been developed. Phenylbutyrate has a phenyl group at position 4 on the 
butyrate molecule and exhibits similar anti-inflammatory properties (10). The compound was 
initially approved for the treatment of urea cycle disorders and familial cholestasis type 2 and 
later was found to be effective as a treatment for diseases such as spinal muscular atrophy, 
homozygous beta-thalassemia, neurodegenerative diseases and cancer (10). Jellbauer et al. 
(11) showed that phenylbutyrate decreased Salmonella enterica serovar Typhimurium in Taconic 
bred mice. It was reported that the first immediate immune response following infection 
with the bacterium was an increase in IL-23, which stimulated Th17 cells secreting IL-17. The 
second response was an increased secretion of IL-22, with an associated increased secretion 
of anti-microbial peptides (AMPs) (11). Sarker et al. (12) showed that supplementation of 
phenylbutyrate reduced clinical illness in infections with Shigella, with increased AMPs, 
cathelicidin and defensins in a rabbit model of Shigellosis. Phenylbutyrate increased 
cathelicidin in macrophages isolated from healthy volunteers who were administered 
phenylbutyrate for 8 days with dosages of 250 mg, 500 mg and 1,000 mg twice daily (13). 
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The macrophages displayed increased eradication capacity to Mycobacterium tuberculosis. The 
anti-mycobacterial effect of phenylbutyrate was further potentiated by vitamin D3. The results 
were confirmed in patients with tuberculosis (14). Phenylbutyrate has also been shown to 
have a protective effect for Helicobacter pylori infection by structurally interfering with the H. 
pylori envelope (15).

These results suggest that butyrate and its derivative phenylbutyrate have extensive inhibitory 
effects on various pathogenic bacteria. These molecules can reduce bacterial virulence and as 
such significantly prevent hyperinflammatory responses. As the side-effects of antibiotics are 
causal for intestinal dysbiosis and multiple antibiotic resistance, the administrative inclusion 
of butyrate may be a better choice in helping resolve future anti-microbial infections. It could 
be further developed to be an effective approach for both inhibiting pathobiont bacteria and 
reducing hyperinflammation.

Effect of butyrate on intestinal epithelial-mucosal barrier integrity
The intestinal epithelial-mucosal barrier is the first line of host defence against bacterial 
invasion (16). Tight junction formed by adjunct epithelial cells prevent bacteria and their 
toxins from crossing the barrier through size selectivity (6). Increased intestinal permeability 
allows larger particles to pass the gut barrier to cause bacterial translocation. It also allows 
bacterial toxins from live or dead bacteria to diffuse to circulatory system to cause sepsis. The 
intestinal epithalial-mucosal barrier is closely associated with mucins that contain AMPs and 
IgAs, secreted by specialized goblet epithelial cells that are composed of transmembrane and 
secretory glycoproteins (Fig. 1) (16). Mucins firmly attach to epithelial cells forming a thick layer 
that extends to the lumen where it becomes a loosened layer. The mucin layer blocks bacterial 
binding to epithelial cells that could enter lymphoid tissue, preventing pro-inflammatory 
responses. The abundance of mucins represents the main structural component of mucus that 
is a physical barrier to pathogenic bacterial translocations and that can be metabolised by some 
bacteria, which use mucins as an energy source such as Akkermansia miciniphila (17).

Evidence from both in vitro and in vivo studies supports the posit that butyrate increases 
mucosal barrier integrity through increased secretion of mucins. In the LS174T colon cell 
line, butyrate promoted mucin-2 production whilst reducing cell proliferation (18). In 
the intestinal organoids, butyrate increased retinoic acid production and thus, increased 
cell maturation markers, mucin-2 and villin (19). In a chicken model, supplementation of 
butyrate increased the number of goblet cells in the small intestine (20). Supplementation 
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Figure 1. Butyrate-promoting mucin production. Butyrate produced from fibers by bacterial fermentation. Butyrate 
stimulates goblet cells to produce mucins. Butyrate also stimulates colonocytes to produce AMPs and IgAs.
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of chickens with probiotics and prebiotics that promoted commensal bacteria increased 
butyrate levels with concomitantly increased production of mucins (21). Mechanistically 
butyrate was envisaged to increase the expression of the zinc-finger transcriptional factor 
Kruppel-like factor 4 (KLF4), which promotes goblet cell differentiation (22). Indeed, 
knockout of LKF4 resulted in a decreased number of goblet cells and altered the morphology 
of the cells (23,24).

Increased abundance and diversity shifts in butyrate-producing bacteria have also been 
associated with production of mucins. A study revealed that Bacteroides fragilis demonstrated 
protective effects in Clostridium difficile infections (25,26). B. fragilis increased mucin 
production and strengthened intestinal epithelial tight junction structure (25). The bacterium 
produced propionate, which is a precursor of butyrate. In a mixed culture including B. fragilis, 
Bifidobacterium infantis and Eubacterium limosum with Aloe vera whole leaf extract increased 
butyrate production (27). Two strains of commensal bacteria Bacteroides thetaiotaomicron and 
Faecalibacterium prausnitzii were studied for their effects on mucins in gnotobiotic rats (22). 
The study showed that B. thetaiotaomicron increased goblet cell differentiation, expression of 
mucus-related genes and the ratio of sialylated to sulphated mucins in gnotobiotic rats. B. 
thetaiotaomicron is an acetate producer and acetate has been shown to up-regulate KLF4, which 
promotes goblet differentiation. However, F. prausnitzii attenuated the effect of this bacterium, 
which could be interpreted as associated with the consumption of acetate. Therefore, 
balanced abundance and diversity of 2 strains of bacteria are an important factor for the 
maintenance of mucin production and turnover. Furthermore, the interactions between gut 
bacteria could be important factor for mucosal barrier integrity maintenance and warrant 
further research attention. Decreased gut barrier permeability can reduce the transfer of LPS 
into the intestinal mucosa and subsequently into the circulation and thus reduce systemic 
inflammatory responses. This may be an important mechanistic effect for butyrate in the 
prevention of sepsis.

Butyrate-stimulated AMPs
AMPs include defensins, cathelicidins, and C-type lectins (such as the regenerating [Reg] 
islet-derived protein family). A study showed that butyrate promoted the production of AMPs, 
RegIIIγ and β-defensins by intestinal epithelial cells through its receptor GPR43 (28). While 
RegIIIγ is selective against gram-positive bacteria, the anti-microbial effect of defensins is 
broad, that includes viruses, fungi and protozoa (29). In a GPR43−/− mouse model, RegIIIγ and 
β-defensins 1, 3 and 4 were lower than that in wild-type mice. Feeding of butyrate increased 
production of these antimicrobial peptides in wild-type mice but not in GPR43 knockout 
mice, indicating GPR43 is a critical mediator. Signalling molecules mTOR and Stat3 were also 
demonstrated to be critically important in providing a mechanism of defence.

Butyrate has also been reported to promote cathelicidin LL37/human cationic antimicrobial 
protein 18 (hCAP18) through activation of MEK/ERK and JNK pathways (30,31). Hase et 
al. (30) revealed that butyrate increased Caco-2 and HCA-7 expressed LL37/hCAP18 while 
inflammatory factors that included TNF-α, IL-6, IL-1α, LPS, and IFN-γ did not affect the 
expression of LL37/hCAP18. S. enterica serovar Dublin or enetroinvasive Escherichia coli 
modestly increased the expression of the peptide (30). Schauber et al. (32) found that LL-37 
only expressed in differentiated epithelial cells in the colon and ileum. In vitro, LL-37 was 
upregulated by butyrate, isobutyrate, propionate and trichostatin A via ERK and p38 MAPK 
pathways. Kang et al. (33) showed that LL-37 was effective against Staphylococcus aureus.
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Butyrate also increases AMPs secreted by macrophages and as such increases the anti-microbial 
effect of gut macrophages (34-36). Isolated peripheral blood-derived CD14+ monocytes 
incubated with macrophage colony-stimulating factor, butyrate, acetate and propionate 
imprinted an antimicrobial program on these immune cells (35). Macrophages incubated with 
butyrate resulted in a superior eradicating capability against gram-negative bacteria such as 
S. enterica or C. rodentium and gram-positive bacteria S. aureus. This was associated with highly 
increased 5′adenosine monophosphate-activated protein kinase activity, which inhibited 
mTOR, leading to increased LC3/ROS–mediated phagocytosis (Fig. 2). In addition, butyrate 
also increased the expression of S100A8 and S100A9 genes, leading to increased expression 
of AMP calprotectin. Butyrate-increased calprotectin was regulated by histone deacetylase 
(HDAC) 3 inhibition (35).

Butyrate controls pathogenic bacteria through regulating intestinal oxygen 
availability
Several studies have reported another important mechanism where butyrate can indirectly 
control pathogenic bacterial overgrowth, i.e. contributing to intestinal oxygen availability 
(Fig. 3) (37-39). Butyrate increases peroxisome proliferator-activated receptor-γ (PPAR-γ), 
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Figure 2. Increased anti-microbial effect of macrophages by butyrate. Butyrate activates AMPK which blocks mTOR 
activity. Butyrate also blocks mTOR activity through inhibiting PI3K/Akt and MAPK activities. The mTOR blocks LC3, 
which stimulates ROS to increase phagocytosis. The mTOR can increase the production of IL-6 and TNF-α, which 
activate mTOR upsteam pathways PI3K/Akt and MAPK to form feed-forward regulation loop. 
AMPK, adenosine monophosphate-activated protein kinase; LC3, microtubule-associated protein 1A/1B-light chain 3.
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Figure 3. Butyrate limits pathogen expansion through regulating oxygen availability. Butyrate decreases gut 
oxygen availability though activation of PPAR-γ pathway, Tregs and commensal E. coli. Limited oxygen availability 
decreases pathogen expansion.
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which in turn increases beta-oxidation of butyrate in colonocytes. This process utilises 
oxygen and is consumed at a higher rate, leading to decreased availability of intestinal 
luminal oxygen concentrations. This significantly affects pathogen replication such as 
happens with pathogenic E. coli, which makes an oxygen demand to produce energy, and 
when oxygen is in deficit replication is adversely affected. Intestinal infections with or 
without antibiotic treatment can increase oxygen availability, leading to intestinal dysbiosis, 
and thus proliferation of pathogenic bacteria that increases the risk of disease (40).

It is also established that commensal bacteria such as E. coli can inhibit the growth of the 
pathogen Salmonella through competition for oxygen. Litvak et al. (41) showed that neonatal 
chick colonization with S. enterica serovar Enteritidis relied on epithelial oxygenation and 
the resultant supply of oxygen for aerobic respiration and bacterial expansion. Salmonella 
enteritidis competes for oxygen with Enterobacteriaceae. Combining spore-forming bacteria 
with a probiotic E. coli protected germ-free mice from pathogen colonization but not when 
E. coli was genetically modified ablating the bacterium's oxygen utilising capacity. Velazquez 
et al. (42) also showed that mice inoculated with probiotic E. coli were resistant to Salmonella 
infections due to competition for oxygen utilisation.

Butyrate can promote probiotic growth through increased production of mucus as probiotic 
E. coli Nissle 1917 uses mucus to grow (Fig. 3). The bacterium E. coli Nissle 1917 has been 
shown to colonize in mucus and use 13 sugars found in mucus for growth (43). E. coli Nissle 
1917 has been shown to produce butyrate. Thus it forms a beneficial feed-forward regulatory 
mechanism.

Interestingly, Tregs have been demonstrated to participate in the regulation of oxygen availability 
(38). To increase oxygen availability, both inhibition of PPAR-γ and inactivation of Tregs are 
required. These 2 factors co-ordinate to produce a high oxygen concentration that allows a 
proliferative phase to progress for pathogenic bacteria. Inhibiting only the activity of PPAR-γ is 
insufficient to increase oxygen availability. Therefore, through the activation of Tregs, butyrate 
facilitates an anaerobic environment and as such inhibits pathogenic bacterial over-growth.

INHIBITION OF INFLAMMATION BY BUTYRATE

Butyrate has been extensively studied for its anti-inflammatory effects. It inhibits pro-
inflammatory immune cells such as M1 macrophages and neutrophils by reducing the 
production of proinflammatory cytokines whilst activating anti-inflammatory cells such as 
Tregs and M2 macrophages.

Effects of butyrate on macrophage development and function
Macrophages play key roles in the inflammatory status. They are developed from 
mononuclear cells and can be pro-inflammatory or anti-inflammatory types. Many studies 
have provided evidence that butyrate can act on macrophages to promote their ant-
inflammatory effects in both in vitro and in vivo (44-51). Butyrate acts not only on intestinal 
macrophages but also circulatory macrophages.

Chang et al. (44) showed that butyrate inhibited macrophage function in vitro through 
inhibition of HDACs. Treatment of gut-derived macrophages with butyrate resulted in 
decreased production of IL-6 and IL-12, which is dependent on the inhibition of HDAC but 
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TLRs and G-protein-coupled receptors are not involved (44). Usami et al. (45) showed that 
butyrate decreased TNF-α production through inhibition of HDAC-associated NF-κB activity.

S. aureus, a gram-positive pathogenic bacterium, can cause severe inflammatory responses/
septic shock through TLR2 ligands such as LPP and the more potent lipoteichoic acid (46,47). 
Park et al. (48) have shown that butyrate inhibits macrophage response to live S. aureus and its 
LPP in the in vitro Raw264.7 cell culture system. The associated mechanisms were reported 
to involve the inhibition of NF-κB, STAT1, and HDACs, with a consequent reduction in 
NO production (48). However, butyrate receptors GPR43 and GPR109A were not involved, 
indicating the importance of HDAC inhibition in the effects of butyrate on macrophages (48).

In macrophages, mTOR regulates NF-κB by targeting the inhibitor subunit IkBa to 
promote inflammation. Increased mTOR activity stimulated by bacterial components 
leads to increased IL-6 and TNF-α, and decreased IL-10 (49) (Fig. 2). Inhibition of mTOR 
by rapamycin leads to decreased systemic inflammatory responses induced by the glucan, 
zymosan (50). Decreased mTOR activity by butyrate in macrophages has been shown to 
result in decreased production of TNF-α, IL-12, IL-6 as well as increased production of 
IL-10 (51). The effects were revealed to be mediated by HDAC3 inhibition. Given that these 
pro-inflammatory cytokines play key roles in progressing sepsis, metabolically persuaded 
decreases of these cytokines by butyrate, can reduce the severity of sepsis experienced.

Locally, butyrate has been demonstrated to affect gut macrophage differentiation to 
produce non-inflammatory anti-microbial macrophages. The macrophages isolated from 
the colons of the butyrate supplemented mice showed enhanced anti-microbial activity 
(35,52). These mice also had reduced bacterial load with S. enterica serovar Typhimurium or 
C. rodentium infection.

Systemically, butyrate affected circulatory macrophages in a study with 9 healthy and 10 
obese subjects who received 4 g butyrate daily for 4 wk (53). Butyrate supplementation 
decreased LPS-induced IL-6 and Pam3CSK4-induced TNF-α in oxLDL-trained immunity.

Butyrate and neutrophils
Butyrate can reduce pro-inflammatory cytokines TNF-α, IL-6 and IL-12 produced by 
neutrophils and monocytes under concanavalin A stimulation (54). The GPR43 expressed 
on the surface of neutrophils has been identified as a major mediator (55). In GPR43−/− 
mice, inflammation-associated colon cancer mediated by neutrophils is increased through 
decreased activity of the downstream pathway cAMP-PKA-CREB-sfrp1/dkk3/socs1. Another 
report has also confirmed that butyrate reduces pro-inflammatory cytokines produced by 
neutrophils under stimulation of the opportunistic pathogenic bacterium Aggregatibacter 
actinomycetemcomitans with the identified and proposed mechanism being as HDAC inhibition 
rather than stimulation of GPR43 (56). The difference between the 2 studies could be 
explained by the butyrate dosages investigated.

Decreased levels of butyrate in inflammatory bowel diseases (IBDs) have been associated 
with increased levels of neutrophils as well as other immune cells (57). Simeoli et al. (58) 
showed that butyrate inhibited neutrophil recruitment in a mouse colitis model induced by 
dextran sulphate sodium. Butyrate decreased proinflammatory cytokines and increased anti-
inflammatory cytokines (58). The mechanism could involve the direct inhibition of HDAC3 
and HDAC9, leading to NF-κB inhibition and PPAR-γ upregulation (58).
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Vinolo et al. (59) examined the effects of butyrate on LPS-stimulated neutrophils both 
in vitro and in vivo. Butyrate decreased neutrophil production levels of nitric oxide (NO) 
and proinflammatory cytokines including TNF-α and cytokine-induced neutrophil 
chemoattractant-2 with inhibition of HDACs and NF-κB (55). In a rat model with 
intraperitoneal LPS administration, butyrate decreased recruitment of neutrophils to the 
peritonium. Ex vivo, pro-inflammatory cytokine and NO production by neutrophils were 
decreased in rats that were treated with butyrate.

Effect of butyrate on Tregs
Treg cells play key roles in intestinal inflammatory process and status. Treg cells display 
strong anti-inflammatory effects, a necessary effect that balances immune responses and 
prevents chronic inflammation as well as excessive acute inflammation. Butyrate can activate 
and thus encourage Treg cells to exert an anti-inflammatory effect. Depletion of Treg cells 
has been reported to result in autoimmune diseases (60). Butyrate regulated Treg cell pool 
size and function provide a protective effect by Treg cells against colitis (61-63). Butyrate 
can bind and activate GRP109a receptors in macrophages/dendritic cells, phenotypically 
changing these cells into Treg cells and elaborating IL-10-producing T cells (64).

Cytokines have been shown to play a key role in the pathogenesis of septic shock (65). 
Highly increased levels of pro-inflammatory cytokines in the early stages of sepsis have 
been considered to be the reason for early mortality (65). As such the abolition of cytokines 
from the circulation by blood purification therapies has been studied for the treatment of 
sepsis (65). Through activation of Tregs, butyrate inhibits proinflammatory cytokines IL-6 
and IL-17 (66). IL-6 can activate STAT3, which increases expression of IL-17, transcriptional 
factor RORγ and RORα (67,68). Consequently, IL-6 increases the blood levels of IL-17. Tregs 
control Th17 cells, which are highly pro-inflammatory cells, producing IL-17, IL-22, and IL-23 
in responses to extracellular bacterial infections (68,69). IL-17 can exercise an anti-microbial 
effect through recruitment of neutrophils, macrophages and dendritic cells (70). It also 
facilitates production of AMPs such as beta-defensin. Even so, IL-17 has also been associated 
with excessive inflammatory responses.

Activation of Tregs by butyrate not only inhibits effector T cells but also produces the 
anti-inflammatory cytokine IL-10 (66,71). IL-10 has been demonstrated to inhibit pro-
inflammatory macrophages (M1 macrophages) and to stimulate maturation of anti-
inflammatory macrophages (M2 macrophages) (72,73). In addition, IL-10 from Treg cells also 
induces M2 macrophages through other mechanisms (74). Accordingly, butyrate can inhibit a 
proinflammatory biochemical process and promote an anti-inflammatory status through the 
encouraged production of IL-10 by M2 macrophages.

In summary, butyrate can affect above immune cells to exert anti-inflammatory effect 
through the various mechanisms such as HDAC inhibition and butyrate receptor activation. 
In addition to these cells, other immune cells are also affected by butyrate but less studied 
such as mast cells, dendritic cells and T cells. Mast cells are inflammatory immune cells, 
which produce various inflammatory factors including TNF-α, IL-6, histamine and tryptase. 
Butyrate can reduce mast cells to secret these pro-inflammatory factors through HDAC 
inhibition (75). It also inhibits dendritic cell maturation and function to secret pro-
inflammatory factors IL-6 and TNF-α (76,77). Furthermore, butyrate causes T cell apoptosis 
through HDAC inhibition and associated cell death receptor Fas activation (78). Further 
studies are warranted to understand the effects of butyrate on these immune cells.
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STRATEGIES TO ENRICH BUTYRATE IN THE INTESTINES 
AS AN ADJUNCT THERAPY
As butyrate plays a key role in ameliorating intestinal increases in the level of pathogenic 
bacteria and mucosal tissue translocation that triggers associated hyperinflammatory 
processes. Increasing production of butyrate in the intestines could have a significant 
therapeutic effect for the treatment of excessive inflammation caused sepsis. Such treatments 
could be integrated into current therapeutic regimens that target hyperinflammation 
elicited from pathogenic infections. Many factors are involved in the induction of high levels 
of intestinal microbiome elaborated butyrate, and thus multiple intervention including 
probiotics, prebiotics and synbiotics may show a therapeutic benefit (Table 1). Probiotics, 
which refer to live commensal bacteria that improve gut microbiota, have been extensively 
studied both in animal models and clinical trials (79). Prebiotics are fibers indigestible by 
humans that can be metabolically fermented by the gut microbiota to produce beneficial 
metabolites (79). The role of probiotics, prebiotics and synbiotics (combination of probiotics 
and prebiotics) in enhancing the level of gut butyrate, are scientific plausible adjunctive 
options to consider.

Probiotics
Many bacteria have been identified to possess the necessary metabolic ability to produce 
butyrate. Such bacteria predominantly are classified into 4 bacterial taxonomic families 
including Clostridiaceae, Eubacteriaceae, Lachnospiraceae, and Ruminococcaceae (79,80). 
Notwithstanding, additional butyrate-producing bacteria have also been reported in other 
bacterial families such as Veillonellaceae and Thermoanaerobacterales family III (81). At the species 
level, more than 40 butyrate-producibg bacteria have been documented (79).

Only a few of the butyrate-producing bacteria have been investigated as possible probiotics 
and these have included F. prausnitzii, Akkermansia muciniphila, Ruminococcus bromii, and Roseburia 
species. The most studied one is Faecalibacterium prauzinii which has been shown to increase 
butyrate levels and is of benefit to various diseases such as depression, diabetes and pathogen 
invasion (82,83). In animal models, administration of B. fragilis, Butyricicoccus pullicaecorum or 
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Table 1. Strategies to enrich butyrate
Samples of bacterium/substrate Main findings Ref.
Probiotics

Faecalibacterium prausnitzii F. prausnitzii reduced Clostridium difficile infection in a mouse model. (83)
Bacteroides fragilis In a mouse model, B. fragilis inhibited C. difficile growth with increased butyrate and gut barrier. (84)
Butyricicoccus pullicaecorum Administration of the bacterium decreased colon inflammation through increased production of 

butyrate in a rat colitis model.
(85)

Roseburia hominis Administration of the bacterium increased cecal butyrate content and reduced stress-induced 
visceral hypersensitivity in rats.

(86)

Prebiotics
Inulin Inulin inhibited antibiotics-induced C. difficile infection. (104)
Pectin Fermentation of pectin increased beneficial bacterial growth. (108)

Synbiotics
Bifidobacteria + inulin In co-culture system, the synbiotic effectively inhibited non-probiotic bacterium Bacillus cereus. (110)
F. prausnitzii + potato starch The synbiotic was better than F. prausnitzii alone in inhibiting C. difficile growth. (83)
Bifidobacterium longum + pectin The symbiotic was better than each component alone in inhibiting pathogenic bacteria in the 

Simulator of the Human Intestinal Microbial Ecosystem.
(109)

Fasting mimicking diet (113)
First day intake 50% normal caloric It had anti-inflammatory effect and increased commensal microbiota.
Days 2–4 intake 10% normal caloric
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Roseburia hominis exerted effects to increase butyrate production, inhibit bacterial infection 
and reduce inflammation (84-86).

However, in a co-culture model, F. prausnitzii did not increase epithelial barrier integrity, 
indicating how complicated the production of butyrate in the system is in the host and how 
difficult is to mimic (87).

It should be noted that butyrate-producing bacteria do not work singularly but are part of co-
operative in the gut. To enable the effective production of butyrate, cross-feeding is necessary 
requisite. Some Bifidobacteria have been shown to possess the means to increase butyrate 
production through cross-feeding (88,89). Two strains of bacteria could also be competitive 
for sources such as Bifidobacteria angulatum and F. prausnitzii (90). In vitro models have shown 
that Bifidobacteria have a similar effect in the prevention of gut permeability that is induced 
by TNF-α in Caco-2 monolayers as a butyrate-producing bacterium (91).

Prebiotics
Prebiotics have been classified into 8 catagories that include beta-glucan, fructooligosaccharides/
oligofructose/inulin, galactooligosaccharides, isomaltooligosaccharides, guar gum, lactulose, 
resistant starches/maltodextrin and xylooligosaccharides/arabinooliosaccharides (92). 
Among them indigestible polysaccharides and resistant starch are most commonly used 
(92,93). These prebiotics have been used to increase the abundance of butyrate-producing 
bacteria, leading to increased production of butyrate (92-94). For example woody type dietary 
fibers have been shown to promote the growth of Bifidobacteria, Lactobacilli, and Bacteroides 
genera in a culture media system (95). Tochio et al. (96) showed that 1-kestose, the smallest 
fructo-oliosaccharide, increased F. prausnitzii and Bifidobacteria abundances. Many studies 
have shown that the beneficial effects of prebiotics are mediated by SCFAs. Depending on 
the individual microbiota that is present, prebiotics may produce butyrate or propionate 
(97). Although butyrate has greater anti-inflammatory effects, propionate has also been 
shown to exhibit anti-inflammatory effects (98). The SCFA acetate exerts the weakest anti-
inflammatory effect among all the SCFAs (99).

Inulin and pectin are 2 common fibers employed as prebiotics. Inulin is a type of fructan 
with beta-2:1 bonds and a linear structure. Some gut bacteria are able to metabolize inulin 
into butyrate to benefit the host (100,101); the butyrate that is produced results in higher 
concentrations of the SCFA than is produced with other fibers (101,102). Inulin has been 
shown to increase commensal bacterial abundance and improve colonic commensal bacterial 
diversity with concomitant decreases in gut pathobionts. It can stimulate both the butyrate 
producing species namely, Bifidobacterium adolescentis and F. prausnitzii (103). An additional 
study has demonstrated that inulin increases Bifidobacteria, Lactobacilli, and non-pathogenic 
E. coli. Inulin has been shown to decrease the infective burden of C. difficile, C. difficile-
associated inflammation and gut dysbiosis through the increased production of butyrate 
(104). Fachi et al. (105) showed that butyrate as well as tributyrate and inulin administration 
reduced C. difficile-infection caused intestinal epithelial cell damage through the activation 
of HIF-1. C. difficle infection severity is associated with the translocation of the bacteria to 
the circulation system and extraintestinal organs such as liver and spleen due to increased 
intestinal permeability (105). Butyrate increased the barrier and thus reduced the bacterial 
translocation as evidenced by reduced colony-forming units from the liver and spleen. The 
effect of butyrate on the gut barrier was further demonstrated by decreased translocation of 
FITC-dextran in the mice.
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Pectin, a plant cell wall component, has been shown to be utilised as an energy source substrate 
by F. prausnitzii with the consequent production of IL-10 in an in vitro model (106). Moreover, 
pectin that was fermented to butyrate attenuated atherosclerosis in an animal model (107). 
Using a dynamic gastrointestinal simulator, Ferreira-Lazarte et al. (108) reported that pectin 
remained 88% undigested after passing as starch in the small intestine but was subject to 
fermentative degradation in the large intestine thereby increasing local levels of butyrate. Pectin 
stimulated the growth of beneficial bacteria such as those from the genera Bifidobacteria spp. and 
Bacteroides spp. and the species F. prausnitzii (108).

Synbiotics
Synbiotic formulations are composed of both probiotic bacteria and prebiotic fibers. It has been 
posited that the combination may provide a better efficacious outcome for the elaboration of 
butyrate by intestinal commensal bacteria by either agent alone. Bianchi et al. (109) compared 
the effects of Bifidobacterium longum BB-46 alone and in combination with a lemon derived 
citric pectin in a Simulator of the Human Intestinal Microbial Ecosystem. The abundance 
of Firmicutes and Bacteroidetes was increased with the administration of B. longum BB-46 
alone. However, a combination treatment increased Faecalibacteria, Eubacteria, Lactobacilli, and 
Ruminococcaceae families and reduced the abundance of proteolytic bacteria such as Bacteroides, 
Clostridia, Peptoniphilus, and Streptococci, as well as the production of ammonia. Importantly, 
BB-46 alone did not increase butyrate levels but in combination treatment it did so (109). 
Furthermore, it has been shown that the combination use of inulin with Bifidobacteria can 
substantially inhibit the pathogenic bacterium Bacillus cereus (110).

When formulating synbiotics with the inclusion of probiotics and prebiotics it has been 
noted that different butyrate-producing bacteria utilise different types of prebiotics. For 
example, F. prausnitzii and Eubacterium rectale utilise fructose, oligofrutose and inulin to 
produce butyrate while B. pullicaecorum and Eubacterium hallii can only utilise fructose (111).

Other approaches that can modulate the gut microbiota
It has been shown that F. prausnitzii and A. muciniphila are increased after fasting (112). 
Therefore, it is not surprising that fasting mimicking diets decrease dextran sulfate sodium-
induced inflammation and stimulate the commensal gut microbiota, leading to reduced 
IBD pathological changes in the intestines (113). Fasting mimicking diets are also able to 
reduce neuroinflammaton and to exert a protective effect (114). Fasting mimicking diets 
may increase butyrate, thereby exerting anti-inflammatory effects (114). Notwithstanding 
additional research is needed to further confirm this impression.

CONCLUSIONS

Gut microbiota plays a key role in the outcomes of pathogenic bacterial infections. Commensal 
bacterial metabolite butyrate not only inhibits excessive inflammation but also limits 
pathogenic bacterial growth (Fig. 4). Several associated mechanisms have been elucidated. 
Butyrate can control pathogen proliferation through increasing mucosal barrier, secretion of 
AMPs and oxygen availability. It inhibits pro-inflammatory immune cells and activate anti-
inflammatory immune cells, and hence reduces pro-inflammatory cytokines. These important 
discoveries suggest supplementation of butyrate could be very helpful for the treatment of 
pathogenic infection and prevention of fatal consequences such as septic shock.
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Figure 4. Anti-septic effect of butyrate. Pathogens can cause excessive inflammation, which can result in septic 
shock. Butyrate can limit both pathogens infection through mucosal barrier and oxygen availability, and excessive 
inflammation through activation of M2 macrophages, Tregs and inhibition of neutrophils.
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