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Abstract

FOXQ1 is a member of the forkhead-box transcription factor family that has important func-

tions in development, cancer, aging, and many cellular processes. The role of FOXQ1 in

cancer biology has raised intense interest, yet much remains poorly understood. We investi-

gated the possible function of the two zebrafish orthologs (foxq1a and foxq1b) of human

FOXQ1 in innate immune cell development and function. We employed CRISPR-Cas9 tar-

geted mutagenesis to create null mutations of foxq1a and foxq1b in zebrafish. Using a com-

bination of molecular, cellular, and embryological approaches, we characterized single and

double foxq1a bcz11 and foxq1b bcz18 mutants. This study provides the first genetic mutant

analyses of zebrafish foxq1a and foxq1b. Interestingly, we found that foxq1a, but not

foxq1b, was transcriptionally regulated during a bacterial response, while the expression of

foxq1a was detected in sorted macrophages and upregulated in foxq1a-deficient mutants.

However, the transcriptional response to E. coli challenge of foxq1a and foxq1b mutants

was not significantly different from that of their wildtype control siblings. Our data shows that

foxq1a may have a role in modulating bacterial response, while both foxq1a and foxq1b are

not required for the development of macrophages, neutrophils, and microglia. Considering

the implicated role of FOXQ1 in a vast number of cancers and biological processes, the

foxq1a and foxq1b null mutants from this study provide useful genetic models to further

investigate FOXQ1 functions.

Introduction

FOXQ1 is a member of the forkhead-box (FOX) transcription factor gene family, which con-

tains a winged helix DNA binding domain and has important functions in development, cancer,

aging, cell cycle regulation, cell migration, and other diverse cellular processes [1–5]. Previous

studies in mammals show that the functions of FOXQ1 include promoting epithelial differentia-

tion [6–11], inhibiting smooth muscle differentiation [12], mediating hair development [13,14],

controlling gastric acid production and secretion in stomach mucous cells [15,16], regulating
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glucose metabolism [17], as well as possible immunological functions [18,19]. Additionally,

upregulation of FOXQ1 is found in a large host of cancer types, possibly to regulate cell prolifer-

ation and invasion, including breast [7,20,21], colorectal [22–25], pancreatic [26,27], gastric

[28–31], bladder [32], liver [33–36], lung [37,38], ovarian [39,40], and glioma [41]. With these

findings, FOXQ1 has generated much interest into its functions and mechanisms.

In light of the interactions of innate immune cells, particularly macrophages, in tumor

development, progression, and metastasis [42–48], and possible roles of FOXQ1 in regulating

these processes [49,50], we generated gene knockouts of the two zebrafish orthologs (foxq1a
and foxq1b) of human FOXQ1 using CRIPSR-Cas9 targeted mutagenesis. Using single and

double foxq1a and foxq1b mutants, we investigated whether FOXQ1 is critical for the develop-

ment and function of macrophages and other innate immune cells. Establishing a function for

FOXQ1 in innate immune regulation can provide new understanding of its role in various

cancers.

This study provides the first genetic mutant analyses of zebrafish foxq1a and foxq1b. We

found RNA expression of both copies of foxq1 in the developing craniofacial structures as previ-

ously reported [51,52], in addition to foxq1a expression in sorted macrophages as well as in the

yolk region. Neither single nor double foxq1a and foxq1b mutants had overt gross morphologi-

cal defects or notable deficiency in the development of macrophages, neutrophils, and micro-

glia. Furthermore, foxq1a and foxq1b mutants exhibited a typical transcriptional response to

bacterial challenge, but foxq1a is interestingly downregulated during this response in wildtype.

Considering the implicated role of FOXQ1 in a vast number of cancers and biological processes,

the foxq1a and foxq1b mutants generated in this study provide new genetic models to further

dissect the functions of FOXQ1.

Results

Generation of foxq1a bcz11 and foxq1b bcz18 null alleles using CRISPR-Cas9

We employed the highly effective CRISPR-Cas9 mediated targeted mutagenesis in zebrafish as

previously described [53,54] to create loss-of-function mutations at the beginning of foxq1a
and foxq1b genes. We isolated two mutant alleles of interest: foxq1abcz11 and foxq1bbcz18 (Fig

1A). These are frameshift mutations that lead to a premature stop codon at the beginning of

each respective gene: bcz11 has a large 95 base pair (bp) deletion in foxq1a that is immediately

followed by a premature stop codon, and bcz18 has a 4 bp deletion and a 12 bp insertion in

foxq1b that causes a premature stop codon within the start of the indel (Fig 1A). RT-PCR and

sequencing analysis confirmed expression of the expected nonsense transcripts from the bcz11
and bcz18 mutations, and no alternative splicing was found (S1 Fig). The data indicate that

bcz11 and bcz18 represent null alleles of their respective genes by producing nonsense mRNAs

that would prevent Foxq1a and Foxq1b protein expression, respectively. For each gene target,

three guide RNAs (gRNAs) were used in combination to increase the efficiency of the muta-

genesis and the probability of generating a large indel mutation (Fig 1A). At 5 days post-fertili-

zation (dpf) when zebrafish have well established organ systems and are free-swimming larvae,

we examined the gross morphology of the homozygous mutants (Fig 1B). We found that both

foxq1abcz11 and foxq1bbcz18 homozygous mutants were indistinguishable from wildtype siblings

(Fig 1B), displaying normal-sized inflated swim bladders, and grossly normal head and body

structures that were no different from wildtype. However, we cannot exclude the possibility

that craniofacial and specific organ phenotypes may be present in the mutants without further

detailed analysis, in regions that normally express foxq1a and foxq1b [51,52]. The viability of

bcz11 and bcz18 mutants, at least up to larval stages, appeared to be normal, as we consistently

found ~25% of the progenies to be mutants from a heterozygous incross.

Genetic analysis of zebrafish foxq1a and foxq1b
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Characterization of foxq1a and foxq1b gene expressions

The expression patterns of foxq1a and foxq1b in zebrafish remain largely unanalyzed. Only

two studies to date have examined their expressions in specific tissues of interest; one showed

foxq1b expression in the developing jaws at 2 dpf [51] and the other reported that foxq1a may

be expressed in the cranial suture in juvenile zebrafish (6 weeks post-fertilization) [52]. To bet-

ter define the possible functions of these genes in zebrafish, we expanded the characterization

of their expressions to various stages of development from 1 to 8 dpf, and tested whether they

were expressed in macrophages (Fig 2). Using fluorescence-activated cell sorting (FACS), we

isolated macrophages (M) based on GFP expression from 2.5 dpf zebrafish embryos carrying

Fig 1. Sequence analysis of foxq1abcz11 and foxq1bbcz18 mutations generated by CRISPR-Cas9 targeting. a Top, DNA and amino acid sequences of the 5’ end of foxq1a
coding region. DNA sequencing chromatograms show the expected foxq1a sequence in the wildtype sibling, and a large 95 base pair deletion (red box) in the homozygous

bcz11 mutant, which causes a premature stop (black box with an asterisk) at the beginning of the gene. Bottom, DNA and amino acid sequences of the 5’ end of foxq1b
coding region. DNA chromatograms show wildtype sequence in foxq1b wildtype sibling, while the homozygous bcz18 mutant carries a 4 bp deletion and 12 bp insertion

(red box) causing a nonsense mutation at the beginning of the gene. gRNA, target sites of the guide RNAs used. b Whole mount live imaging of 5 dpf larvae show normal

gross morphological development of foxq1abcz11 and foxq1bbcz18 mutants as compared to wildtype siblings (at least 10 animals were analyzed per genotype group).

https://doi.org/10.1371/journal.pone.0194207.g001
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the macrophage-specific transgene mpeg1:EGFP (Fig 2A). To assess their expression in other

cell types as additional references, we sorted erythrocytes (E) based on DsRed expression from

erythrocyte-specific gata1:DsRed transgenic embryos as well as the remaining non-fluorescent

cells (A) (Fig 2B and 2C). We verified the identity of the sorted cell populations by RT-PCR

Fig 2. Gene expression analysis of foxq1a and foxq1b. a Isolation of macrophages based on GFP expression by FACS in mpeg1:EGFP transgenic zebrafish embryos at 2.5

dpf. Non-fluorescent embryos were used as a negative control for gating. Top left, P4 shows the cell fraction sorted as GFP+ macrophages, also shown in the right panels

in brightfield and green channel. b RT-PCR analysis of gene markers validated the different cell populations sorted by FACS, as denoted by E, erythrocytes; M,

macrophages; A, all remaining non-fluorescent cells. The following genes were used: translation elongation factor 1 (ef1a) as a reference marker, hemoglobin beta

embryonic-1.1 (hbbe1.1) as an erythrocyte marker, and macrophage expressed gene 1 (mpeg1) and interferon regulatory factor 8 (irf8) as well-established macrophage

markers in zebrafish. As expected, the ‘A’ cells expressed all genes, while erythrocytes ‘E’ cells expressed hbbe1.1, ef1a, and DsRed genes and macrophage ‘M’ cells

expressed macrophage markers, GFP, and ef1a. c Using the sorted cell populations, we found expression of foxq1a in macrophages and neither gene in erythrocytes. Both

genes are expressed at 2 to 8 dpf of development as well as in the adult gut tissue.

https://doi.org/10.1371/journal.pone.0194207.g002
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analysis using known markers and fluorescent reporter genes for the E, M, and A cells (Fig 2B

and 2C). The data shows that while both genes are expressed from 2 to 8 dpf (Fig 2C), only

foxq1a is expressed by macrophages and neither gene is expressed by erythrocytes (Fig 2C).

Using RNA in situ hybridization, we found expression of foxq1a in the cranial region at 1 dpf

that persists in the jaw at 2.5 dpf when it is also found in the body tissue along the yolk, and on

the yolk (S2 Fig). By contrast, foxq1b was primarily found to be expressed in the ventral jaw

region at 2.5 dpf (S2 Fig). While foxq1a RNA expression was found in macrophages isolated

from wildtype embryos (Fig 2C), its level may be too low to be detectable by whole mount

RNA in situ hybridization as we were unable to visualize its expression in macrophages by in
situ (S2 Fig). Because FOXQ1 is known to be highly expressed in the mammalian gastrointesti-

nal tract [15,16,55,56], we examined whether foxq1a and foxq1b are expressed in the adult zeb-

rafish gut, and indeed found them both to be expressed (Fig 2C).

Single and double foxq1abcz11 and foxq1bbcz18 mutants show normal

macrophage, neutrophil, and microglia development

In light of the finding that foxq1a is expressed in macrophages and the implicated mamma-

lian FOXQ1 function in tumor biology that may involve innate immune cells [19], we asked

whether the development of macrophages and neutrophils may be altered in the zebrafish

foxq1 mutants. By whole mount RNA in situ hybridization using a macrophage marker

(mfap4) [57,58] and neutrophil marker (mpx) [59,60], we found no apparent difference in

formation or distribution of these innate immune cells during development at 2.5 dpf in

foxq1abcz11 mutants and foxq1bbcz18 mutants (Fig 3A). In case of redundant or compensa-

tory functions of foxq1a and foxq1b, we examined the double foxq1abcz11;foxq1bbcz18 homo-

zygous mutants, but also found no marked differences compared to wildtype siblings (Fig

3A). Quantification of macrophage and neutrophil numbers in the tail region further sub-

stantiates our finding that the mutants are not significantly different from siblings in innate

immune cell development (Fig 3B). Since it is possible to have defects in macrophages at

later time points, we evaluated the development of microglia, an important derivative of

embryonic macrophages. We used a vital neutral red stain assay that has been shown to spe-

cifically label microglia in the larval zebrafish brain [61–63] as cells with dark red aggregates

(Fig 4A). We found that all foxq1abcz11, foxq1bbcz18 and foxq1abcz11;foxq1bbcz18 mutants

exhibited the typical pattern (Fig 4A) and numbers (Fig 4B) of microglia in the larval mid-

brain as those in wildtype and heterozygous control siblings and previously described for

wildtype [61–65]. Taken together, the data indicates that foxq1a and foxq1b are not required

for the proper development of macrophages, neutrophils, and microglia.

foxq1a and foxq1b null mutants exhibit typical transcriptional response to

Escherichia coli brain challenge

While foxq1a and foxq1b are not essential for innate immune cell development, they may affect

the function of these cells, such as their ability to mediate an immune response. We developed

Fig 3. Single and double foxq1abcz11 and foxq1bbcz18 mutants have normal macrophage and neutrophil development. a Whole mount in
situ hybridization of 2.5 dpf single and double foxq1abcz11 and foxq1bbcz18 mutants and their siblings using RNA probes for mfap4
(macrophage marker) and mpx (neutrophil marker). Arrows, macrophages or neutrophils in the caudal hematopoietic tissue in the embryo

tail. b Scatter plots showing number of macrophages and neutrophils in the tail region for each embryo quantified in the different genotype

categories. n, number of embryos analyzed beneath each scatter plot. Plots report average ± standard deviation (s.d.). Multiple unpaired t-tests

comparing between control siblings and each of the mutants groups were conducted with correction for multiple comparisons using the

Sidak-Bonferroni method and without assuming equal variance to determine statistical significance. n.s., no statistical significance as defined

by p> 0.05 was found in all the comparisons.

https://doi.org/10.1371/journal.pone.0194207.g003
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a brain challenge assay (Fig 5A) to trigger innate immune activation by introducing live E. coli
bacteria into the brain tectum of zebrafish larvae. We used this assay to address whether

foxq1a, foxq1b, or both may regulate systemic response to E. coli challenge. We validated the

effectiveness of our assay to trigger immune activation by showing that after brain challenge

with bacteria or LPS at 6 hours post injection (hpi), we indeed found significant elevation of

several innate immune activation genes systemically: interleukin 1 beta (il1β) [61,62,66],

immune responsive gene (irg1) [67], neutrophil gene (mpx) [68], and tumor necrosis factor

alpha (tnfα) [69] but not in water injected or uninjected controls (Fig 5B). We also tested

whether foxq1a and foxq1b themselves could be transcriptionally regulated during a bacterial

response to implicate a possible role in this process. Interestingly, we found that foxq1a, but

not foxq1b, was significantly downregulated by about a factor of 2 in wildtype larvae after LPS

or bacteria injection (Fig 5B).

To analyze the immune response of foxq1 mutants, we employed the brain challenge assay

on 4 dpf larval progenies of foxq1abcz11/+ and foxq1bbcz18/+ single and double heterozygous

incrosses (Fig 5C). We found that the expression levels of immune activation genes (il1β, irg1,

mpx, and tnfα) in foxq1 mutants at 6 hpi were not significantly different from WT siblings (Fig

5C). However, we cannot exclude the possibility that double foxq1a and foxq1b mutants may

have deficient or aberrant transcriptional response to E. coli. Since foxq1a transcriptional level

was downregulated in wildtype response to E. coli (Fig 5B), we also assessed whether this

occurred normally in foxq1 mutants as compared to WT siblings. qPCR data shows that foxq1b
mutants had similar foxq1a expression as WT controls after bacterial exposure, but both hetero-

zygous and homozygous foxq1a mutants had a modest but significant increase of ~50% in

foxq1a RNA level (Fig 5C). The foxq1a upregulation was also found in foxq1a mutants at steady

state, suggesting that the increase during the bacterial response may be due to an already higher

baseline level rather than necessarily the bacterial exposure (S3 Fig). The results indicate that

foxq1a and foxq1b may not be required for mediating an appropriate transcriptional response

Fig 4. Neutral red analysis shows normal microglia development in single and double foxq1a and foxq1b mutants at 4 dpf. a Neutral red staining in 4 dpf wildtype

(WT) sibling, foxq1abcz11, foxq1bbcz18, and foxq1abcz11;foxq1bbcz18 mutants shows a stereotypical pattern of microglia in the midbrain (arrow). b Bar graph shows all larvae

analyzed in all genotype groups had normal numbers of microglia (>25). Number of larvae analyzed (n) shown to the right of the corresponding bar.

https://doi.org/10.1371/journal.pone.0194207.g004
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to E. coli challenge, but foxq1a may affect other aspects of this bacterial response as it is tran-

scriptionally regulated.

Discussion

Our study used zebrafish genetic mutants to investigate the possibility that FOXQ1 may have a

role in innate immune cell development and function. Using our newly generated null muta-

tions of the zebrafish homologs of human FOXQ1, foxq1a and foxq1b, we reveal that these

genes are not required for the normal development and distribution of macrophages, neutro-

phils, and microglia. Furthermore, our data suggests that these two genes are not necessary for

a stereotypical transcriptional response to E. coli exposure, albeit deficiency in both copies of

foxq1 was not assessed. It is possible, however, that foxq1a and foxq1b may have important

roles in other innate immune functions such as during an infection or injury that were not

examined in this study, which include cell migration and recruitment, phagocytosis, and host

response to pathogens, viruses, fungi, and environmental toxins. Since foxq1a expression was

found in macrophages and downregulated during a bacterial response, foxq1a may have a role

in innate immunity that remains to be fully explored in zebrafish. Furthermore, we show that

foxq1a is upregulated in the foxq1a mutants at steady state and during a bacterial response.

This suggests that foxq1a may be forming a negative feedback loop in negatively regulating its

own transcription.

The foxq1abcz11 and foxq1bbcz18 mutants will provide useful genetic models to address previ-

ously unanswered questions regarding function of zebrafish foxq1 in craniofacial development,

possible gastrointestinal processes, and later adult organogenesis [51,52]. Consistent with the

possibility that FOXQ1 has multiple roles in development, FOXQ1/Foxq1 is highly expressed in

mouse stomach and kidney, and human gastric mucosa, bladder, salivary glands, trachea, intes-

tines, and liver [2,16,70]. In addition, murine Foxq1 deletion mutants have deficiencies in gas-

tric acid secretion and hair differentiation, and show partial penetrance for embryonic lethality

[16,70]. The zebrafish foxq1 mutants can also be invaluable for uncovering mechanisms mediat-

ing the role of FOXQ1 in cancer biology that remains poorly understood.

Materials and methods

Zebrafish lines and embryos

Embryos from wildtype (TL and AB), transgenic lines: mpeg1:EGFP [58,71] and gata1:DsRed
[72], and heterozygous lines: foxq1abcz11/+, foxq1bbcz18/+, and foxq1abcz11/+ foxq1bbcz18/+ were

raised at 28.5˚C, and staged as described [73]. Homozygous mutants were derived from either

single heterozygous incrosses or from double heterozygous incrosses. The latter yielded double

Fig 5. foxq1abcz11 and foxq1bbcz18 mutants exhibit wildtype transcriptional response to E. coli challenge in the larval brain.

a Graphical representation of the brain challenge assay. E. coli was injected into right brain tectum, and at 6 hours post injection

(hpi), injected larvae were individually processed for RNA extraction, genotyping, cDNA synthesis, and qPCR analysis. b Bar

chart shows significant upregulation of immune activation genes il1β, irg1, mpx, and tnfα after bacteria challenge at 6 hpi in

wildtype larvae compared with uninjected controls. Water injected wildtype larvae exhibit no induction of activation genes,

whereas LPS injected wildtype animals have a significant upregulation of il1β and irg1. After microbial activation by E. coli or

LPS, a significant downregulation of foxq1a was found by about a factor of 2. No significant change was found for foxq1b after

immune challenge. Data from wildtype injections validate the efficacy of the assay to activate the innate immune system. Dotted

line marks no fold difference at 1. At least 6 or more independent biological samples were measured per category. c Bar plot

shows transcriptional changes of target genes after E. coli injection in the brain at 6 hpi for control siblings and foxq1a and

foxq1b mutants. n = 9–14 independent biological samples were measured per genotype. All error bars show standard error of

means. Statistical significance in b and c was determined by multiple unpaired t-tests comparing between uninjected or sibling

controls and the experimental groups with correction for multiple comparisons using the Sidak-Bonferroni method and

without assuming equal variance. n.s., no statistical significance as defined by p> 0.05. �, p< 0.05; ��, p< 0.01; ���, p< 0.001.

https://doi.org/10.1371/journal.pone.0194207.g005
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foxq1abcz11 foxq1bbcz18 mutants at a ratio of ~ 1/16. Embryos were treated with 0.003% 1-phen-

tyl-2-thiourea (PTU) to inhibit pigmentation in sterilized zebrafish system water. This study

was carried out in accordance with the animal protocol (16–160) approved by the Institute

Animal Care and Use Committee at UNC Chapel Hill.

Neutral red analysis

Microglia were scored in live larvae by neutral red vital dye staining assay as previously

described [61,62]. In brief, 3 dpf larvae were stained with neutral red by immersion in sys-

tem water supplemented with 2.5 μg/ml neutral red and 0.003% PTU at 28.5˚C for 1 hour,

followed by 1–2 water changes, and then analyzed 2–3 hours later using a stereomicroscope.

Whole mount RNA in situ hybridization

In situ hybridization was performed using standard methods as described in [61,62,74].

Antisense riboprobes were transcribed from: mfap4 plasmid previously cloned [61], mpx
(full-length, Open Biosystems clone 6960294) [61], foxq1a plasmid (pCES150), which was

made from a 877 bp fragment cloned from a wildtype zebrafish embryo cDNA library using

primers F476: GCACTCATCATCTGCAACAGGTA and R1353: TGATATCCCGCGGTTGCAGG.

Anti-sense foxq1a RNA probe was made from pCES150 digested with HindIII and tran-

scribed by T7 RNA polymerase. To make the negative control RNA probe, foxq1a sense

strand sequence was transcribed by T3 RNA polymerase using a PCR template made from

the foxq1a plasmid pCES150. foxq1b anti-sense RNA probe was made from a PCR-based

template encompassing 754 bp of coding sequence using forward primer: GTGTTGCGAGAT
CCCTCGCGTC and reverse primer: GTAAACACTGTGCAGTGGCGCGTC, where the reverse

primer also included the T7 RNA polymerase recognition site.

RNA extraction, RT-PCR and quantitative PCR (qPCR)

Total RNA was extracted from individual larvae using the RNAqueous-Micro Isolation Kit

(Ambion). cDNA was made using oligo dT primer and SuperScript IV reverse transcriptase (Invi-

trogen). qPCR was performed on the Applied Biosystems QuantStudio Flex 6 Real-Time PCR Sys-

tem using probe-based assays or SYBR Green. The delta–delta ct method was used to determine

the relative levels of mRNA expression between experimental samples and controls. ef1a was used

as the reference gene for determination of relative expression of all target genes. Sequences of the

qPCR probes and primer sets used in qPCR and RT-PCR analyses are listed in Table 1.

CRISPR-Cas9 targeted mutagenesis of foxq1a and foxq1b
The target genes were foxq1a (NCBI accession: NM_001243344.1; Gene ID: 100537750) and

foxq1b (NCBI accession: NM_212907.1; Gene ID: 405843). Co-injection of Cas9 mRNA and

guide RNAs (gRNAs) was conducted in wildtype 1-cell stage zebrafish embryos. Cas9 mRNA

was transcribed from XbaI linearalized pT3TS-nCas9n plasmid (Addgene #46757) [53] using

mMessage mMachine T3 Kit (Ambion) according to the manufacturer’s instructions. CRISPR

targets for gRNA designs were identified using CHOPCHOP (http://chopchop.cbu.uib.no)

[54]. The following gene-specific oligonucleotides using T7 promoter were used to make

gRNAs as previously described [54]; gene-specific target sequences are underlined: foxq1a
gRNA-1 5’-TAATACGACT CACTATAGGGTTCGAAGAGTGACAGGGGTTTTAGAGCTAGAAA
TAGCAAG-3’, foxq1a gRNA-2 5’-TAATACGACTCACTATAGGACTACGACTCCAAGCCT

GGTTTTAGAGCTAGAAATAGC AAG-3’, foxq1a gRNA-3 5’- TAATACGACTCACTATAGG
AGTTGTGCAGCGATGCTGGTTTT AGAGCTAGAAATAGCAAG-3’, foxq1b gRNA-1 5’-TAA

Genetic analysis of zebrafish foxq1a and foxq1b
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TACGACTCACTATAGGCTTCACCGCTGTCCACGGGTTTTAGAGCTAGAAATAGCAAG-3’,

foxq1b gRNA-2 5’-TAATACGACTCACTATAGGTTCCTCCTCCGTGGACAGGTTTTAGAGCTA
GAAATAGCAAG-3’, foxq1b gRNA-3 5’-TAATACGACTCACTATAGGAGCCCAATTCCTCCT
CCGGTTTTAGAGCTAGAAATAGCAAG-3’. In vitro transcription of gRNAs from assembled

oligonucleotides was conducted using the HiScribe T7 Quick High Yield RNA Synthesis Kit

(NEB). Injected clutches of embryos validated to contain CRISPR mediated mutagenesis by a

T7 endonuclease assay were raised as F0 fish. Incross and outcross of F0 adults produced F1

progenies, which were genotyped and sequenced at adult stages to identify F1 founders

Table 1. Probes and primer sequences for qPCR and RT-PCR.

ef1a probe CTGGAGACAGCAAGAACGACCCAC

F primer ACATCCGTCGTGGTAATGTG

R primer TGATGACCTGAGCGTTGAAG

il1b probe TCCGTCAAATGTCCCGGTTGGTTTA

F primer ACCGGCAGCTCCATAAAC

R primer GGTGTCTTTCCTGTCCATCTC

irg1 probe TTTAACACCGTGCTTCAGTGCAGC

F primer ACTGGGAGTGGGTTTGATTG

R primer GCATACTGAGGTGGAAGAGATG

mpx probe TATAGCATGGTCACGCCCTCTTTGC

F primer TGCCTTCACATCCCACATAG

R primer GGAGCAGACAATCCACAGAA

tnfa F primer GCGCTTTTCTGAATCCTACG

R primer TGCCCAGTCTGTCTCCTTCT

foxq1a probe TAAGGGATCCTTCGAGACCGTGGG

F primer GTGCGCCATAATCTGTCTCTAA

R primer CGGGTTCAGCATCCAGTAAT

foxq1b probe ATGGGATTTCCGCCACAGAGCA

F primer TCCTCACTTTCTGCCAGTTG

R primer ACATTCGACACCTCAGAACTG

DsRed F primer TCCGAGGACGTCATCAAGGAGTTC sorted cells

R primer GGCGGGGTGCTTCACGTACAC sorted cells

foxq1a foxq1a_F531 GCAGAAGGAGAAAGCGCATTAG sorted cells

foxq1a_R773 AGGATCGAAGCATGACATACGG sorted cells

foxq1b foxq1b_F540 CAGCGAGTACACTTTTGCAGAC sorted cells

foxq1b_R839 AATCTGCTCTGTGGCGGATAG sorted cells

GFP F primer TATATCATGGCCGACAAGCA sorted cells

R primer CTGGGTGGCTCAGGTAGTGG sorted cells

hbbe1.1 hbbe1.1_F139 GCTCTGGCAAGGTGTCTCATC sorted cells

hbbe1.1_R465 AGCGATGAATTTCTGGAAAGCG sorted cells

irf8 irf8-218-F CAGCGACATGGAAGACCAGATTG sorted cells

irf8-647-R GTGGTCACCATGTTGTCCACCATC sorted cells

mpeg1 mpeg1_F1 ACAACACCACCTTGTTACACTCT sorted cells

mpeg1_R1 ACAACTGCTGGATTTGGTCAATG sorted cells

foxq1a foxq1a_F476 TGATATCCCGCGGTTGCAGG 2dpf/8dpf/gut

foxq1a_R1353 GCACTCATCATCTGCAACAGGTA 2dpf/8dpf/gut

foxq1b foxq1b_F159 ATGGATGTGAACGTGGCTTCA 2dpf/8dpf/gut

foxq1b_R961 GGGTGAAATCCAGCCTCTTGTA 2dpf/8dpf/gut

https://doi.org/10.1371/journal.pone.0194207.t001
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carrying mutations of interest. These founders were isolated and outcrossed to raise new

mutant lines, which yielded the foxq1abcz11/+ and foxq1bbcz18/+ heterozygous fish used in this

study.

Cell dissociation and fluorescence activated cell sorting (FACS)

Dissociation of pools of 25–50 2.5 dpf transgenic zebrafish embryos either carrying the macro-

phage reporter (mpeg1:EGFP) or the erythrocyte reporter (gata1:DsRed) was conducted using

a protocol adapted from [75]. Fluorescently tagged cells were sorted from non-fluorescent cells

using the BD FACSAria cell sorter equipped with three lasers. Non-fluorescent control

embryos were used for setting gates in FACS for GFP and DsRed positive cells. BD FACSDiva

V8.0.1 software was used for cell sorting and FACS plots. Total RNA was extracted from the

different populations of cells (GFP positive, GFP negative, DsRed positive, DsRed negative)

using the RNAqueous-Micro Isolation Kit (Ambion), and made into cDNA for RT-PCR anal-

yses as described above.

Genotyping bcz11 and bcz18 alleles

To genotype foxq1abcz11, the following primers were used: foxq1a F 5’-CGGTGTTTTTGTGAC
TTGATTT-3’ and foxq1a R 5’-AAGAGTATGGAGGTTTGGGTCTC-3’ in a PCR assay that

yielded differentially sized products to distinguish the mutant allele which has a 95 bp deletion

compared with the wildtype allele. The expected sizes for mutant band is 240 bp and wildtype

band is 335 bp. To genotype foxq1bbcz18, a PCR and restriction enzyme combined assay was

used. Primers foxq1b F 5’-AAGCAACTCATCTGACCTGACA-3’ and foxq1b R 5’-GGGTCTA
CGCGTATATGGTTTC-3’were used to yield PCR products of 217 bp, followed by a digest

with BsaJI, which only recognizes the wildtype sequence.

Immune challenge

Bacteria were prepared from 3 mL overnight cultures, each derived from a single Escherichia
coli colony, which were centrifuged and re-suspended in 500 μL of PBS. The 500 μL bacteria

mix (~1.6 x 106 cfu/μL) was supplemented with 1 μL of 5 mg/ml AlexaFluor 568 or AlexaFluor

488 conjugated dextran (10 kDa) from Invitrogen. Other reagents used for brain injections

were: ultra-pure water supplemented with 0.05 mg/ml fluorescently labeled dextran (10 kDa)

for the control water samples, and lipopolysaccharides (LPS) derived from 0111:B4 E. coli
(L3024 Sigma) at 4.5 mg/ml was supplemented with 0.05 mg/ml fluorescently labeled dextran

(10 kDa). For all injections, 1 nL of the reagent mix was injected into the right brain tectum of

4 dpf larvae, and the fluorescent dextran was used to validate the injection site. Larvae that

were successfully injected were collected 6 hours post injection (hpi) and immediately pro-

cessed for total RNA lysis. RNA extraction and subsequent steps for qPCR analyses are

described above. All collected larvae derived from heterozygous intercrosses were genotyped

after RNA extraction.

Supporting information

S1 Fig. RT-PCR and Sanger sequencing analyses of the mutations bcz11 and bcz18 confirm

the expression of the expected mutant transcripts and show no alternative splicing. Prim-

ers used to amplify the approximate full-length coding region of each gene were: start-F 5’-G
CACTCATCATCTGCAACAGGTA and end-R 5’-TGATATCCCGCGGTTGCAGG for foxq1a
(~900 bp); and start-F 5’-AAGCAACTCATCTGACCTGACA and end-R 5’-GTAAACACTGTG
CAGTGGCGCGTC for foxq1b (~1150 bp). (a) Inverted DNA gel image of the RT-PCR analysis
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of foxq1a mRNA shows the expected ~900 bp transcript in WT siblings and a single mutant

transcript with a 95 bp deletion in homozygous bcz11 mutants, indicating no alternative splic-

ing in the mutants. Gel image shows 2 independent samples per genotype. (b) Sanger sequenc-

ing analysis of the foxq1a transcript from four bcz11 mutants shows the expected 95 bp

deletion that caused a frameshift leading to an early stop codon at the beginning of the gene.

(c) RT-PCR analysis of the foxq1b transcript in WT and bcz18 mutants shows the expected

product size of ~1150 bp and no apparent splice variants. Gel image shows 2 independent sam-

ples per genotype. (d) Sanger sequencing analysis of the foxq1b transcript from four bcz18
mutants confirms the indel mutation that leads to a frameshift and early stop codon. aa, amino

acid; sib, sibling; Mut, mutant.

(TIF)

S2 Fig. RNA expression pattern of foxq1a and foxq1b in zebrafish embryos. a-d foxq1a gene

expression. a Expression in ventral head region is found in 1.5 dpf embryo (arrow). b Promi-

nent expression at 2.5 dpf in the craniofacial region (arrows, higher magnification in c), on the

yolk (arrows, higher magnification in d), and along the body abutting the yolk. Yolk expres-

sion is not found in all embryos analyzed whereas the craniofacial expression is. e-f As a nega-

tive control, whole mount in situ hybridization using the sense RNA probe for foxq1a does not

show any expression at all stages analyzed from 1–3 dpf. g foxq1b expression is prominent in

the craniofacial jaw region. Left, lateral view (arrow). Right, ventral view (arrows).

(TIF)

S3 Fig. foxq1a is transcriptionally upregulated in foxq1a mutants. A modest upregulation of

foxq1a RNA expression at ~ 44% on average is found in foxq1a mutants at 4 dpf at steady state

in the absence of any immune challenge. n = 6 independent biological samples were measured

per genotype. All error bars show standard error of means.

(TIF)
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