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Aims Brugada syndrome (BrS) is associated with an increased risk of sudden cardiac death due to ventricular tachycar-
dia/fibrillation (VT/VF) in young, otherwise healthy individuals. Despite SCN5A being the most commonly known
mutated gene to date, the genotype–phenotype relationship is poorly understood and remains uncertain. This
study aimed to elucidate the genotype–phenotype correlation in BrS.

...................................................................................................................................................................................................
Methods
and results

Brugada syndrome probands deemed at high risk of future arrhythmic events underwent genetic testing and
phenotype characterization by the means of epicardial arrhythmogenic substrate (AS) mapping, and were divided
into two groups according to the presence or absence of SCN5A mutation. Two-hundred probands (160 males,
80%; mean age 42.6 ± 12.2 years) were included in this study. Patients harbouring SCN5A mutations exhibited a
spontaneous type 1 pattern and experienced aborted cardiac arrest or spontaneous VT/VF more frequently
than the other subjects. SCN5A-positive patients exhibited a larger epicardial AS area, more prolonged electro-
grams and more frequently observed non-invasive late potentials. The presence of an SCN5A mutation
explained >26% of the variation in the epicardial AS area and was the strongest predictor of a large epicardial
area.

...................................................................................................................................................................................................
Conclusion In BrS, the genetic background is the main determinant for the extent of the electrophysiological abnormalities.

SCN5A mutation carriers exhibit more pronounced epicardial electrical abnormalities and a more aggressive clinic-
al presentation. These results contribute to the understanding of the genetic determinants of the BrS phenotypic
expression and provide possible explanations for the varying degrees of disease expression.
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Introduction

Since its description, the Brugada Syndrome (BrS) has gained
increased scientific interest as a cause of sudden cardiac death (SCD)
due to ventricular tachycardia/fibrillation (VT/VF) in young and other-
wise healthy individuals.1 Brugada syndrome is believed to be a genet-
ic disease, although the majority of clinically confirmed cases lack
molecular validation, due to our current lack of understanding of the
genetics of this syndrome.2 While more than 20 genes have been
considered as causative of this syndrome and included in diagnostic
panels,3 the disease causal role of all these genes, except SCN5A, has
been recently challenged, citing the lack of systematically obtained
evidence.3

Variants in the SCN5A gene are found in �21% of all BrS pro-
bands.4 The current limited knowledge about the genetic basis of BrS
prevents the expansion of the diagnostic panel to include genes other
than SCN5A.3 It is imperative to understand the genetics of this syn-
drome before using molecular validation for decision-making about
patient care.

Many people with the syndrome are completely unaware, as
they can live for decades, or even their whole life, without
symptoms. However, the first manifestation of the syndrome can be
unexpected SCD, and genetic testing cannot always identify those at
risk.

Currently, the use of implantable cardioverter-defibrillators
(ICD) is the main therapeutic option for high-risk patients.1,5 Recent
pioneering studies have identified a discrete arrhythmogenic sub-
strate (AS) located in the epicardium of the right ventricle, which
is related to both the type 1 electrocardiogram (ECG) pattern
and ventricular arrhythmia (VA) inducibility, thus representing a
key phenotypic expression of the disease. Accordingly, the presence
and electrophysiological properties of the AS likely have a crucial
role in the clinical manifestation, alongside the natural history
of BrS.6–8

To date, in the setting of BrS, there is a lack of information regard-
ing genotype–phenotype association. Therefore, in the present study,
we sought to evaluate the role of current genetic testing among a
large series of BrS probands at risk of SCD.

Methods

Study population
Full details of the rationale and design of the BrS registry have been previ-
ously published (NCT02641431; NCT03106701).7–9 All consecutive BrS
probands referred to the Arrhythmology Department of IRCCS
Policlinico San Donato undergoing both genotype and epicardial pheno-
type assessment have been prospectively enrolled. Medical history, phys-
ical examination, baseline ECG, and signal-averaged ECG (SAECG) were
obtained in all patients. All patients enrolled had an ICD implanted, as
they were deemed as high risk. Further methodological details are pro-
vided in the Supplementary material online.

The protocol was reviewed and approved by the local Institutional
Ethics Committee, and all participants provided written informed con-
sent, in compliance with the Declaration of Helsinki. All authors had full
access to all data in the study and take responsibility for its integrity and
data analysis.

Electrophysiological study and mapping

procedure
Electrophysiological study (EPS) was systematically performed as previ-
ously described (Supplementary material online, Methods section).8 All
patients underwent a combined endo-epicardial mapping procedure
using a three-dimensional (3D) mapping system (CARTO 3, Biosense
Webster, CA, USA). Further details are provided in the Supplementary
material online. All maps were obtained at baseline conditions and after
drug challenge (ajmaline up to 1 mg/kg in 5 min). The abnormal electro-
grams (EGMs) were identified if they met at least one of the following
characteristics: (i) a wide duration (>110 ms) with fragmented compo-
nent (>3 distinct peaks); (ii) late component of low-voltage amplitude
ranging from 0.05 to 1.5 mV; (iii) distinct and delayed component exceed-
ing the end of the QRS complex; and (iv) discrete double activity. Total
signal duration was measured for each potential before and after drug
challenge as previously described.7

The potential duration map was created by collecting the duration of
each EGM. As a result, a colour-coded map was obtained showing the
regions displaying the shortest (red colour) and the longest (purple col-
our) durations. Arrhythmogenic substrate areas were measured and vali-
dated by two expert electrophysiologists using CARTO3 system, both
blinded to the genetic analysis conducted at a different institution.

Genetic testing
All patients were screened for SCN5A gene mutations using genomic
DNA and processed with Next Generation Sequencing (TruSight One
sequencing kit with NextSeq platform), performed at San Raffaele
Hospital. We used Varsome to get an ACMG classification and included
all variants with pathogenic (P)/likely pathogenic (LP) classification but
excluded benign (B)/likely benign (LB) and variants of unknown signifi-
cance (VUS).10

Statistical analysis
Data were analysed by Kruskal–Wallis test followed by Dunn’s multiple
comparisons or one-way ANOVA followed by Tukey’s test, or chi-
square test, as appropriate. Linear regression analysis was used to select
variables that predict quantitative variation in the size of the AS. Logistic
regression analysis was used to predict a large AS size (>_6.3 cm2) on the
basis of the set of predictor variables identified in the linear regression
model. This cut-off was chosen according to the median value of the sub-
strate size found in the present study population. Receiver-operating
characteristic (ROC) curve was constructed to evaluate the performance
of the variables gathered from the linear regression model in predicting a
large AS size (>_6.3 cm2), and the area under the curve and its statistical
significance were calculated.

Statistical significance was defined as P-value <0.05 unless otherwise
indicated. Statistical analyses were conducted using SPSS (v.23, IBM SPSS
Statistics). Further detailed statistical analyses are described in the
Supplementary material online.

Results

Study population characteristics
Among 201 patients, 195 probands (156 males, 80%; mean age
42.7 ± 12.2 years) were included in this study. Six patients harboured
an LB and VUS variant and then were excluded (Supplementary ma-
terial online, Table S5). Among the enrolled patients, 23 (11.8%) sur-
vived a previous cardiac arrest, and 75 (38.5%) had documented
appropriate ICD therapies due to VAs. Forty-three subjects (22.1%)
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presented with a spontaneous type 1 pattern, 55 (28.2%) had family
history of sudden death in relatives before the age of 40 years old,
and 93 (47.7%) were inducible for VT/VF at the EPS. Overall clinical,
anatomical, and electrophysiological characteristics are summarized
in Table 1. Forty-nine (49/195, 25.1%) were found to harbour an
SCN5A mutation. Clinical and electrophysiological characteristics
comparing SCN5A mutation positive and negative patients are
described in Table 1.

Clinical presentations
Table 1 shows the clinical characteristics of the study cohort accord-
ing to the genetic status. Patients harbouring SCN5A mutations more
frequently presented with a spontaneous type 1 pattern as compared
with SCN5A mutation-negative patients. Compared with those with-
out, SCN5A mutation positives more frequently experienced a car-
diac arrest, spontaneous life-threatening VAs, and syncope episodes.
Furthermore, SCN5A carriers more frequently exhibited conduction
disturbances (atrio-ventricular and in the right or left bundle;
Table 1). Atrial fibrillation was more frequently documented in the
SCN5A mutation-positive group. Other clinical factors, such as gen-
der, age, family history of sudden death, and inducibility for VT/VF
during the EPS, were not significantly different between the groups.
Non-invasive SAECG was successfully assessed in all patients. By
SAECG analysis, patients with an SCN5A mutation exhibited more
abnormalities. The values of f-QRSd, RMS40, and LAS40 are shown
in Table 1.

Arrhythmogenic substrate
characterization
The size of the AS both at baseline and after ajmaline challenge was
significantly larger in patients harbouring an SCN5A mutation
(Table 1). Representative examples of the ECG and epicardial AS are
shown for patients harbouring mutations in SCN5A (Figure 1 and
Supplementary material online, Figures S1 and S2) and for an SCN5A
mutation-negative patient (Figure 2). Electrophysiological characteris-
tics are summarized in Table 1. The AS extent and the potential
duration at baseline and after ajmaline administration were signi-
ficantly increased in patients with SCN5A mutation (Table 1).
Individual variants and their respective substrate areas and potential
durations are shown in Supplementary material online, Table S5.
Electrophysiological parameters for missense variants compared
with non-missense variants are displayed in Supplementary material
online, Table S6.

Predictors of the arrhythmogenic
substrate
The following predictors were included at each step of the regression
model since they significantly contributed to explain the size of the
AS: SCN5A mutation carriers (Fchange = 62.4, P = 2.08E-13), spontan-
eous type 1 ECG pattern (Fchange = 42.2, P = 7.14E-10), and gender
(Fchange = 16.6, P = 6.72E-5) (Figure 3 and Supplementary material on-
line, Table S1). The final model explained �43% of the quantitative

....................................................................................................................................................................................................................

Table 1 Clinical, anatomical, and electrophysiological characteristics of the study population

Overall

(n 5 195)

SCN5A mutation1
(n 5 49)

SCN5A mutation2
(n 5 146)

P-value

Male, n (%) 156 (80) 38 (77.6) 118 (71.9) 0.681

Age (years) (mean ± SD) 42.7 ± 12.2 40.9 ± 11.3 43.4 ± 12.5 0.124

Spontaneous type 1 pattern, n (%) 43 (22.1) 16 (32.7) 27 (18.5%) 0.047

Family history of SD, n (%) 55 (28.2) 14 (28.6) 41 (28.1) 1.000

Aborted cardiac arrest, n (%) 23 (11.8) 11 (22.4) 12 (8.2) 0.018

Syncope, n (%) 79 (41.6) 27 (55.1) 52 (35.6) 0.030

Spontaneous VT/VF requiring ICD therapy, n (%) 75 (38.5) 26 (53.1) 49 (33.6) 0.018

Inducible VT/VF at EPS, n (%) 93 (47.7) 22 (44.9) 71 (48.6) 0.741

Previous atrial tachyarrhythmias

Atrial fibrillation, n (%) 50 (25.8) 21 (43.8) 29 (19.8) 0.002

Atrial flutter, n (%) 14 (7.2) 3 (6.1) 11 (7.5) 1.000

Previous AVNRT, n (%) 37 (19) 5 (10.2) 32 (21.9) 0.092

PQ interval, ms (mean ± SD) 179.9 ± 30.5 202.1 ± 33.1 172.6 ± 25.8 <0.001

QRS duration >_120 ms, n (%) 45 (23.1) 21 (42.9) 24 (16.4) <0.001

f-QRSd (mean ± SD) 114.4 ± 15.9 122.2 ± 19.0 111.8 ± 13.8 0.001

RMS40 (mean ± SD) 19153.7 ± 15894.7 14312.4 ± 13410.4 20778.7 ± 16367.6 0.013

LAS40 (mean ± SD) 43.4 ± 14.5 49.5 ± 18.4 41.3 ± 12.3 0.005

Arrhythmogenic substrate characteristics

Baseline substrate size (cm2) (mean ± SD) 6.3 ± 3.2 9.0 ± 3.8 5.3 ± 2.4 <0.001

Substrate size after ajmaline (cm2) (mean ± SD) 13.6 ± 5.9 18.8 ± 5.7 11.9 ± 4.8 <0.001

Baseline potential duration (ms) (mean ± SD) 108.2 ± 40.1 127.9 ± 46.0 101.6 ± 35.6 <0.001

Potential duration after ajmaline (ms) (mean ± SD) 202.6 ± 28.4 220.5 ± 31.5 196.7 ± 24.7 <0.001

AVNRT, atrio-ventricular node re-entrant tachycardia; BrS, Brugada syndrome; ECG, electrocardiogram; EPS, electrophysiological study; ICD, implantable cardioverter-defibril-
lator; LAS, duration of low-amplitude signals <40mV; RMS, root mean square voltage of the terminal 40 ms of the filtered QRS complex; SD, standard deviation; SD, sudden
death; SVT, supraventricular arrhythmias; VT/VF, ventricular tachycardia/fibrillation.
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Figure 1 Exemplary case of an SCN5A carrier with a spontaneous type 1 pattern and abnormal late potentials at the signal-averaged electrocardio-
gram (top panel). Middle panel shows one of the appropriate shocks by the implantable cardioverter-defibrillators, implanted in primary prevention.
The epicardial mapping demonstrated a large area of electrical abnormalities (32.3 cm2), representing the Brugada syndrome arrhythmogenic sub-
strate (purple colour in CARTO map).
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variation in the size of the AS, most of which was accounted for by
the presence of an SCN5A mutation (variance explained �24%) and
the manifestation of a spontaneous type 1 ECG pattern (variance
explained �14%) (Figure 3 and Take-home figure). The effect of
SCN5A mutation alone was independent from spontaneous type 1
status, as demonstrated by the linear regression analysis
(Supplementary material online, Results and Figure S3). Furthermore,

patients carrying an SCN5A mutation have 14 times the odds of having
an AS >_6.3 cm2 (95% CI 5.6–35.8) (Supplementary material online,
Table S2). In addition, the presence of a spontaneous type 1 ECG pat-
tern and male gender significantly predicted a large substrate size
(see Methods section and Supplementary material online, Methods
and Tables S2 and S3). An ROC curve was constructed based on the
variables retained in the logistic regression model (carrying SCN5A

Figure 2 Example of a patient negative to the genetic test. Baseline epicardial mapping demonstrated a 4.3 cm2 area of abnormal electrograms (top
panel), increasing to 10 cm2 after ajmaline.
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..mutation, presence of a spontaneous type 1 ECG pattern, and gen-
der), showing an area under the curve of 0.811 (95% CI 0.748–0.875,
P = 9.13E-14; Take-home figure).

Discussion

This study provides novel insights into the relationship between the
genotype and the phenotype expression in patients with BrS. The

main findings of this study are (i) the genotype predicts the BrS
phenotypic expression and (ii) patients harbouring an SCN5A muta-
tion exhibit a larger epicardial AS area and more prolonged EGMs.

Brugada syndrome genotype
Since its first description nearly 30 years ago, BrS has gained a signifi-
cant interest due to the risk of SCD in young and otherwise healthy
individuals.11 This has prompted active research to understand the
genetic mechanisms unveiling the role of the sodium channel in the
syndrome.12–15 The SCN5A gene, encoding the pore-forming alpha-
subunit of the cardiac sodium channel, has been the most studied
gene thus far due to its undeniable association with BrS,2 generally
accepted to result because of a loss of function of the sodium chan-
nel.16,17 In a recent meta-analysis including 1780 BrS patients of both
Asian and Caucasian descent,18 patients with SCN5A mutations had a
younger age at onset of symptoms and a higher rate of the spontan-
eous type 1 BrS pattern. Additionally, SCN5A patients exhibited more
pronounced electrophysiological abnormalities and had a worse
prognosis in terms of life-threatening arrhythmias in both Asian and
Caucasian patients.

In the present report of 195 BrS probands, we found that SCN5A
mutation carriers had a more aggressive clinical manifestation as
compared with patients without an SCN5A mutation, consistent with
previous studies that reported an increase in conduction

Figure 3 Proportion of variance explained in arrhythmogenic
substrate size by each variable included in the linear regression
model. The level of statistical significance is also indicated for each
variable. SCN5A mutation explained 24.4% of the variance in
arrhythmogenic substrate (Fchange = 62.4), spontaneous type 1 pat-
tern 13.6% (Fchange = 42.1), and male gender 5.0% (Fchange = 16.6).

Take-home figure Brugada syndrome phenotypic expression predictors. (A) Large Brugada syndrome epicardial substrate in a male patient
with spontaneous type 1 electrocardiogram pattern experiencing appropriate implantable cardioverter-defibrillator therapy. (B) Specific contribution
of each variable (SCN5A mutations, spontaneous type 1 electrocardiogram pattern, and gender), in explaining the variance of the arrhythmogenic sub-
strate. (C) Receiver-operating characteristic curve analysis demonstrating the accuracy of the model for the prediction of a large arrhythmogenic sub-
strate (>_6.3 cm2).
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abnormalities on ECG and a higher risk for cardiac events in patients
harbouring SCN5A mutations.19,20 In fact, as demonstrated in the pre-
sent study, carrying an SCN5A mutation contributed to �26% of the
variation in the AS. However, as aborted cardiac arrests and spontan-
eous life-threatening arrhythmias still occurred at a rate of �8% and
34%, respectively, in the SCN5A mutation-negative group, it is evident
that this parameter cannot be considered the only marker of risk for
sudden death in this population. This concept may support the hy-
pothesis that BrS could also be an oligo or polygenic disorder, and
that multiple variants might influence the phenotype by affecting the
function of the channel, and they may also predispose to the disease,
in association with various environmental factors.21 This could, at
least partially, explain the variable expressivity and the incomplete
penetrance that characterizes the BrS phenotype.

When analysing SCN5A variants according to their Varsome pre-
dicted pathogenicity (P/LP vs. VUS) or topographic location of the
variant (transmembrane vs. not), no statistically significant differences
could be observed, probably due to a relatively small cohort of
patients for this type of analysis (Supplementary material online,
Tables S7 and S8). Finally, a higher rate of spontaneous type 1 and a
larger baseline substrate size were frequently observed among
patients with a non-missense SCN5A mutation. This may be due to
the inclusion of mutations resulting in a truncated protein with no so-
dium current at the membrane in the non-missense group, which
may be associated with a severe phenotype. However, substrate size
after ajmaline was not significantly different among the two groups,
indicating similar functional abnormalities.

Brugada syndrome phenotype
After initial reports of electrophysiological abnormalities in the epi-
cardium of the right ventricle in BrS patients, it has been demon-
strated that these electrophysiological abnormalities are
mechanistically responsible for the type 1 BrS ECG pattern, and their
successful elimination by catheter ablation may result in the abolition
of the BrS pattern and suppression of VAs.8,22 Furthermore, patients
experiencing symptoms (syncope, aborted cardiac arrest, or spon-
taneous life-threatening VT/VF) more frequently show aggressive epi-
cardial electrophysiological abnormalities compared with
asymptomatic subjects.7–9

A study by Nademanee et al.23 demonstrated an increase in colla-
gen deposition and subtle fibrosis in the right ventricular outflow
tract of BrS patients. Furthermore, inflammation and apoptosis have
been reported in myocardial biopsies of the right ventricle.24 In our
initial experience regarding BrS ablation, large areas of low voltage
(bipolar signal <1.5 mV) were demonstrated in the epicardium of
patients with a severe clinical phenotype.25 It could not be ruled out
that these low-voltage epicardial regions may result from structural
abnormalities, such as fibrosis, especially in cases with a malignant
phenotype. The latter may also explain the nature of fragmented and
delayed potentials that could be determined by local epicardial slow
conduction due to functional derangements and/or increased cou-
pling resistance.26–29 Furthermore, one cannot exclude that phase 2
reentry30 may represent one of the mechanisms of VAs in the ab-
sence of clear slow conduction and in presence of a suitable
substrate.

In the present study, spontaneous type 1 pattern contributed
�14% of the variation in the AS. These observations may support the

concept that the epicardial substrate represents the ‘true’ BrS pheno-
type, characterized by the epicardial abnormalities, rather than the
ECG manifestation, which is transient.

Furthermore, the noteworthy feature of this study is the independ-
ent association between the extent of the electro-anatomical AS and
the genetic status of the disease, as demonstrated by the multivariate
analysis. In fact, as shown in our series, a multivariable model including
the presence of an SCN5A mutation, spontaneous type 1 ECG pat-
tern, and male gender predicted a substrate area >_6.3 cm2.

These findings further strengthen the relevance of genetic evalu-
ation, as genetics clearly contribute to the electrophysiological
phenotypic expression of the disease, and this could enable more
individualized management. These concepts support the evidence
that the epicardial substrate may be the pathological consequence of
altered genetics and environmental factors, resulting in differences in
the phenotypic expression and clinical manifestation of the disease.
The sodium channel impairment seems to affect the epicardial con-
duction properties of the right ventricle. The SCN5A mutation deter-
mines a lower sodium current directly by modifying the protein
structure. However, the use of sodium channel blockers to unmask
the epicardial abnormalities also in patients without SCN5A mutations
may suggest the presence of subtle impairments in the sodium chan-
nel function, and ajmaline may magnify the extent of such abnormal-
ities. Furthermore, there could be other genetic variants that may
affect sodium channel function as the Nav1.5 protein could be post-
translationally modified by signalling pathways.

Therefore, current genetic testing alone cannot explain the com-
plexity of this disease, and this supports pursuing more studies in this
field to improve the knowledge regarding the genetic ‘milieu’ behind
the AS and the genetic modulators influencing the disease penetrance
and manifestation.

These results have important implications, providing insight into
how an SCN5A mutation is associated with an increased risk of life-
threatening arrhythmias.19 The genetic assessment may be used as a
tool to non-invasively predict the presence of potentially dangerous
properties of the substrate that lead to the increased arrhythmogenic
risk in this population, and these findings may help clinicians in refining
patients’ risk stratification.

The present report provides, for the first time, novel insights
regarding the relationship between the genotype and the electro-
physiological parameters in a large cohort of BrS probands. In this
study, patients harbouring SCN5A mutations showed more aggressive
electrophysiological epicardial abnormalities as compared with those
without SCN5A mutations, which may explain why these patients
have a more severe clinical presentation, more frequently experienc-
ing cardiac arrest or VAs.19

In the present patient population, SCN5A-positive patients also
more frequently exhibited ventricular conduction disturbances as
well as abnormal late activity in SAECG. It has been demonstrated
that the arrhythmic substrate can be considered their main electro-
physiological cause.9 Moreover, non-invasive LPs are related to a
prominent arrhythmic substrate area, and they have been used to de-
tect individuals at high risk of future life-threatening arrhythmias.31 In
the present study, the association between abnormal LPs and the
larger arrhythmic substrate in patients harbouring SCN5A mutations
further strengthens the concept of an increased arrhythmic risk in
this population.
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Limitations
This is the first prospective study evaluating the correlation between
genotype and phenotype in BrS in the form of the epicardial AS in a
large cohort of BrS probands. This study was conducted in a popula-
tion with various clinical characteristics, evaluated and/or referred to
an experienced BrS centre, because they showed an increased ar-
rhythmic risk profile. Nevertheless, as nearly half of the patients did
not experience appropriate ICD therapies at the time of this study,
we acknowledge that this population may have heterogeneous clinic-
al characteristics with different arrhythmic risk profiles. Therefore,
these results might be not applicable to other patient populations.
This may also explain the lack of differences in inducibility rate
according to genetic status. These results cannot be used to draw
conclusions regarding the usefulness of EPS for risk stratification.

The role of SCN5A mutation type, pathogenicity prediction, and
topographic location of the variant will be matter of future research,
as the relatively limited sample size of this study prevents the drawing
of significant conclusions in this regard. Furthermore, what role genes
other than SCN5A may play remains unknown.

Conclusions

These results demonstrate that the genetic background is the main
determinant of the epicardial electrophysiological abnormalities, con-
tributing to the understanding of the BrS phenotypic expression, pro-
viding possible explanations for the varying degrees of disease
manifestation. Patients harbouring SCN5A mutations exhibit more
pronounced epicardial electrical abnormalities, including a more ex-
tensive AS and more aggressive clinical presentation.
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