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Abstract: Nasal drug delivery has many beneficial properties, such as avoiding the first pass
metabolism and rapid onset of action. However, the limited residence time on the mucosa and
limited absorption of certain molecules make the use of various excipients necessary to achieve high
bioavailability. The application of mucoadhesive polymers can increase the contact time with the
nasal mucosa, and permeation enhancers can enhance the absorption of the drug. We aimed to
produce nanoparticles containing meloxicam potassium (MEL-P) by spray drying intended for nasal
application. Various cyclodextrins (hydroxypropyl-β-cyclodextrin, α-cyclodextrin) and biocompati-
ble polymers (hyaluronic acid, poly(vinylalcohol)) were used as excipients to increase the permeation
of the drug and to prepare mucoadhesive products. Physico-chemical, in vitro and ex vivo bio-
pharmaceutical characterization of the formulations were performed. As a result of spray drying,
mucoadhesive nanospheres (average particle size <1 µm) were prepared which contained amor-
phous MEL-P. Cyclodextrin-MEL-P complexes were formed and the applied excipients increased
the in vitro and ex vivo permeability of MEL-P. The highest amount of MEL-P permeated from
the α-cyclodextrin-based poly(vinylalcohol)-containing samples in vitro (209 µg/cm2) and ex vivo
(1.47 µg/mm2) as well. After further optimization, the resulting formulations may be promising for
eliciting a rapid analgesic effect through the nasal route.

Keywords: alpha-cyclodextrin; hydroxypropyl-β-cyclodextrin; meloxicam potassium; nano spray
drying; nasal drug delivery

1. Introduction

Nasal administration of different active pharmaceutical ingredients (APIs) is an in-
vestigated area, since it is possible not to just treat local pathological conditions, but to
reach the systemic circulation or the central nervous system through the nasal epithelia
because of its high vascularization and large surface area [1]. The absorbed drugs avoid
the first pass hepatic metabolism and a rapid onset of action may occur [2]. Despite the
many favorable properties, there are some limitations that need to be overcome for the
success of drug absorption. Due to the mucociliary clearance, the nasal fluid renews every
15–20 min which results in short residence time of the API, and the low permeability of
the mucosa is also a hindering factor [3,4]. By selecting the appropriate excipients—that
are mucoadhesive (e.g., chitosan, hyaluronic acid, Carbopols [5]), so the contact time of
the API is extended, or have permeability enhancing features (e.g., cyclodextrins, chitosan,
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phospholipids [6]) by their interaction with the epithelial tight junctions—these undesirable
factors can be eliminated.

Nasal drops, sprays and ointments are well known in the market, while nasal powders
are not so common, although they have some advantageous properties over the other
formulations. Nasal powders tend to be more difficult to eliminate from the nasal mucosa
allowing a longer contact time for the API; moreover, because of their low moisture content,
powders have an improved stability and there is no need to use preservatives—which are
often irritative—during their production [7].

Spray drying is one of the most widespread, well-known bottom-up processes in
the pharmaceutical industry to produce particles with controlled size and morphology
in one step for, e.g., pulmonary, nasal or parenteral administration [8]. It allows for the
preparation of powders even with the use of heat-sensitive compounds and the result-
ing products are usually amorphous because of their rapid solidification [9]. With the
adjustment of the process parameters, spherical particles can be obtained which results in
improved powder flowability, and the low moisture content of the products enhances their
stability [10–12]. Nano spray drying is an effective way to increase the bioavailability of
drugs, since nanoparticles have a high specific surface area compared to their size, which
results in better dissolution and higher absorption rate [13]. It makes the incorporation of
the APIs in polymers feasible as well, thus controlled drug release can be achieved [14,15].
BÜCHI Nano Spray Drier B-90 is a laboratory scale instrument with low sample volume
requirements that produces sub-micron particles with a size range of 0.2–5 µm [16].

Cyclodextrins (CDs) are cyclic oligosaccharides that are famous for their capability
to entrap drug molecules by forming inclusion complexes. Spray drying is a suitable
method for obtaining such complexes, which may be used to increase the solubility and
the dissolution of the APIs and may have drastically different properties than the original
compounds. CDs can increase the permeability of the mucosal membranes, so an improved
drug absorption can be achieved, and they can reduce the irritant effect of the APIs as well,
so their application may be favorable in nasal formulations [17–20].

Hyaluronic acid (HA) and poly(vinylalcohol) (PVA) are swellable, biocompatible
and biodegradable polymers that are commonly used in drug delivery. HA is a natural
polysaccharide that has mucoadhesive and permeability enhancing features, so it can be
used in nasal formulations for the success of drug delivery [21]. PVA is a synthetic polymer
that is often used as an additive to decrease the cohesion between the spray dried particles,
so that they stay separated from each other [22]. These hydrophilic polymers were chosen
in order to produce potentially mucoadhesive products.

Meloxicam (MEL) is a non-steroidal anti-inflammatory drug with poor water solubility.
In the therapeutic field, it is used to treat different joint diseases and it could be used to
relieve acute pain [23]. Its effect on the use of opioids in the case of post-orthopedic surgery
patients was studied by administering it intravenously [24]. In addition, its delivery
through alternative routes—such as transdermal and nasal routes—has been recently
investigated in vitro and in vivo [25–27]. Meloxicam potassium monohydrate (MEL-P)
is the salt form of MEL that was developed by Egis Ltd. (Budapest, Hungary) and has
a higher aqueous solubility (MEL-P: 13.1 mg/mL in water at 25 ◦C; MEL: 4.4 µg/mL in
water at 25 ◦C). However, with different techniques, e.g., spray drying, forming inclusion
complexes, incorporating into polymer matrices, its permeability and bioavailability can
be further increased [28,29].

The aim of our work was to prepare MEL-P-containing nanoparticles by spray drying
using various CDs and polymers to enhance the permeability of the API and to make it
suitable to deliver it to the systemic circulation through the nasal epithelium to enhance
analgesia or relieve acute pain. To the best of our knowledge, this combination of the
materials produced by spray drying has not been investigated under nasal conditions so
far. The physico-chemical characterization, mucoadhesivity investigations, in vitro and ex
vivo permeability and cell cytotoxicity studies were carried out.
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2. Materials and Methods
2.1. Materials

MEL-P was obtained from Egis Ltd. (Budapest, Hungary). (2-Hydroxy)-propyl-β-
cyclodextrin (HPβCD) and α-cyclodextrin (αCD) were from Cyclolab Ltd. (Budapest,
Hungary). Hyaluronic acid (sodium salt) (HA) was from Contipro Biotech (Dolní Dobrouč,
Czech Republic), poly(vinylalcohol) (PVA) and mucin (from porcine stomach, type II) were
from Sigma-Aldrich (Sigma-Aldrich Co. LLC, St. Louis, MO, USA).

2.2. Methods
2.2.1. Preparation of the Spray Dried Samples

The solutions for nano spray drying were prepared by dissolving 1:1 mol/mol ratio of
MEL-P and cyclodextrin (HPβCD or αCD) using 10 mL of distilled water as the solvent for
the polymer-free samples. For the PVA-containing samples, 10 mg of PVA was added to
the solutions in addition to the aforementioned compounds, and for the HA-containing
samples, 5 mg of HA was dissolved in the MEL-P-cyclodextrin solutions (Table 1). BÜCHI
Nano Spray Dryer B-90 HP (BÜCHI Labortechnik AG, Flawil, Switzerland) (Figure 1) was
used for the production of the samples. The following parameters were applied for the
process: inlet air temperature: 80 ◦C, pump: 20%, aspirator capacity: 100%, compressed air
flow: 130 L·h−1.

Table 1. Composition of the samples.

Samples Distilled Water (mL) HPβCD (mg) αCD (mg) HA (mg) PVA (mg) MEL-P (mg)

HPβCD_MEL-P 10 264.79 - - - 70
HPβCD_MEL-P_HA 10 264.79 - 5 - 70
HPβCD_MEL-P_PVA 10 264.79 - - 10 70

αCD_MEL-P 10 - 167.11 - - 70
αCD_MEL-P_HA 10 - 167.11 5 - 70
αCD_MEL-P_PVA 10 - 167.11 - 10 70
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2.2.2. Scanning Electron Microscopy (SEM)

The size, shape and surface morphology of the spray dried particles were visualized
by SEM (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan). Under an argon atmosphere,
after sputter-coating the samples with gold-palladium in a high-vacuum evaporator, they
were examined at 10 kV and 10 µA. The air pressure was 1.3–13 MPa. The size of the parti-
cles was measured by ImageJ program. From each sample, 100 particles were measured.

2.2.3. Differential Scanning Calorimetry (DSC)

Mettler Toledo DSC 821e system and STARe program V9.1 (Mettler Toledo Inc., Schw-
erzenbach, Switzerland) were used to implement the thermal analysis. Approximately
2–5 mg of samples in sealed aluminum pans were heated from 25 ◦C to 300 ◦C applying
10 ◦C·min−1 heating rate under a constant argon flow of 10 L·h−1. Physical mixtures
(PMs) of MEL-P, cyclodextrins, HA and PVA in the same ratio as the spray dried sam-
ples contained were mixed in a Turbula mixer (Turbula WAB, Systems Schatz, Muttenz,
Switzerland) at 50 rpm for 10 min and were applied as control samples.

2.2.4. X-ray Powder Diffraction (XRPD)

To examine the physical state of MEL-P in the samples, XRPD was performed with a
Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with Cu K λI
radiation (λ = 1.5406 Å). The samples were scanned at 40 kV and 40 mA with an angular
range of 3–40◦ 2θ. Si was used to calibrate the instrument. As controls, the PMs of MEL-P,
cyclodextrins, HA and PVA were applied in the same ratio as the spray-dried samples
contained were mixed in a Turbula mixer (Turbula WAB, Systems Schatz, Switzerland) at
50 rpm for 10 min. DIFFRACTPLUS EVA software was used to perform the manipulations:
Kα2-stripping, background removal and smoothing.

2.2.5. Fourier-Transformed Infrared Spectroscopy (FT-IR)

The interactions between MEL-P and the excipients were investigated by the AVATAR330
FT-IR spectrometer (Thermo Nicolet, Unicam Hungary Ltd., Budapest, Hungary) in the
interval of 400–4000 cm−1, at an optical resolution of 4 cm−1. Samples were grounded and
compressed into pastilles at 10 t with 0.15 g of KBr.

2.2.6. Mucoadhesivity

The potential mucoadhesivity of the samples was estimated by the displacement of
powders on the tilted surface of agar–mucin and—as controls—pure agar gels, using a
protocol proposed in the literature [30]. Briefly, a hot solution of 2% agar with or without
2% mucin in phosphate buffer pH 6.4 was poured into a petri dish and left for gelation
overnight. The gels were stored at 32 ◦C before the test. The 7.5 mg MEL-P-containing
samples were placed on top of the gels in a spot with a diameter of approximately 10 mm.
At the beginning of the investigation, the petri dishes were leaned at an angle of 45◦ and
the displacement of powder samples was measured against time. All measurements were
conducted in triplicate.

2.2.7. In Vitro and Ex Vivo Permeability Studies

A modified horizontal diffusion model (Figure 2) was applied to study the in vitro
and ex vivo permeability of MEL-P [31]. This apparatus simulated the nasal conditions.
The 7.5 mg of MEL-P-containing samples were added to the donor phase, which was 9 mL
of SNES of pH 5.6 (represented the nasal fluid). Nine microliters of pH = 7.4 phosphate
buffer—corresponding to the pH of the blood—was used as the acceptor phase. The
temperature of the phases was 32 ◦C (Thermo Haake C10-P5, Sigma Aldrich Co.) and the
rotation rate of the stir-bars was set to 300 rpm.

For the in vitro tests, the two chambers of the apparatus were divided by an artificial
membrane (WhatmanTM regenerated cellulose membrane filter with 0.45 µm pores) that
was soaked in isopropyl myristate for 30 min before the investigation. It modeled the
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lipophilic mucosa between the phases. For the ex vivo measurements, the permeability test
was performed on human nasal mucosa (mucoperiostium) in the case of the formulations
with the highest in vitro permeability. The pieces of the nasal mucosa for primary study
were collected during daily clinical routine nasal and sinus surgeries (septoplasty, FESS)
under general or local anesthesia. The surgical field was infiltrated with 1% Lidocain-
Tonogen local injection and the mucosa was lifted from its base with a raspatorium or
Cottle elevator. Transport from the operating room was performed in physiological saline.

The amount of MEL-P diffused to the acceptor phase was determined spectropho-
tometrically at 364 nm in real time with an AvaLight DH-S-BAL spectrophotometer
(AVANTES, Apeldoorn, The Netherlands). Each measurement was carried out in triplicate.
The flux was determined at 15 min and the permeation enhancement ratios for the in vitro
measurements were calculated based on the following equations (Equations (1) and (2)) [32]:

Papp =
Q

A·c·t (1)

where Papp is the apparent permeability coefficient (cm/s), Q is the total amount permeated
throughout the incubation time (µg), A is the diffusion area of the artificial membrane
(cm2), c is the initial concentration of the drug in the donor compartment (µg/cm3), and t
is the total time of the experiment (s) and

R =
Papp(sample)
Papp(control)

(2)

where R is the permeation enhancement ratio and Papp (control) is the apparent permeabil-
ity coefficient (cm/s) of MEL-P.
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2.2.8. In Vitro Cytotoxicity Measurements

Mitochondrial activity as a measure of cell viability was performed by MTT assay
in 96-well cell culture microplates using RPMI 2650 cells (human nasal septum epithelial
squamous carcinoma cells, obtained from American Type Culture Collection, ATCC, Man-
assas, VA, USA). RPMI 2650 cells were seeded at a density of 4 × 104 cells/well. First,
serial dilution was made of the following stock concentrations: 4.11 mg/mL HPβCD_MEL-
P_PVA_spd or 2.99 mg/mL αCD_MEL-P_PVA_spd or 5 µg/mL Lipopolysaccharide (LPS;
ThermoFisher Scientific, Waltham, MA, USA), then the cells were incubated at 37 ◦C for
24 h. Later, 20 µL of thiazolyl blue tetrazolium bromide (MTT; Sigma-Aldrich, St. Louis,
MO, USA) was added to each well. After an additional incubation at 37 ◦C for 4 h, sodium
dodecyl sulfate (Sigma-Aldrich, St. Louis, MO, USA) solution (10% in 0.01 M HCI) was
added and were incubated overnight. Cytotoxicity of the compounds was then determined
by measuring the OD at 550 nm (ref. 630 nm) with EZ READ 400 ELISA reader (Biochrom,
Cambridge, UK). The assay was repeated four times for each concentration.

2.2.9. Examination of the Anti-Inflammatory Effect of Compounds in In Vitro Experiments

RPMI 2650 cells were seeded in 6-well plate at a density of 1 × 106 cells/well and
treated with the highest noncytotoxic concentration either with 1.03 mg/mL HPβCD_MEL-
P_PVA_spd and 5 µg/mL LPS or 0.38 mg/mL αCD_MEL-P_PVA_spd and 5 µg/mL
LPS or 5 µg/mL LPS or left untreated. During the experiment the LPS was used as a
positive control.

2.2.10. Total RNA Extraction and cDNA Synthesis

After 24 h treatment of RPMI 2650 cells with the compounds, RNA was extracted
using the TRI reagent (Sigma-Aldrich, St. Louis, MO, USA) according to the manufac-
turer’s protocol. Subsequently, 1 µg of total RNA was reverse transcribed using Maxima
Reverse Transcriptase (ThermoFisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions.

2.2.11. qPCR Amplification of IL-6, COX-2, IL-1b, Actb

IL-6 is a cytokine and plays a major role in the inflammation, among various cell
type, epithelial cell are also excreting IL-6 [34]. qPCR was performed using a Bio-Rad
CFX96 real-time system with the 5x HOT FIREPol® EvaGreen® qPCR Supermix (So-
lis BioDyne, Tartu, Estonia) and the following human-specific primer pairs: IL-6: 5′-
CAGCTATGAACTCCTTCTCCAC-3′ and 5′-GCGGCTACATCTTTGGAATCT-3′; COX-2:
5’-TACTGGAAGCCAAGCACTTT-3’ and 5’-GGACAGCCCTTCACGTTATT-3’; IL-1b: 5’-
CAAAGGCGGCCAGGATATAA-3’ and 5’-CTAGGGATTGAGTCCACATTCAG-3’; Actb:
5′-TTCTACAATGAGCTGCGTGTGGCT-3′ and 5′-TAGCACAGCCTGGATAGCAACGTA-
3′. Primers were designed using the Primer Quest Tool software and synthesized by
Integrated DNA Technologies Inc. (Montreal, Quebec, Canada). Melting curve analysis
was performed to verify amplification specificity. Threshold cycles (Ct) were determined
for IL-6, COX-2, IL-1b and Actb, and the relative gene expression was calculated via the
2-(∆∆Ct) method. One-way analysis of variance with repeated measures (ANOVA RM)
and Tukey post hoc test was used to compare statistical differences in log2(∆∆Ct) values
between treated and LPS samples, as described previously, with a level of significance of
* p < 0.05, ** p < 0.01, and *** p < 0.001 [35].

3. Results and Discussion
3.1. Particle Size and Morphology

SEM was used to visualize the morphology and particle size (PS) of the spray dried
samples. The images revealed smooth surfaced, round shaped, spherical particles in all
spray dried samples (Figure 3) and the average PS measured by the ImageJ program was
between 612 nm and 871 nm (Table 2).
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Table 2. Average particle size (PS).

Composition Avarage PS (nm)

HPβCD_MEL-P_spd 871 ± 439
HPβCD_MEL-P_HA_spd 868 ± 243
HPβCD_MEL-P_PVA_spd 723 ± 229

αCD_MEL-P_spd 612 ± 227
αCD_MEL-P_HA_spd 756 ± 175
αCD_MEL-P_PVA_spd 799 ± 256

3.2. Thermal Properties

The DSC curves of the PMs and the spray dried samples are shown in Figure 4. The
endothermic peaks at around 170 ◦C in the PMs are the melting points of raw MEL-P
indicating its crystallinity [36]. The broad endothermic peaks from 40 ◦C to 105 ◦C in
Figure 4a, and the endothermic bands from 60 ◦C to 105 ◦C shown in Figure 4b in the
curves of the PMs are due to the dehydration of HPβCD and αCD, respectively [37–39]. In
the case of the spray dried samples, besides the broad endothermic peaks caused by the
loss of water, no thermal event could be observed. The disappearance of the endothermic
peaks of MEL-P can suggest not only its amorphization, but the formation of inclusion
complexes [40]. However, above 225 ◦C, the appearance of exotermic peaks in the PMs and
in the products are due to the decomposition of MEL-P.
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3.3. Structural Characterization

The XRPD diffractograms of the spray dried samples and the PMs are shown in
Figure 5. The distinct peaks appearing at 6.1, 15.5, 24.6 and 30.9 2Θ values indicate the
crystallinity of raw MEL-P in the PMs. In Figure 5a, the absence of characteristic peaks for
HPβCD in the PMs suggesting its amorphous state. and in Figure 5b, the characteristic
peaks at diffraction angles 2Θ of 5.3◦, 12.0◦, 14.4◦ and 21.8◦ indicate the crystallinity of
αCD [41]. After spray drying, the intensity of the previously mentioned diffraction peaks
assigned to MEL-P and αCD remarkably reduced referring to their amorphization and the
formation of the inclusion complexes. These results corresponded to those of the thermal
analysis. No change could be observed in the crystallinity of the products after three
months of storage in laboratory conditions.
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3.4. Secondary Interactions

The FT-IR spectra of raw HPβCD showed characteristic peaks at 1653 cm−1 (H–O–H
bending), 2931 cm−1 (C–H stretching) and 3404 cm−1 (O–H stretching) [42]. In all of the
HPβCD-based spray dried samples, the bands shifted to lower wavenumbers: 1653 cm−1

to 1616 cm−1 and 3404 cm−1 to 3385 cm−1 (Figure 6a). Considering raw αCD, the band at
3405 cm−1 shifted to lower wavenumbers (3385 cm−1) as well as in the αCD-based spray
dried samples. In addition, wavenumber of band of αCD decreased from 1643 cm−1 to
1616 cm−1, as well. These peaks are assigned to the stretching and the bending vibration
of H-O in αCD, respectively (Figure 6b). The characteristic bands of HA and PVA were
probably shaded in the spray dried samples by the other compounds. These changes can
indicate the formation of hydrogen bonds between the MEL-P and the cyclodextrins.
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3.5. Mucoadhesivity

The influence of HA and PVA on the potential mucoadhesivity of the samples was
estimated. As controls, pure agar gels were applied, and all of the spray dried samples
moved to the bottom of the petri dishes in the first minute of the investigation. In the case
of the αCD-containing samples, the displacement of αCD_MEL-P_HA_spd was higher
(3.3 cm) than the αCD_MEL-P_PVA_spd (2.69 cm), in 20 min. As an effect of the osmotic
activity of HPβCD, HPβCD_MEL-P_HA_spd and HPβCD_MEL-P_PVA_spd samples
adsorbed water from the gels resulting in their dissolution and complete displacement
towards the bottom of the petri dishes in the first two minutes of the investigation. However,
the PVA-containing sample moved slower. These results indicate higher mucoadhesivity
of PVA compared to HA in the formulations.

3.6. In Vitro and Ex Vivo Permeability

For the in vitro test, the cumulative amount of MEL-P that diffused through the ar-
tificial membrane was measured as a function of time in a modified horizontal diffusion
cell (Figure 7). The flux at 15 min (Figure 8) and the enhancement ratios (Table 3) were
determined. In the case of the HPβCD-based samples (Figure 7a), the highest amount of
MEL-P permeated from the PVA-containing sample, where 194 µg/cm2 of MEL-P diffused
to the acceptor phase in 60 min. According to the enhancement ratio values, 7 times more
drug permeated from this formulation, than of raw MEL-P. The same tendency could
be observed in the case of the αCD-based samples (Figure 7b). The highest amount—
209 µg/cm2 in 60 min—of MEL-P permeated from the PVA-containing sample as well,
more than 7.5 times more API could diffuse through the membrane. In both cases, the
presence of PVA seemed to have a beneficial effect on the permeated amount of the drug.
The same was experienced by Kaur, Indu P. et al., where the in vitro corneal permeation of
acetazolamide was outstanding from their HPβCD-PVA-containing formulation [43]. Ac-
cording to literature data, this phenomenon presumably can be explained by the increasing
effect of PVA on the free drug concentration in the aqueous diffusion layer on the surface
of the biological and artificial membranes [43,44].

In contrast, the in vitro permeation enhancing effect of HA was not clearly convincing.
Although the presence of HA was favorable in the HPβCD-based sample, in the case of
the αCD-based sample, according to the enhancement ratio values, less amount of MEL-P
diffused to the acceptor phase compared to the polymer-free formulation. In αCD_MEL-
P_HA_spd, the deterioration of diffusion could occur due to the hindering effect of HA
swelling retaining the release of MEL-P.

All of the prepared formulations provided higher in vitro permeation of the API than
raw MEL-P; the use of PVA in the products seemed to have a distinctly beneficial effect on
the amount of drug diffused under nasal conditions.
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Table 3. Enhancement ratios.

Formulation Enhancement Ratio

HPβCD_MEL-P_spd 3.33
HPβCD_MEL-P_HA_spd 4.68
HPβCD_MEL-P_PVA_spd 7.05

αCD_MEL-P_spd 1.75
αCD_MEL-P_HA_spd 1.61
αCD_MEL-P_PVA_spd 7.60

The flux at 15 min followed a similar tendency as the permeation sequence (Figure 8).
The αCD_MEL-P_PVA_spd tended to diffuse the quickest through the membrane in vitro.

For the ex vivo measurements, the two PVA-containing samples, HPβCD_MEL-
P_PVA_spd and αCD_MEL-P_PVA_spd were tested (Figure 9), because they showed
the best in vitro results. The highest amount of MEL-P permeated from the αCD-based
sample, where 1.47 µg/mm2 MEL-P diffused into the acceptor phase in 60 min. From the
HPβCD_MEL-P_PVA_spd sample, only less than a third of the aforementioned amount of
MEL-P, 0.45 µg/mm2, permeated to the acceptor phase in 60 min. This phenomenon can be
corresponding to the potential higher permeability enhancing effect of αCD than HPβCD
by interacting with membrane phospholipids in the human nasal mucosal cells [45]. These
results corresponded to those of the in vitro measurements.
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3.7. In Vitro Cytotoxicity and IL-6, COX-2, IL-1b Expression

Cytotoxicity measurement revealed that the noncytotoxic concentrations are 1.03 mg/mL
HPβCD_MEL-P_PVA_spd and 0.38 mg/mL αCD_MEL-P_PVA_spd. These results corre-
sponded to the literature data, where a higher tolerable concentration was detected for
HPβCD than αCD [46]. LPS was not cytotoxic to the cells.

RPMI 2650 cells were treated with 1.03 µg/mL HPβCD_MEL-P_PVA_spd and 5 µg/mL
LPS or 0.38 µg/mL αCD_MEL-P_PVA_spd solution and 5 µg/mL LPS or 5 µg/mL LPS or
left untreated. Cells were collected 24 h post-treatment; RNA was extracted, and RT-qPCR
was conducted to check IL-6, COX-2 and IL-1b relative expression. The bar denotes the
mean and the standard deviation of the expression levels for triplicate measurements.
(* p < 0.05, ** p < 0.01, and *** p < 0.001).

Furthermore, we wanted to check the potential anti-inflammatory effect of the com-
pounds. LPS significantly elevated IL-6 relative expression compared to the untreated
group 1.71-fold (Figure 10). LPS also elevated COX-2 (Figure 11) and IL-1b (Figure 12) rela-
tive expression 1.56-fold and 1.585-fold, respectively. All the examined compounds signifi-
cantly decreased IL-6, COX-2 and IL-1b relative expression compared to LPS, HPβCD_MEL-
P_PVA_spd 0.277-fold, 0.28-fold and 0.01-fold, respectively and αCD_MEL-P_PVA_spd
0.307-fold, 0.16-fold, and 0.02-fold, respectively.
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4. Conclusions

In this work, MEL-P-containing particles were prepared by nano spray drying using
HPβCD and αCD as permeability enhancers, and HA and PVA as mucoadhesive excipi-
ents to obtain appropriate formulations for nasal administration. Using these additives,
MEL-P-cyclodextrin and MEL-P-cyclodextrin-polymer nanospheres were formulated to
study the effect of the type of cyclodextrin and the polymer in the composition on the
performance of the samples. The physico-chemical characterization, mucoadhesivity test,
in vitro permeability and cytotoxicity and ex vivo permeability studies were carried out.
In all cases, nanospheres were successfully prepared (average PS <1 µm) while MEL-P was
present in mostly an amorphous state confirmed by DSC and XRPD. Secondary interac-
tions were formed between the API and the cyclodextrins in each product, indicating the
complexation of MEL-P. The PVA-containing samples showed higher mucoadhesivity than
HA-containing ones, and among all the products, αCD_MEL-P_PVA_spd had the potential
highest mucoadhesive property according to our results. The in vitro flux at 15 min was
higher from HPβCD-containing samples than from αCD-containing ones, and except for
the PVA-containing products, the permeation extent from the αCD_MEL-P_PVA_spd was
the highest (209 µg/cm2 in 60 min) among the samples. The presence of HA resulted in
the decrease of in vitro permeation of MEL-P due to the retaining effect of HA swelling,
and meanwhile the presence of PVA caused remarkable increase of the permeation rate in
the case of both cyclodextrins in vitro. The difference between the αCD_MEL-P_PVA_spd
and the HPβCD_MEL-P_PVA_spd samples was more noticeable ex vivo (1.47 µg/mm2

and 0.45 µg/mm2, respectively), which can be due to the higher permeation enhancing
feature of αCD compared to HPβCD on nasal epithelial cells; however, HPβCD_MEL-
P_PVA_spd had a higher tolerable concentration according to the cytotoxicity measurement.
The two aforementioned formulations showed significant (p < 0.001) anti-inflammatory
effect. Overall, αCD_MEL-P_PVA_spd showed the best results of all the products based on
our measurements.

The prepared formulations may be suitable for rapid onset of analgesic effect or as
adjuvants to opioids through the nasal route.
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