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Abstract: Melanosomes are melanocyte-specific organelles that protect cells from ultraviolet (UV)-
induced deoxyribonucleic acid damage through the production and accumulation of melanin and are
transferred from melanocytes to keratinocytes. The relatively well-known process by which melanin
is synthesized from melanocytes is known as melanogenesis. The relationship between melanogenesis
and autophagy is attracting the attention of researchers because proteins associated with autophagy,
such as WD repeat domain phosphoinositide-interacting protein 1, microtubule-associated protein
1 light chain 3, autophagy-related (ATG)7, ATG4, beclin-1, and UV-radiation resistance-associated
gene, contribute to the melanogenesis signaling pathway. Additionally, there are reports that some
compounds used as whitening cosmetics materials induce skin depigmentation through autophagy.
Thus, the possibility that autophagy is involved in the removal of melanin has been suggested. To
date, however, there is a lack of data on melanosome autophagy and its underlying mechanism. This
review highlights the importance of autophagy in melanin homeostasis by providing an overview
of melanogenesis, autophagy, the autophagy machinery involved in melanogenesis, and natural
compounds that induce autophagy-mediated depigmentation.
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1. Introduction

The process by which melanin, the pigment of the skin, is synthesized in melanocytes
is known as melanogenesis [1,2]. Melanogenesis is induced via various internal or external
factors, such as aging, hormonal changes, and ultraviolet (UV) B-mediated skin irritation,
and uncontrolled melanogenesis causes hyperpigmentation of the skin, which leads to skin
effects such as melasma, freckles, age spots, and dark spots [3,4]. The melanosome is a
melanocyte-specific lysosome-related organelle in which melanin pigment is synthesized
and stored [5], and melanosomes are transferred from melanocytes to keratinocytes [6].
Conversely, the hypopigmentation that occurs in vitiligo is usually a result of inflammation
caused by skin stress or due to other causes, including innervation, microvascular malfor-
mation, degeneration of melanocytes by oxidative stress, adhesion defects of melanocytes,
somatic mosaic, and genetic influences [5,7–13].

Particularly, researchers have proposed that autophagy may play a role in redox stress-
related vitiligo [14,15]. Impairment of autophagy may disrupt the antioxidant defense
system, causing oxidative damage to melanocytes. Autophagy is a highly conserved cel-
lular degradation and recycling process in all eukaryotes, and three types of autophagy
occur in mammalian cells: microautophagy, macroautophagy, and chaperone-mediated
autophagy. Although each type is morphologically distinct, all three have in common the
delivery of cargo to lysosomes for degradation and recycling [16]. Among these three au-
tophagy types, macroautophagy has been well-studied and is known to play an important
role in maintaining intracellular homeostasis by inducing the degradation of cytoplasmic
substances or metabolites under stress conditions, e.g., nutrient or energy deprivation, and
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decomposition of damaged or unnecessary organelles [16,17]. Interestingly, some research
has shown that autophagy is an important factor in determining skin color. Caucasian
skin-derived keratinocytes exhibit higher autophagic activity than those derived from
African-American skin, and the accumulation of melanosomes is known to be accelerated
via treatment with lysosomal inhibitors or small interfering ribonucleic acids specific to
autophagy-associated proteins [18]. Additionally, various studies have provided evidence
that the autophagy machinery may regulate melanogenesis.

In this review, we discuss the signal transduction pathways that induce melanogenesis,
the relationship between the autophagy machinery and melanogenesis, and autophagy-
inducing skin whitening materials.

2. Signal Transduction Pathways That Induce Melanogenesis

The synthesis of melanin in melanosomes is the result of complex pathways involving
enzyme reactions. Tyrosinase (TYR), tyrosine-related protein-1 (TRP-1), and TRP-2 are
mainly involved in enzyme reactions that transform tyrosine to melanin pigments [19].
Figure 1 illustrates common signaling pathways inducing melanogenesis.

Cells 2022, 11, 2085 3 of 13 
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important roles in the formation and maturation of melanosomes as well as melanin synthesis. The 
continuous reaction of enzymatic proteins (e.g., TYR and TRP-1/2) and structural proteins (e.g., 
Pmel17) leads to melanogenesis in melanosomes wherein melanin pigments are synthesized and 
stored. DVL, Disheveled; Go/Gq, main families of G proteins. 

3. Autophagy 
Starvation is a representative type of stress that induces macroautophagy, which oc-

curs through sequential events involving initiation, nucleation, elongation and substrate 
selection, fusion of the autophagosome and lysosome, and lysosomal degradation [47,48]. 
During cell starvation, the lack of nutrients increases cellular 5′-adenosine monophos-
phate (AMP) levels. The ratio of AMP to ATP leads to AMP-activated protein kinase 
(AMPK) activation and inactivation of the target of the rapamycin complex 1 (mTORC1) 
[16,49], resulting in the activation of an autophagy-initiation complex containing FIP200, 
ULK1, autophagy-related (ATG)101, and ATG13 [50]. Under rapamycin treatment or star-
vation, mTORC1 is dissociated from the initiation complex, ATG13 and ULK1/2 become 
partially dephosphorylated, and autophagy is induced [51,52]. Phagophore nucleation is 
triggered upon phosphatidylinositol 3-phosphate (PI3P) generation by a complex with 
class III PI3K activity consisting of VPS34, VPS15, beclin-1, AMBRA1, and/or UV-radiation 
resistance-associated gene (UVRAG) along with the recruitment of vesicles containing 
ATG9 [53–57]. Elongation of phagophores formed with the support of WD repeat domain 
phosphoinositide-interacting protein (WIPI) includes two ubiquitin-like conjugation sys-
tems. ATG7 and ATG10 operate sequentially to catalyze the formation of the ATG12–
ATG5:ATG16L1 complex. ATG4, ATG7, and ATG3 function together to cut the precursors 
of microtubule-associated protein 1 light chain 3 (LC3)-like proteins into their mature 
forms, after which they bond to phosphatidylethanolamine to generate LC3II-B, which is 
recruited and integrated into growing phagophores in an Atg5–Atg12:ATG16L1-

Figure 1. Signaling pathways that induce melanogenesis. Three representative signaling pathways,
including MC1R-mediated signaling, SCF/c-KIT signaling, and Wnt signaling, are involved in
melanogenesis. Expression and activation of MITF induce the expression of various proteins that
play important roles in the formation and maturation of melanosomes as well as melanin synthesis.
The continuous reaction of enzymatic proteins (e.g., TYR and TRP-1/2) and structural proteins (e.g.,
Pmel17) leads to melanogenesis in melanosomes wherein melanin pigments are synthesized and
stored. DVL, Disheveled; Go/Gq, main families of G proteins.

Melanogenesis can be induced by various factors, including adrenocorticotropic hor-
mone (ACTH) [20], α-melanocyte-stimulating hormone (α-MSH) [21,22], and stem cell fac-
tor (SCF) [23,24]. These factors induce melanogenesis through microphthalmia-associated
transcription factor (MITF) expression and activation, which in turn induces the expres-
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sion of pigment-related genes, such as TYR, TRP-1, TRP-2, and premelanosome protein
(PMEL) [25]. Melanocortin 1 receptor (MC1R) is expressed in melanocytes in the plasma
membrane, and ACTH and α-MSH are the ligands of MC1R [26]. MC1R-mediated signal-
ing induces adenosine 3′,5′-cyclic monophosphate (cAMP), which activates PKA [27–29].
Activated PKA translocates into the nucleus and phosphorylates cAMP-response element-
binding protein (CREB) [30]. CREB co-operates with SOX10 to induce MITF expression,
resulting in the expression of pigment-related genes [31,32]. The binding of SCF to its
receptor, tyrosine-protein kinase kit (c-KIT), initiates mitogen-activated protein kinase
(MAPK) cascades that induce melanogenesis [33]. Autophosphorylated c-KIT activates p38
MAPK, resulting in CREB phosphorylation and sequential MITF activation [34–36]. The
SCF/c-KIT pathway also activates extracellular signal-regulated kinase (ERK), inducing
CREB phosphorylation for melanogenesis, whereas Ser73 phosphorylation of MITF via ERK
leads to proteasomal degradation of MITF [37,38]. Furthermore, the SCF/c-KIT pathway is
associated with phosphoinositide 3-kinase (PI3K) signaling that leads to glycogen synthase
kinase-3 β (GSK3β) inactivation, which contributes to increasing the stability of β-catenin
operating as a cofactor for MITF [39,40]. Wnt signaling is also a representative signaling
pathway that contributes to β-catenin stability and plays a role in melanogenesis [41–45].
Frizzled-1 as a receptor for Wnt couples via G proteins, Go and Gq, and Dvl to activate
β-catenin [46].

3. Autophagy

Starvation is a representative type of stress that induces macroautophagy, which oc-
curs through sequential events involving initiation, nucleation, elongation and substrate
selection, fusion of the autophagosome and lysosome, and lysosomal degradation [47,48].
During cell starvation, the lack of nutrients increases cellular 5′-adenosine monophosphate
(AMP) levels. The ratio of AMP to ATP leads to AMP-activated protein kinase (AMPK)
activation and inactivation of the target of the rapamycin complex 1 (mTORC1) [16,49],
resulting in the activation of an autophagy-initiation complex containing FIP200, ULK1,
autophagy-related (ATG)101, and ATG13 [50]. Under rapamycin treatment or starvation,
mTORC1 is dissociated from the initiation complex, ATG13 and ULK1/2 become par-
tially dephosphorylated, and autophagy is induced [51,52]. Phagophore nucleation is
triggered upon phosphatidylinositol 3-phosphate (PI3P) generation by a complex with
class III PI3K activity consisting of VPS34, VPS15, beclin-1, AMBRA1, and/or UV-radiation
resistance-associated gene (UVRAG) along with the recruitment of vesicles containing
ATG9 [53–57]. Elongation of phagophores formed with the support of WD repeat do-
main phosphoinositide-interacting protein (WIPI) includes two ubiquitin-like conjugation
systems. ATG7 and ATG10 operate sequentially to catalyze the formation of the ATG12–
ATG5:ATG16L1 complex. ATG4, ATG7, and ATG3 function together to cut the precursors
of microtubule-associated protein 1 light chain 3 (LC3)-like proteins into their mature
forms, after which they bond to phosphatidylethanolamine to generate LC3II-B, which is
recruited and integrated into growing phagophores in an Atg5–Atg12:ATG16L1-dependent
manner [58–62]. Cargo and/or cargo-selective proteins allow the formation of autophago-
somes by binding to LC3 and LC3 homologs. Selective autophagy that degrades specific
cargoes has also been reported, although autophagy induced by starvation is nonselec-
tive. Various cargo-selective proteins, also known as autophagy receptors, recognize the
ubiquitinated cargoes and mediate autophagosome formation by surrounding the cargoes
through LC3II-B binding on phagophores [63]. After complete fusion of the extended ends
of the phagophore membrane, the formed autophagosomes fuse with lysosomes to form
autolysosomes, in which substrate degradation is mediated through luminal acidification
and lysosomal hydrolases. Figure 2 illustrates the representative common autophagy
process.
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Figure 2. The most common autophagy process. Under nutrient-deficient conditions, increased
AMP levels induce AMPK activation and AMPK-mediated activation of ULK1 complex (FIP200–
ULK1–ATG13-ATG101). The ULK1 complex phosphorylates beclin-1, enabling the formation of
the class III PI3K complex (VPS34–beclin-1–ATG14L). WIPI1/2 are recruited at the phagophore
nucleation site by binding with PI3P, which is generated by the class III PI3K complex. ATG4 protease
cleaves the C-terminal end of LC3B to expose glycine (LC3B-I). LC3B-I is then incorporated into the
phagophore nucleation membrane through lipidation with phosphatidylethanolamine (LC3B-II) via
sequential interactions with ATG7, ATG3, and the ATG12–ATG5:ATG16L complex. The LC3B-II-
positive phagophore is then elongated and forms an autophagosome. While elongated, the random
cytosolic contents are captured in the autophagosome and degraded after the autophagosome matures
to an autolysosome.

4. Autophagy Machinery That Regulates Melanogenesis

Melanogenesis in pigment cells proceeds in three stages: (1) melanogenic gene expres-
sion, (2) melanosome biogenesis and maturation, and (3) melanosome migration to the
cell tip. Studies have indicated that autophagy machinery proteins may be involved in
melanogenesis regulation (Figure 3) [64].

MITF, a master regulator of melanogenesis, plays an important role in melanogenesis
stage 1 (i.e., the melanogenesis gene expression stage). MITF induces the expression of vari-
ous genes involved in melanogenesis, such as TYR, TRP-1, TRP-2, and PMEL [65–67]. ATG7,
a critical gene associated with LC3 lipidation, might also be involved in melanogenesis [68].
Knockdown of ATG7 in natural human epidermal melanocytes decreased the MITF expres-
sion level and reduced melanin accumulation in the cells, whereas overexpression of ATG7
increased MITF expression [69]. Additionally, tail skin pigmentation in ATG7f/fTyr:Cre
mice was consistently lower than that in ATG7f/f mice [70]. In Melan-a cells, knockdown of
LC3 decreased ERK activity, which suppressed α-MSH-mediated melanogenesis by attenu-
ating phosphorylation of CREB and MITF expression [71]. Moreover, mice heterozygous
for beclin-1, a scaffold protein in the class III PI3K complex, showed mislocalization of
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MITF-nucleus, resulting in depigmentation in MNT-1 cells in relation to coat color [64],
and the embryos of beclin-1-depleted zebrafish showed almost 50% lower melanin levels
compared with those in control embryos. Transactional downregulation of both TYR and
TRP-1 was also shown in beclin-1-depleted zebrafish [72]. WIPI1 has been reported to
bind with phosphoatidylinositol-3 phosphate in the early stage autophagosome to recruit
the ATG12–ATG5:ATG16L complex and elongate the autophagosome membrane [73]. In
MNT-1 cells, WIPI1 induces AKT activation through activation of mTORC2, which results
in the inactivation of GSK3β. WIPI1-mediated GSK3β inactivation increases β-catenin
stability, which in turn induces MITF expression [74]. However, it has been suggested that
ULK1, which contributes to autophagy through the activation of the class III PI3K complex,
plays a role in inhibiting melanin synthesis. In one study, ULK1 knockdown in MNT-1 cells
increased MITF expression, resulting in upregulation of melanogenesis (Figure 3a) [75].
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is regulated by WIPI1, LC3B-II, and ATG7. WIPI1 increases MITF expression through upregulation
of β-catenin stability via GSK3β inhibition. LC3B-II induces ERK activation, and ERK increases
MITF expression via phosphorylating CREB, whereas ATG7 and beclin-1 are positively related to
MITF expression and MITF transcription activity, respectively, and ULK1 plays a negative role in
melanogenesis. However, the precise mechanisms underlying these processes remain unclear. (b) In
step 2, the melanosome biogenesis, UVRAG interacts with the BLOC-1 complex and upregulates its
protein stability. (c) In step 3, the melanosome movement, LC3B is incorporated into the melanosomal
membrane via cleavage through ATG4. LC3B on the melanosomal membrane mediates melanosome–
microtubule interactions to facilitate melanosome movement to the cell tip. Before the transfer of
the melanosome to an actin filament, lipidated LC3B on the melanosomal membrane is removed via
ATG4 protease.

Numerous proteins are involved in melanogenesis stage II, i.e., the melanosome
biogenesis and maturation stage, including adaptor protein (AP)-1, AP-2, biogenesis
of lysosome-related organelle complex (BLOC)-1, BLOC-2, BLOC-3, and various Rab
GTPases [76–80]. UVRAG, identified as a beclin-1-binding autophagy-associated pro-
tein [81,82], has specialized functions in melanosome biosynthesis through its interaction
with BLOC-1. UVRAG facilitates the classification and delivery of melanogenic cargoes
by maintaining the localization and stability of BLOC-1. When UVRAG levels are re-
duced, cells do not respond to UVR–α-MSH–MITF signaling and melanocyte development
becomes defective in vivo (Figure 3b) [83].

At melanogenesis stage III (i.e., melanosome movement toward the cell tip), the
melanosome should move from the perinucleus to the tip of melanocytes and transfer
to keratinocytes, after which the transferred melanosome plays a protective role against
UV-mediated DNA damage [6]. It has been proposed that autophagic proteins, such
as LC3B and ATG4, mediate melanosome trafficking in the cytoskeletal track [84]. In
LC3B-knockdown B16 cells, melanosomes do not interact with microtubules and remain
at the perinuclear site. LC3B lipidation and delipidation were mediated by ATG4B, and
the LC3BII delipidation activity of ATG4B was critical for melanosome separation from
microtubules to actin filaments (Figure 3c).

5. Autophagy Inducers That Induce Skin Depigmentation

While autophagy-associated proteins have been reported to play critical roles in
melanogenesis in many studies, some reports suggest that autophagy-inducing agents
are involved in skin depigmentation. Autophagy activity in Caucasian melanocytes was
higher than that in African-American melanocytes, and decreased autophagy was shown
in hyperpigmented skin, such as that in senile lentigo [18,85]. A lysosomal protease,
cathepsin L, was found to be involved in melanosome degradation in melanocytes through
autophagosome–lysosome fusion [86]. Some studies suggest that autophagy inducers
might induce melanosome degradation in an autophagy-dependent manner (Table 1).
The listed autophagy inducer-mediated depigmentation is inhibited by knockdown of
autophagy essential genes, such as ATG5 [87–90], ATG7 [91], and LC3 [92], or treatment
with autophagy inhibitors, such as 3-MA [88,92–95], hydroxychloroquine [96], bafilomycin
A1 [89], and chloroquine [97]. For example, β-mangostin cannot induce autophagy in
B16F10 cells, but it induces depigmentation through autophagy-mediated melanosome
degradation in pigmented B16F10 cells via α-MSH stimulation, and the depigmentation
is inhibited by ATG5 knockdown or 3-MA treatment [88]. Although many autophagy
machinery components are associated with melanogenesis, the degradation of existing
melanosomes might be induced by autophagy. To date, the studies on agents that induce
autophagy-associated skin discoloration are limited to the inhibition of depigmentation by
either autophagy-associated gene knockdown or the use of autophagy inhibitors, and the
molecular mechanisms underlying melanosome-targeted autophagy are yet to be clarified.



Cells 2022, 11, 2085 7 of 12

Table 1. Agents that induce skin depigmentation in an autophagy-dependent manner.

Agent/Stimulation Reported Finding Ref.

ARP101
ATG5 knockdown inhibited the antimelanogenic effect of ARP101.
Electron microscopy analysis showed that autophagosomes engulf

melanosomes.
[87]

Ellagic acid (EA) 3-MA treatment or LC3 silencing significantly reduced EA-induced
antimelanogenic activity in B16F10 cells. [92]

3-O-Glyceryl-2-O-hexyl ascorbate
(VC-HG)

VC-HG activates autophagy, and VC-HG-mediated depigmentation is
partially inhibited by autophagy inhibitors, namely

hydroxychloroquine or pepstatin A, in B16 cells.
[96]

3′-Hydroxydaidzein (3′-ODI)
3′-ODI significantly reduced α-MSH-mediated melanogenesis, and the

inhibition of autophagy significantly reduced the antimelanogenic
effects of 3′-ODI in α-MSH-stimulated melanoma cells.

[93]

Isoliquiritigenin
Autophagy inhibition via si-ATG7 or 3-MA treatment decreased LC3 II

protein levels and increased PMEL17, p62, and melanin levels in
HaCaT cells.

[91]

β-mangostin

Melanosome-engulfing autophagosomes were observed via
transmission electron microscopy. Previously formed melanin could be
degraded effectively in an autophagy-dependent manner, which was

inhibited by ATG5 knockdown or 3-MA treatment in
β-mangostin-treated B16F10 cells.

[88]

Melasolv

Melasolv suppressed the accumulation of melanin content and induced
autophagy.

ATG5 knockdown or bafilomycin A1 treatment suppressed
melasolv-mediated depigmentation in B16F1 cells.

[89]

5-Methyl-3-tetradecylidene-dihydro-furan-2-
one

(DMF02)

DMF02 induced melanosome degradation via autophagy in vitro, and
this degradation was inhibited by a lysosomal inhibitor, chloroquine, in

B16F10 cells.
[97]

Patrinia villosa (Thunb.) Juss extract (Pv-EE) Pv-EE induced autophagy, and the Pv-EE-mediated antimelanogenic
effect was inhibited by 3-MA in B16F10 cells. [94]

PTPD-12 PTPD-12 induced melanosome degradation through stimulation of
autophagic flux in human melanocytes and keratinocytes. [98]

Radiofrequency (RF) irradiation

RF irradiation upregulated autophagy-initiation factors, such as FIP200,
ULK1, ULK2, ATG13, and ATG101, in the skin. Beclin-1 expression and

the expression ratio of LC3-I to LC3-II increased with UV-B/RF
irradiation, and melanin-containing autophagosome levels increased

with RF irradiation.

[99]

Resveratrol (RSV) ATG5 knockdown significantly suppressed RSV-mediated
antimelanogenesis as well as RSV-induced autophagy in Melan-A cells. [90]

Schaftoside
Schaftoside treatment had an antimelanogenic effect and induced

autophagy activation in B16F1 cells, and 3-MA treatment reduced the
antimelanogenic effect via schaftoside in B16F1 cells.

[95]

Tranexamic acid (TXA) TXA reduced melanin accumulation by activating ERK signaling and
the autophagy system. [100]

6. Conclusions and Outlook

In skin pigmentation homeostasis, the balance between melanogenesis and melanosome
degradation is likely important. Although the melanogenesis pathway has been well-
studied, and proteins that play roles in autophagy are known to be involved in melanogen-
esis, autophagy by starvation does not induce melanogenesis [74], and ATG7-dependent
autophagy activity has little effect on melanogenesis [70]. Melanogenesis is a process
leading to the synthesis of melanin in melanosome including melanosome formation, and
autophagy is a process degrading cellular components. Strangely, proteins essential for
autophagy degrading cellular components including melanosome are involved in melano-
genesis for de novo synthesis of melanin and melanosome. Although the mechanism to
clarify the relationship between the two processes has not been elucidated so far, there is no
direct evidence that the autophagy process is essential for melanogenesis. Another possibil-
ity is that proteins involved in autophagy may play a role in the signaling for melanogenesis
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independent of the autophagy process. For example, although knockdown or knockout
of ATG7, an essential gene for autophagy, inhibits melanin synthesis through reduction
of MITF expression [69,70], knockdown of ULK1, an essential kinase forming autophagy
initiation complex, induces melanin synthesis by increasing the expression of MITF [75].
Therefore, the precise role of autophagy in melanogenesis regulation must be determined
as well as how the autophagy pathway cross-talks with the melanosome pathway and how
the roles of several factors are balanced in various physiological processes.

It has been proposed that the autophagy process is involved in melanin degrada-
tion, particularly in skin whitening material research. Ho et al. suggested that, under
stress conditions, including starvation or defective melanosomes, autophagy could be
activated to form autophagosomes that engulf and degrade melanosomes [101]. Selective
autophagy is an important cellular event that maintains cellular physiological homeostasis
through the degradation of specific cellular compartments, such as aggregated proteins,
damaged organelles, and pathogens. Selective autophagy is mediated using autophagy
receptors that recognize target cargo via binding to ubiquitinated organelles. For exam-
ple, membrane proteins of damaged mitochondria are recognized by PINK/PARKIN and
sequentially phosphorylated and ubiquitinated. The autophagy receptor optineurin recog-
nizes and binds to membrane proteins and links to the LC3-embedded phagophore [102].
Melanosomes are also known as specific organelles of melanocytes. The results of sev-
eral studies suggest that autophagy-mediated degradation of melanosomes exists, but
direct evidence and the underlying molecular mechanism have not been reported. We
suggest that future research should be focused on the following: (1) how melanosomes
induce the autophagy-initiation signal, (2) identification of the E3-ligase that ubiquitinates
melanosome membrane proteins, and (3) identification of melanosome-targeted autophagy
receptors and molecular mechanisms.
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