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Human T-cell leukaemia virus type 1 (HTLV-1) causes not only adult T-cell

leukaemia-lymphoma (ATL), but also inflammatory diseases including

HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 trans-

mits primarily through cell-to-cell contact, and generates abundant infected

cells in the host in order to survive and transmit to a new host. The result-

ing high proviral load is closely associated with the development of ATL

and inflammatory diseases. To increase the number of infected cells,

HTLV-1 changes the immunophenotype of infected cells, induces prolifer-

ation and inhibits apoptosis through the cooperative actions of two viral

genes, tax and HTLV-1 bZIP factor (HBZ). As a result, infected cells survive,

proliferate and infiltrate into the tissues, which is critical for transmission of

the virus. Thus, the strategy of this virus is indivisibly linked with its patho-

genesis, providing a clue for prevention and treatment of HTLV-1-induced

diseases.

This article is part of the themed issue ‘Human oncogenic viruses’.
1. Introduction
Human T-cell leukaemia virus type 1 (HTLV-1) has a long history in the

human, after interspecies transmission from monkeys. HTLV-1 has a simian

origin called simian T-cell leukaemia virus type 1 (STLV-1). STLV-1 is endemic

in many species of Old-World monkeys and apes. The precise origins of the

ancestors of HTLV-1 now present in humans remain uncertain, i.e. the species

of monkey and the time and place of the putative interspecies transmission.

However, it is thought to be an ancient interspecies transfer [1]. Moreover, inter-

species transmission from monkeys and apes infected by STLV-1 strains are

continuing, at least in Central Africa, as reported in [2]. In this review, we

show how HTLV-1 transmits and survives in vivo, and how the strategy of

the virus is associated with the pathogenesis of malignant and inflammatory

diseases, with a special focus on adult T-cell leukaemia-lymphoma (ATL).
2. The strategy of human T-cell leukaemia virus type 1
One of the most striking characteristics of HTLV-1 is that this virus can transmit

only through cell-to-cell contact [3]. Free virus is not detected in infected individ-

uals, and free virions show very poor infectivity in vitro. Thus, transmission of

this virus needs living infected cells. Infected cells transmit to new hosts through

three routes: breast-feeding, sexual intercourse, and the parenteral route [4].

Therefore, if HTLV-1 can increase the number of infected cells in the host, it

would augment transmission of this virus. Indeed, HTLV-1 generates a high

frequency of infected cells in vivo. For this purpose, HTLV-1-infected cells

need to evade host immune surveillance, promote proliferation and inhibit
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apoptosis. Another important issue for transmission is that

infected cells enter into breast milk and semen for trans-

mission. HTLV-1 has therefore evolved mechanisms to

increase the migratory capacity of infected T cells. These

two broad viral strategies—host cell proliferation and cellular

motility—are closely linked to the pathogenesis of the diseases

caused by this virus [5,6].
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3. Genetic structure and gene products of
human T-cell leukaemia virus type 1

HTLV-1 has a similar structure to other complex retroviruses.

In addition to structural genes (gag, pol and env), it encodes

regulatory genes (tax and rex) and accessory genes ( p12,

p13, p30 and HTLV-1 bZIP factor (HBZ)) [7]. As shown in

figure 1, only HBZ is encoded on the minus strand of the pro-

virus and transcribed from the 30 long terminal repeat (LTR).

Other viral genes are transcribed as sense transcripts from the

50LTR. Transcription from the 50LTR is highly inducible by

Tax, in which CREB and p300/CBP are involved [8]. Whereas

tax is intermittently transcribed in vivo, HBZ undergoes con-

stant expression, in which SP1 is critically involved [9]. JunD

augments HBZ transcription by cooperating with Sp1 [10].

Tax expression is enhanced by removal of CD8þ T cells

in vitro, suggesting that cytotoxic T lymphocytes (CTLs) sup-

press Tax expression in vivo [11]. These different modes of

transcription may be linked with the immunogenicity of

these proteins. Tax is a highly immunogenic protein, whereas

the immunogenicity of HBZ protein is low [12–15]. There-

fore, HTLV-1-infected cells can express HBZ under

immunosurveillance of the host whereas Tax expression is

very restricted.

The tax and HBZ genes are encoded respectively by the

plus and minus strands of the provirus. Transcription of

these genes appears to be reciprocally controlled. In valpro-

ate-treated infected cells with high Tax expression, the HBZ
transcript was suppressed [16]. However, it is thought

that these viral genes cooperate in viral replication and in

proliferation of infected cells.
4. Infection of a new individual: routes of
infection

As noted above, the infectivity of free HTLV-1 virions is very

poor, and HTLV-1 can transmit efficiently only through cell-

to-cell infection [17]. Infected cells form a virological synapse,

allowing efficient transfer of viral particles to uninfected cells,

and leading to de novo infection [3]. Therefore, the routes of

infection are limited to the following three: (i) mother-to-

child, mainly via breast-feeding, (ii) sexual transmission,

and (iii) blood transfusion or parenteral transmission

(figure 2) [7]. In all three routes, transfer of living infected

cells is essential. For transfer of infection through breast

milk, it remains unknown how infected cells pass through

the alimentary tract in the new host. It remains an open ques-

tion whether breast-duct epithelial cells contribute to HTLV-1

transmission in the breast milk [18,19]. The HTLV-1 provirus

is found mainly in effector/memory CD4þ T cells, indicating

that this subpopulation is infected with HTLV-1 [20]. Most T

cells present in breast milk and semen are effector/memory T

cells [21]. Most HBZ-expressing T cells in HBZ transgenic
mice possessed the immunophenotype of effector/memory

T cells, whereas effector/memory T cells were not increased

in tax-transgenic mice [22]. Thus, HBZ changes the immuno-

phenotype of infected T cells, which facilitates transmission

of this virus.
5. Spread of infection
Because primary infection with HTLV-1 is asymptomatic,

there are few data on the rate of propagation of the virus

during the establishment of the proviral load. In three recipi-

ents of organ transplants from an infected donor, the proviral

load in the circulation doubled approximately every 1.4 days

during the first few weeks of infection [23]. It is not known

whether the transient immunosuppressive treatment associ-

ated with transplantation accelerated or decreased the rate

of viral spread in these recipients.

Like other replication-competent exogenous retroviruses,

HTLV-1 can propagate by two routes [24]. First, the inte-

grated provirus is re-expressed, forming enveloped viral

particles, which infect a new cell in which the viral genome

is reverse-transcribed and the resulting double-stranded

DNA is integrated into the host genome. This may be

called the infectious route of replication. HTLV-1 has lost

the need to release cell-free virions from the infected cell:

instead, HTLV-1 spreads almost exclusively by cell-to-cell

contact via a specialized structure called the virological

synapse [3]. The cellular receptors for HTLV-1 are neuro-

pilin-1 [25] and the glucose transporter GLUT-1 [26];

heparan sulfate proteoglycans also increase the efficiency

of HTLV-1 infection [27]. Intercellular transfer of virus at

the virological synapse may occur in pockets isolated

between the two plasma membranes [28] or at the periphery

of the synapse [29]; transfer via cellular conduits has also

been proposed [30].

Second, mitosis of an HTLV-1-infected cell produces two

daughter cells that carry the provirus at the same genomic

site. In contrast to the infectious route of spread described

above, this ‘mitotic’ route involves replication of the provirus

by DNA Pol2, whose nucleotide misincorporation rate is

about 105-fold lower than that of reverse transcriptase. Mito-

tic replication therefore generates much less sequence

diversity than infectious replication.

Integration of the HTLV-1 provirus in the host genome is

not random, but is determined by factors at four successive

physical scales [31]. First, integration predominates in open,

transcriptionally-active chromatin. Second, integration is

favoured within 100 nucleotides of genomic sites that are

bound by certain proteins either directly (STAT1, TP53) or

indirectly (HDAC6, Brg1) [32]. Third, the ubiquitous

enzyme protein phosphatase 2A (PP2A) binds the complex

of HTLV-1 integrase and the viral DNA, and influences the

selection of genomic integration sites [33]. It is likely that,

as in other retroviruses such as HIV-1, certain other host pro-

teins can also bind the pre-integration complex and influence

integration site selection. Fourth, retroviral integration is tar-

geted to a primary DNA sequence motif. This DNA motif has

been believed to be palindromic, but there is recent evidence

that the retroviral intasome recognizes a non-palindromic

motif [34]; the presence of this motif in approximately equal

numbers on both the plus and the minus strands of the

host genome generates a consensus sequence that is
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palindromic. Most naturally-infected T cell clones carry a

single copy of the provirus integrated into the genome [35];

it is unknown what restricts superinfection of cells with

HTLV-1.

HTLV-1 infection drives proliferation of the infected cell,

through the products of the HTLV-1 genes tax and HBZ
(see below), and certain HTLV-1-infected T-cell clones reach

a very high abundance in the circulation. Until recently, it

was believed that a typical HTLV-1-infected host carried

about 100 infected T-cell clones [36], and that the observed

oligoclonal proliferation both maintained persistence of the

virus in vivo and contributed to the pathogenesis of the

inflammatory and malignant diseases associated with

HTLV-1. Recent evidence from high-throughput sequencing

and quantification of HTLV-1 integration sites has changed

this view: the number of HTLV-1-positive T-cell clones in

the circulation in each host is of the order of 104–105 [31],

and it is the clonal diversity, not the degree of oligoclonal pro-

liferation, that correlates with the proviral load [37]. These

observations imply that high clonal diversity, rather than oli-

goclonal proliferation, predisposes to the inflammatory and

malignant diseases caused by HTLV-1.

Both CD4þ and CD8þ T cells are infected by HTLV-1:

about 95% of the proviral load is present in CD4þ T cells,

and 5% in CD8þ T cells [38]. Both CD8þ and CD4þ T cells

are preferentially infected with the virus if they are HTLV-

1-antigen-specific [11,39]. Most cell types can be infected

with HTLV-1 in vitro; small numbers of dendritic cells, mono-

cyte/macrophages and epithelial cells are infected in vivo. It

has been reported that infected dendritic cells and macro-

phages play important roles in propagation of HTLV-1 [40].
6. Human T-cell leukaemia virus type 2
Human T-cell leukaemia virus type 2 (HTLV-2) was discov-

ered in a T-cell line established from a patient with T-cell

variant hairy cell leukaemia [41]. However, an association

between HTLV-2 and leukaemia has not been established,

and it is now thought that HTLV-2 does not cause leukaemia.

HTLV-2 encodes Tax-2, whose sequence is similar to that of

HTLV-1 Tax. In addition, HTLV-2 encodes the antisense
protein of HTLV-2 (APH-2) on the minus strand of the pro-

virus [42]. However, unlike HBZ, APH-2 does not have

growth-promoting activity [43]. HTLV-2 almost exclusively

infects CD8þ T cells in vivo [38], whereas HTLV-1 is present

mainly in CD4þ T cells. However, the precise mechanisms

of cell specificity of HTLV-1 and HTLV-2 remain to be

elucidated.
7. Immune response to human T-cell leukaemia
virus type 1

The immune response to HTLV-1 has been extensively

reviewed elsewhere [44–46], and will be summarized briefly

here.

(a) Host restriction factors
Efficient spread of HTLV-1 virions across the intimate cell–cell

contact in the virological synapse minimizes the ability of

tetherin to inhibit HTLV-1 propagation [47]. The deaminase

APOBEC3G, which plays an important role in restricting lenti-

viral infections, also has activity against HTLV-1. APOBEC3G

can generate nonsense mutations in vivo, but since it targets the

minus strand during reverse transcription, it spares HBZ [48];

the consequent silencing of plus-strand gene products and

sustained HBZ expression may favour viral persistence. Like

HIV-1, HTLV-1 incorporates APOBEC3G into the virion,

but this incorporation is limited by a peptide motif in the

nucleocapsid [49].

SAMHD1, which limits the supply of nucleoside triphos-

phates for virion replication, inhibits HTLV-1 infection of

macrophages [50]. Type 1 interferon has activity against

HTLV-1, but the virus suppresses Type 1 interferon pro-

duction both by inducing the cytokine suppressor SOCS1

[51] and by Tax protein-mediated inhibition of RIG-I and

MDA5 [52]. However, HTLV-1 Tax strongly induces inter-

feron-g production by the infected cell [53], and chronic

stimulation of interferon response genes is associated with

the inflammatory disease HAM/TSP [54].

(b) Lymphocyte response to human T-cell leukaemia
virus type 1

The frequency and activity of NK and NKT-like cells are

abnormally low in HAM/TSP [55–57], but the significance

of this reproducible observation is not understood. The

HLA Class 1-restricted CD8þ CTL plays a dominant role in

host protection in most viral infections, and the CTL response

is an important determinant of the outcome of HTLV-1 infec-

tion. HTLV-1-infected individuals typically have a high

frequency of persistently activated, HTLV-1-specific CTLs in

the circulation; the activated state indicates recent exposure

to newly synthesized viral antigen, and therefore demon-

strates that the virus is persistently expressed in vivo.

Although the Tax protein is highly immunodominant in the

anti-HTLV-1 CTL response, it is the efficacy or ‘quality’ of

the CTL response to the HBZ protein that is associated

with control of the virus in vivo [14]. The class 1 HLA geno-

type of the host, which determines the antigen specificity and

quality of the CTL response, therefore determines the proviral

load and the risk of HAM/TSP [44]; in southern Japan, HLA-

A*02 and Cw*08 are associated with protection against

HAM/TSP, whereas HLA-B*54 is associated with a higher
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risk of the disease [58]. For reasons that are not yet under-

stood, the killer immunoglobulin-like receptor KIR2DL2

enhances both the protective (HLA-A*02) and the pathogenic

(HLA-B*54) HLA Class 1-associated effects in HTLV-1

infection [59].

The frequency of HTLV-1-specific CD4þ T cells is signifi-

cantly higher in patients with HAM/TSP than in

asymptomatic carriers of the virus. CD4þ T cells predominate

in the early, active lesions in the central nervous system in

HAM/TSP [60], and the predominantly Th1 response is

likely to contribute to the pathogenesis of HAM/TSP [54,61].

HTLV-1 Tax protein induces the infected CD4þ T cell to

secrete the chemokine CCL22, which maintains a high fre-

quency of CD4þ Foxp3þ cells in the circulation because

these cells characteristically express the CCL22 receptor,

CCR4 [62]. The regulatory phenotype of the Foxp3þ cells

may diminish the protective effect of the anti-HTLV-1 CTL

response [63]. Although adult T-cell leukaemia cells fre-

quently express Foxp3, ATL is not necessarily a tumour of

regulatory T cells [64,65].
8. Mechanisms of viral persistence in the chronic
phase of infection

(a) Roles of HBZ and Tax in maintaining clonal
longevity and cell turnover

After infection, HTLV-1 increases the proviral load mainly by

driving proliferation of infected cells (mitotic division)

[66,67]. Indeed, inhibitors of reverse transcriptase or integrase

did not change the proviral load in HTLV-1-infected individ-

uals, indicating that de novo infection does not contribute

significantly to the proviral load in the chronic phase [68].
HBZ and Tax play critical roles to maintain clonal longevity.

HBZ perturbs the localization and function of FoxO3a, a criti-

cal transcriptional activator of the genes encoding Bim and

also Fas ligand, which results in inhibited apoptosis [69].

HBZ also interacts with the Rb/E2F-1 complex and promotes

cell cycle progression [70]. Furthermore, HBZ determines the

immunophenotype of infected cells, including ATL cells:

HBZ induces expression on the cell surface of TIGIT and

CCR4 [71,72], which are implicated in the infiltration and

proliferation of HTLV-1-infected cells.

In addition to these functions of HBZ protein, HBZ RNA

possesses functions that are distinct from those of its protein.

HBZ RNA is more strongly retained in the nucleus than the

other viral gene transcripts. HBZ RNA inhibits apoptosis,

and promotes proliferation of expressing cells [73,74]. These

mechanisms could reduce production of HBZ protein,

which is recognized by the host immune system.

Tax strongly activates NFkB, which leads to expression of

the anti-apoptotic gene c-FLIP [75,76] and genes associated

with cell cycling including cyclin D2, cyclin E, E2F1, CDK2,

CDK4 and CDK6 [77]. In addition, Tax promotes cell prolifer-

ation and cell cycling through activation of the PI3 K/Akt

pathway [78]. Thus, Tax also inhibits apoptosis and promotes

cell proliferation. The function of Tax is impaired by tran-

scription factors in the classical Wnt pathway, TCF-1/

LEF-1, in the thymus [79]. However, expression of TCF-1/

LEF-1 is suppressed in effector/memory T cells, indicating

that Tax can function in these cells, so enabling HTLV-1 to

persist in peripheral effector/memory T cells in vivo.
(b) Regulation of proviral latency in vivo
The HBZ gene is persistently expressed at a low level in

most—if not all—infected cells in vivo [73]. The plus-strand
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products are usually undetectable in freshly isolated periph-

eral blood mononuclear cells (PBMCs) but, as noted above,

the persistently activated CTL response to Tax, Pol and Gag

indicates that these antigens are frequently expressed

in vivo. It is unknown what regulates this differential expression

of plus and minus strands and, in particular, the frequency,

intensity and duration of what are presumably bursts of

plus-strand expression.

Taniguchi et al. [80] showed that DNA methylation might

explain the proviral silencing in vivo, but they also observed

an unexplained border in the methylation in the pX region

of the provirus. It has now been shown [81] that CTCF, the

key chromatin architectural protein and insulator-binding

protein, binds to the provirus at its epigenetic border, at

which the pattern of several other epigenetic marks also

changes. It is possible that CTCF binding, which may be

reversible, allows temporary silencing of plus-strand

expression at the same time as persistent negative-strand

(HBZ) expression. Another major function of CTCF is to

form chromatin loops, both to organize the chromatin struc-

ture and to bring enhancers near their cognate promoters.

The abnormal CTCF-binding site present in the HTLV-1 pro-

virus can indeed form loops with flanking host chromatin

[81]; this looping may contribute to leukaemogenesis by

allowing LTR-mediated activation of host genes (see below).

The genomic integration site influences the expression of

the provirus, and consequently each infected T-cell clone

will have its own characteristics of proviral expression. Two

chief specific features of the integration site are associated

with the regulation of plus-strand expression [32]. First,

proximity (within 100 base pairs) to certain transcription fac-

tors that bind to chromatin either directly (STAT1, P53) or

indirectly (HDAC6, BRG1). The mechanistic explanation for

these observations is not yet known. Second, the orientation

of the provirus relative to the transcriptional orientation of

the nearest host gene. The presence of a host promoter in

the same transcriptional sense upstream of the 50LTR is

associated with transcriptional silencing of the HTLV-1 plus

strand, whereas a host promoter upstream of the 30LTR (in

the same sense as the proviral negative strand) is associated

with activation of plus-strand expression. These observations

suggest that transcriptional interference plays a part in

regulating HTLV-1 proviral latency.

Two central questions remain in the regulation of HTLV-1

proviral latency. First, what causes (or allows) the rapid spon-

taneous transcriptional activation of the provirus when PBMCs

are taken ex vivo? The answer to this question will illuminate

the mechanisms that maintain plus-strand latency in vivo.

Second, what are the molecular mechanisms that give rise to

cell-to-cell heterogeneity in proviral expression, and what is

the importance of this heterogeneity in viral persistence?

(c) Structure and dynamics of human T-cell leukaemia
virus type 1 clonality in vivo

It was formerly believed that a typical host possessed about

100 clones of HTLV-1-infected T cells [36], and that the

most abundant (‘oligoclonally expanded’) clones accounted

for the Tax expression, the high proviral load and the

HTLV-1-associated diseases [82,83]. However, quantitative

high-throughput analysis has revealed a very different pic-

ture. The number of clones carried by each host is usually

between 104 and 105 (ranging from 103 to 106). It is the
large number of low-abundance clones that constitute the

high proviral load [37]: these clones frequently express Tax,

and turn over rapidly in vivo.

The current picture of HTLV-1 clonality is depicted sche-

matically in figure 3. We postulate that constant pressure

exerted by the host immune response limits infectious spread

during the chronic phase of infection, and selects for persist-

ence of clones with an optimal pattern of proviral expression.

This optimal pattern consists of minimal but persistent HBZ

expression, and bursts of plus-strand expression that may be

driven by cellular stress, such as when lymphocytes are trans-

ferred between individuals, to promote viral transmission. The

CTL response to the HBZ protein limits the proviral load;

the virus minimizes the effect of this force by restricting the

expression and the translation of HBZ mRNA and the immu-

nogenicity of the HBZ protein. Once the proviral load

set-point (quasi-equilibrium) is reached, the rate of establish-

ment of new long-lived clones is likely to be restricted by the

CTL response to HBZ, Tax and other viral antigens, and by

competition for resources with pre-existing clones.
9. Mechanisms of oncogenesis
For many years, the Tax protein was believed to be necessary

and sufficient to cause malignant transformation of HTLV-1-

infected cells. Transduction of Tax-expressing vectors can

immortalize T cells in vitro [91,92], and transgenic expression

of Tax induced cancers in vivo. However, the cell type of the

cancer caused by Tax depended on the promoter. Tax

expression by the granzyme B promoter induced a tumour

of NK cells [93], whereas pX expression driven by the

H-2Kd promoter caused breast cancers [94]. Thus, these

findings indicate that high or persistent expression of Tax is

oncogenic. However, several more recent lines of evidence

suggest that, in natural HTLV-1 infection, HBZ rather than

Tax is the critical element in HTLV-1 oncogenesis.

The most direct evidence of HTLV-1 infection in ATL cells

is the presence of the monoclonally integrated provirus.

Therefore, analysis of the structure and genomic integration

site of HTLV-1 proviruses in ATL cells can provide critical

clues on leukaemogenesis by HTLV-1. Studies of HTLV-1

proviruses and transcripts of viral genes showed that ATL

cells do not express Tax in approximately half the cases of

ATL. There are three known mechanisms to inactivate Tax

expression: (i) nonsense mutations of the tax gene, (ii) DNA

methylation of the 50LTR, and (iii) deletion of the 50LTR.

However, HBZ is expressed in all ATL cases, suggesting

that HBZ is indispensable. DNA methylation of the 50LTR

accumulates during the natural course of infection, which

finally silences transcription of the sense strand from the

50LTR [95]. However, DNA methylation does not extend to

the pX region and the 30LTR [80], which is critical for HBZ
transcription. Recently, a CTCF-binding region was found

in the pX region, which may account for the arrest of DNA

methylation before pX and 30LTR, and ensure continued

HBZ expression [81]. Furthermore, the malignant clone in

some cases of ATL contains a defective provirus that lacks

the 50LTR (type 2 defective provirus) which is generated

before genomic integration of the provirus [96]. The lack of

the 50LTR precludes expression of Tax in some cases.

Nonsense mutations of the tax gene were found in

approximately 10% of ATL cases. There is a hotspot of
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the virus spreads rapidly by cell-to-cell contact through the virological
synapse; the number of clones of infected T lymphocytes typically rises to
104 to 105 when the proviral load set-point is reached, after approximately
one to two months [23,89]. In the chronic phase of infection, CTLs restrict
this infectious mode of spread [44], and the proviral load is maintained
by continued proliferation of existing clones. In this phase, there is a
quasi-equilibrium between viral propagation and the host immune response;
while the proviral load remains approximately constant, the abundant clones
grow in abundance and the low-abundance clones shrink, leading to a pro-
gressive rise in the oligoclonality index [37]. The abundant clones appear to
last for the lifetime of the host [37]. During chronic infection the abundant,
persistently activated anti-Tax CTL response demonstrates that Tax expression
is frequent in vivo [45]. Since Tax expression is normally undetectable in fresh
PBMCs, we infer that Tax expression is intermittent in vivo. Virus-specific CTLs
may persist during active ATL; it remains to be tested whether boosting the
CTL response can be used as an adjunct to therapy. Constant cell division
leads to the accumulation of replicative mutations, which increase the prob-
ability of malignant transformation [90]. ATL usually arises after 4 – 6 decades
of infection, and so is more frequent in individuals infected during childhood.
The risk of ATL may also be correlated with the proviral load, which in turn is
correlated with the number of HTLV-1-infected T-cell clones, not with the
degree of oligoclonality [37].

ATL (ca 5% of individuals)
genetic and epigenetic

alterations

HBZ

tax

expression of viral genes

HBZ

Tax

CCR4 expression mutated CCR4 (ca 20%)
gain-of-function

NFkB activation enhanced miR31 expression
NFkB activation

time
(years)

time
(years)

=
= =

== =

=

= = =

=

(a)

(b)

(c)

Figure 4. Leukaemogenesis by viral genes, genetic and epigenetic altera-
tions. About 5% of HTLV-1-infected individuals develop ATL after a long
latent period. (a) Tax and HBZ play critical roles in leukaemogenesis by
HTLV-1. HBZ is constantly expressed while the tax gene is sporadically tran-
scribed. Tax and HBZ modulate the immunophenotype of ATL cells, inhibit
apoptosis and promote proliferation. HBZ is expressed in all ATL cases
while tax is not expressed in approximately half of ATL cases. (b) Subsequent
genetic and epigenetic alterations that accumulate during the long lifetime of
the infected clone fix or potentiate these phenotypic and functional changes.
(c) For example, HBZ induces CCR4 expression, which leads to increased
migration and proliferation of infected cells. Gain-of-function mutations of
CCR4 were found in approximately 20% of ATL cases. Similarly, Tax strongly
activates NFkB. Increased miR31 expression leads to NFkB activation in the
absence of Tax.
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nonsense mutations in the HTLV-1 provirus in a target

sequence of APOBEC3G [48], suggesting that these nonsense

mutations are generated by APOBEC3G during reverse tran-

scription. Furthermore, this nonsense mutation of the tax
gene was found in some asymptomatic carriers [48]. These

findings demonstrate that nonsense mutations are generated

before infection, and HTLV-1-infected cells carrying a non-

sense mutation in the tax gene can transform to ATL cells,

suggesting that HBZ plays critical roles in oncogenesis.

A long latent period is necessary before onset of ATL,

suggesting that multiple genetic and epigenetic alterations

are needed for ATL (figure 4). Recently, extensive studies of

genomes in ATL cells revealed the landscape of genetic and

epigenetic changes [84]. Interestingly, genetic alterations

accumulated in the genes associated with pathways that

Tax and HBZ target. These findings suggest the following

scenario. HTLV-1-infected clones persist and proliferate
in vivo through the actions of HBZ and Tax during asympto-

matic carriage of the virus. Thereafter, genetic and epigenetic

alterations fix or potentiate these changes. For example, HBZ

induces CCR4 expression [72]. Gain-of-function mutations of

the CCR4 gene are associated with proliferation and infiltra-

tion of ATL cells (figure 4) [84,85]. Furthermore, Tax strongly

activates the NFkB pathway. Expression of miR31 enhances

NFkB in ATL cells even in the absence of Tax [97]. These tar-

gets of viral proteins and mutations are important for therapy

in ATL.
10. Strategies to prevent and treat adult T-cell
leukaemia-lymphoma

(a) Current approaches to management of adult T-cell
leukaemia-lymphoma

There are four subtypes of ATL according to clinical criteria:

acute, lymphoma-type, chronic and smouldering types [98].

In general, patients with acute, lymphoma-type or unfavour-

able chronic type ATL are treated, whereas patients with

typical chronic or smouldering ATL are carefully observed.

ATL patients are usually treated with combination chemo-

therapy including VCAP-AMP-VECP (also known as

LSG15) therapy, or CHOP therapy. However, the prognosis

of these patients remains poor despite intensive chemother-

apy. On the other hand, some patients who received

haematopoietic stem cell transplantation have achieved

long-term survival [99]. It has been reported that anti-viral

immunity was enhanced in these patients, which suggests
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the use of immunotherapy as an adjunct to the treatment of

ATL [100].

It has been reported that sustained treatment with azi-

dothymidine (AZT) plus interferon-a can be effective in

cases of ATL of the leukaemic types, but is less effective

in the lymphoma type [101]. Although AZT is a reverse

transcriptase inhibitor, the combination of AZT with inter-

feron-a does not impair HTLV-1 replication; this therapy

acts through a mechanism other than anti-viral activity

[102] that is not yet understood. Combination therapy using

arsenic trioxide, interferon-a and zidovudine was reported

to be effective in chronic ATL patients [103].

Most HTLV-1 infected cells and ATL cells express the che-

mokine receptor CCR4 on their surfaces [104]. CCR4

expression is implicated in migration and proliferation of T

cells. Recently, it has been reported that HBZ induces CCR4

expression through enhanced GATA3 transcription [72]. An

anti-CCR4 monoclonal antibody, mogamulizumab, has been

developed for treatment of ATL patients [105]. Antibody-

dependent cell-mediated cytotoxicity (ADCC) is thought to

be a major mechanism by which this antibody strongly sup-

presses ATL in vivo [106]. CCR4 is also expressed on active

regulatory T (Treg) cells [107]. After administration of moga-

mulizumab, ATL cells were suppressed by ADCC exerted

by NK cells. At the same time, anti-Tax and anti-HBZ CTLs

were activated in these patients, which possibly suppress

proliferation of ATL cells [108]. Thus, the anti-CCR4

antibody exerts dual beneficial functions in vivo, which may

account for the prolonged suppressive effect of this antibody

on ATL cells.
(b) Possible future approaches to management of adult
T-cell leukaemia-lymphoma

As discussed above, HTLV-1 persists in vivo during chronic

infection mainly by sustained proliferation of infected cells.

The high resulting proviral load is also critical in the trans-

mission of the virus, which requires transfer of infected

cells to the new host. Therefore, a logical strategy to prevent

ATL is to reduce the number of infected cells. Immune

responses, primarily CTLs, strongly suppress proliferation

of ATL cells and HTLV-1-infected cells. Thus, vaccines

against Tax and HBZ might be effective in preventing

HTLV-1-associated diseases. In addition, the recent genetic

and epigenetic analyses of ATL cells reveal critical pathways

and molecules for ATL. Therapy targeted to these pathways

might improve the prognosis of this intractable disease.
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