
Published online 3 November 2007 Nucleic Acids Research, 2008, Vol. 36, Database issue D607–D611
doi:10.1093/nar/gkm941

Upgrades to StellaBase facilitate medical and
genetic studies on the starlet sea anemone,
Nematostella vectensis
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ABSTRACT

The starlet sea anemone, Nematostella vectensis,
is a basal metazoan organism that has recently
emerged as an important model system in develop-
mental biology and evolutionary genomics.
StellaBase, the Nematostella Genomics Database
(http://stellabase.org), was developed in 2005 as
a resource to support the Nematostella research
community. Recently, it has become apparent
that Nematostella may be a particularly useful
system for studying (i) microevolutionary variation
in natural populations, and (ii) the functional evolu-
tion of human disease genes. We have developed
two new databases that will foster such studies:
StellaBase Disease (http://stellabase.org/disease) is
a relational database that houses 155904 inverte-
brate homologous isoforms of human disease
genes from four leading genomic model systems
(fly, worm, yeast and Nematostella), including
14874 predicted genes from the sea anemone
itself. StellaBase SNP (http://stellabase.org/SNP) is
a relational database that describes the location and
underlying type of mutation for 20 063 single nucleo-
tide polymorphisms.

INTRODUCTION

The starlet sea anemone, Nematostella vectensis, is a
member of the basal metazoan phylum Cnidaria.
This species is emerging as an important model system
in evolutionary genomics, developmental biology and
estuarine ecology due to (i) the availability of a complete
genome sequence, (ii) the generally conservative evolution
of its genome, (iii) its ease of culture, (iv) the experimental
tractability of its entire life history and (v) the ease of
collecting the animal from the field. The increasing utility
of this species is evident from the recent surge in

research papers—a PubMed search using the query
‘nematostella’ returns 35 journal articles published in
2006–07.
StellaBase is a genomic database for Nematostella that

allows users to search the genome sequence, predicted
genes, predicted proteins cross-referenced with PFAM
motifs (1) and expressed sequence tags (ESTs) (2).
The database is built on a relational structure in
MySQL with a front-end HTML interface on an Apache
server. It also houses a primer database, a literature
database and a database of living genetic stocks and
DNA samples that is searchable by geographic locale or
by population-specific genetic markers. Many recent
publications on Nematostella have been facilitated by
this relational database.
The utility of a sequenced genome depends partially on

the rate at which it has evolved. Slowly evolving taxa
are more informative about ancient evolutionary events,
whereas rapidly evolving taxa can prove useful for
microevolutionary studies. The Nematostella genome is
proving to be useful for reconstructing both ancient and
recent evolutionary events because the genome appears to
have evolved relatively slowly on a macroevolutionary
scale, but relatively rapidly on a microevolutionary scale.
For example, Nematostella shares far more intron loca-
tions with humans than do Drosophila melanogaster,
Anopheles gambiae or Caenorhabditis elegans (3,4).
It also shares more orthologous genes with humans than
these protostome animals and even the sea squirt Ciona
intestinalis, which, like human, is a chordate (3). At the
same time, Nematostella exhibits a relatively high rate of
intraspecific polymorphism and extensive population
structure at very fine spatial scales (3,5).

STELLABASE DISEASE

The remarkable degree of genomic conservation
between the starlet anemone and humans suggests that
Nematostella could become a useful model system for
exploring the functional evolution of proteins underlying
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human disease. Nematostella’s genome contains about the
same number of homologs to human disease genes as do
D. melanogaster and C. elegans [Figure 1; (6)], despite
the fact that the fruitfly and soil nematode are more
closely related to humans by 50 million years or more.
Furthermore, in several instances where all three of these
invertebrate model systems possess an ortholog to the
same disease-causing gene in humans, the Nematostella
variant can be far more similar to the human form.
For example over the 1168 amino acid region spanning its
eight breast cancer repeats, the human breast cancer
related gene BRCA2 is 15% identical and 29% similar
to its Nematostella homolog but only 6% identical and
13% similar to its D. melanogaster homolog (6).
Many invertebrate models offer considerable advan-

tages over vertebrates for the performance of systems

level research, and for this reason, they have proven useful
for understanding the function of proteins underlying
human disease states. Fruitfly and soil nematode, for
example, are far less expensive to culture than vertebrates,
they can be raised in far greater numbers, and their
generation times are shorter. Their greater experimental
tractability offsets their greater phylogenetic distance
from humans. Nematostella shares many of these same
experimental advantages (5), and given its surprisingly
high degree of genomic similarity to human (3,4,6),
Nematostella may prove particularly useful for illuminat-
ing the functional evolution of disease genes (6).
Furthermore, Nematostella is capable of complete
bi-directional regeneration (7), which allows the rapid
production of clonal genetic stocks in the laboratory, a
pronounced experimental advantage not shared by the
fruitfly or the soil nematode.

That we might better exploit the starlet sea anemone
for its potential to inform the molecular understanding
of human diseases, we identified orthologs of human
disease genes from the sequenced genomes of N. vectensis,
D. melanogaster, C. elegans and Saccharomyces cerevisiae,
and we compiled them in a relational database integrated
with StellaBase. Comparative genomic databases have
been developed for this purpose in the past [e.g. (8,9)]
but none of these include data from N. vectensis, or any
other basal metazoans.

To develop StellaBase Disease, we downloaded the
OMIM database and select tables from GenBank
(Genbank tables: gene2accession and mim2gene;
Figure 2a, Step ‘A’). Cross-referencing between genemap,
mim2gene and gene2accession allowed for the identifica-
tion and downloading of all alleles associated with the
10 237 OMIM entries available on 15 July 2007 (Figure 2a,
Steps ‘B’ and ‘C’). The protein datasets for fly, nematode
and baker’s yeast were downloaded from NCBI
(Figure 2a, Step ‘D’). These datasets, and the predicted
proteins available in StellaBase v.1.0, were formatted as

Figure 2. Pipeline for the development of (A) StellaBase Disease and (B) StellaBase SNP.

Figure 1. The fraction of human disease genes that have at least one
putative homolog in anemone, fruitfly, nematode worm and yeast.
Putative homologs were identified using BLASTP searches across a
range of E-value thresholds (depicted along the X-axis). Although the
log-scale represents E-values only as small as 1e-60, no change is seen
in the resulting number of hits for any taxa when the E-value threshold
is varied between 1e-60 and 1e-100.
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blast databases and were searched with the retrieved
human disease allele database using BLASTP (10). The
resultant BLASTP output and OMIM data are stored in a
relational database cross-referenced with the main struc-
ture of StellaBase (Figure 3).

These databases are searchable via an html interface
(http://stellabase.org/disease) using OMIM identification
numbers, GenBank identification numbers and StellaBase
protein identification numbers. Keyword searches allow
users to browse any OMIM entry with the search term
included within the OMIM description. Results can be
filtered by taxon and significance scores for blast hits.
Organism-specific summary tables allow users to retrieve
specific results for individual organisms and individual
alleles, and to obtain additional data for each locus that
displays a significant match to any human disease allele
query.

The 10 237 OMIM entries referenced in StellaBase
Disease refer to 142 500 human disease alleles. A large
fraction of these genes are predicted to have orthologs in
the model invertebrate taxa indexed in StellaBase Disease
(Figure 1). The database houses homology data for
155 904 potential invertebrate allelic orthologs. It is
significant that 3670 of the human disease allelic variants
lack a homolog in fly, worm and yeast yet possess a
putative homolog in Nematostella (at an E-value of 1e-4).
For researchers studying these proteins, which corre-
sponds to �2.58% of the OMIM database, Nematostella

may be the only established model invertebrate system
available.

STELLABASE SNP

The abundant intraspecific polymorphism harbored by
Nematostella likely results from a combination of three
factors—a wide geographic distribution aided by anthro-
pogenic dispersal, low levels of natural dispersal between
estuaries and even within estuaries (11) and local
adaptation to diverse environments. We can therefore
utilize the genomic variation present in this species to
address a range of important ecological and evolutionary
questions including the natural and human-aided dispersal
of coastal invertebrates, the evolution of native versus
introduced populations and the microevolutionary basis
for organismal adaptations to key environmental variables
including temperature, salinity and pH. Indeed, the cells
of Nematostella must encounter a greater range of natural
variation in these key variables than any other animal
genomic model system, making Nematostella a uniquely
informative model system in which to study adaptation to
these variables.
To facilitate the study of intraspecific genetic diversity

in Nematostella and allow researchers to identify func-
tionally significant polymorphisms, we have developed a
polymorphism database for Nematostella expressed
sequences. The polymorphisms were identified in 16 619

Figure 3. Entity-relationship diagram for StellaBase. Tables are represented by rectangles, and interfaces among tables are represented by diamonds.
Tables marked with an asterisk have been downloaded from NCBI. (cardinality: 2 straight lines, exactly 1; circle, zero; crow’s feet, more than 1; circle
and line, 0 or 1; circle and crow’s feet, 0 or many; line and crow’s feet, 1 or many).
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ESTs downloaded from NCBI on 1 February 2007
(Figure 2b, Step ‘G’). These ESTs were clustered and
assembled using the TIGR Gene Indices clustering tool
(12). A total of 20 063 potential SNPs were identified
in 3233 EST builds and indexed using AutoSNP (13,14).
All of the SNPs are stored in a relational database cross-
referenced with the main structure of StellaBase
(Figure 3).
Data housed in StellaBase SNP can be accessed

through (i) a blast search, (ii) a browse function and
(iii) an html query page. (i) The blast search page
of StellaBase SNP (http://stellabase.org/SNP/blast/
blast_cs.html) allows users to search both the raw ESTs
and the 3233 assembled ESTs (contigs). Data associated
with each contig can then be retrieved either through the
(ii) ‘browse contig function’ (http://stellabase.org/SNP/
autoSNP/contigsummary.html) or (iii) the HTML query
page (http://stellabase.org/SNP). We cross-referenced
each EST contig with the corresponding predicted gene
in StellaBase using BLASTN (Figure 2b, Step ‘J’). The
cross-referencing allows users to search the ESTs using a
StellaBase ID or an associated Pfam motif. Because the
ESTs do not commonly span the entire protein-coding
region, it might not be possible to associate them directly
with particular Pfam motifs. Cross-referencing them with
the predicted genes in StellaBase can overcome this
limitation in some instances. Users are able to browse
and search for appropriate Pfam motifs based upon
keyword searches to identify the correct Pfam accession
number or Pfam name to use in a query.
HTML queries can be filtered based upon three criteria.

First, the query can return only those assembled ESTs
that match a predicted protein housed in StellaBase (and/
or a given Pfam motif) at a threshold E-value. This search
modality is disabled unless users are querying for a
particular protein motif. Second, the query can return
only those polymorphic ESTs exhibiting a minimum SNP
redundancy. The minimum redundancy filter limits
output to only those SNPs for which the less abundant
variant has been identified in ‘at least’ the number of
ESTs specified by the user. Third, users can limit the
results to include only those assembled ESTs that contain
a user-defined minimum number of polymorphic sites.
Both ‘minimum SNP redundancy’ and ‘minimum number
of polymorphic sites’ can be employed as filters, allowing
users to browse all assembled ESTs that meet or exceed
threshold values.
Assembled ESTs can be retrieved through a download

tool (http://stellabase.org/SNP/get_est_contig.cgi). Addi-
tional information about each locus can be retrieved
through linked StellaBase matches or the StellaBase gene
search page (http://stellabase.org/html/gene_search.html)
once a corresponding genomic locus is identified.

GENE ONTOLOGY CROSS-REFERENCES

In addition to the disease gene and SNP databases, we
have added Gene Ontology cross-references to StellaBase
(http://stellabase.org/html/GO.html). To accomplish
this, we downloaded the Gene Ontology database (15),

and used SQL scripting to create a simple table to cross-
reference GO terms with Pfam motifs. This table was
incorporated into StellaBase (Figure 3), allowing
StellaBase to be searched using GO terms.

The incorporation of Gene Ontology terms allows for
much more complex queries than would be possible using
Pfam motifs alone. Users can retrieve all predicted
Nematostella proteins whose GO terms include broad
descriptors of protein functionality or localization, i.e.
‘nucleus’. The potential complexity of these queries
precludes completion of the query within an appropriate
timeframe for HTML/CGI scripting. As such, results
from user queries are e-mailed to users, in a user-specified
data output format.

CONCLUSIONS AND FUTURE DIRECTIONS

The emergence of Nematostella vectensis as a model
system began with the developmental and field studies
of Hand and Uhlinger in the early 1990s (16–18), and it
gained momentum with the publication of the first
molecular studies (19,20), which demonstrated that the
starlet sea anemone could yield key insights into early
animal evolution. StellaBase was developed primarily with
the evolutionary genomics community in mind. However,
recent studies demonstrate that the utility of Nematostella
as a model system extends to microevolutionary studies
and even medical research. The upgrades described here
are intended to serve these communities. We intend to
augment the functionality of StellaBase and perform
regular upgrades into the future, and we welcome user
comments on how the database might be improved.
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