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Abstract

Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been
demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated
that about 10 mM of heme is released during blood digestion in the blood-sucking bug’s midgut. The parasite Trypanosoma
cruzi, the agent of Chagas’ disease, proliferates in the midgut of the insect vector; however, heme metabolism in
trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme
on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was
accompanied by a marked increase in reactive oxygen species (ROS) formation in epimastigotes when monitored by ROS-
sensitive fluorescent probes. Heme-induced ROS production was time-and concentration-dependent. In addition, lipid
peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE) adducts with parasite proteins were increased in
epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate
also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93
and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment.
Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood
digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.
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Introduction

Trypanosoma cruzi, the etiologic agent of Chagas disease [1],

during its life cycle, develops and differentiates within the midgut

lumen of triatomine insects. The transmission of parasites to

vertebrate hosts occurs through the insect’s faeces when the

triatomine vectors feed on blood, which usually comprises an

intake of approximately 6 to 12 times its own body weigth. The

amount of blood ingested is equivalent to about 10 mM of heme,

which is present in different forms inside the triatomine digestive

tract [2]. The absence of a complete heme biosynthetic pathway in

both T. cruzi and Leishmania support the hypothesis that heme is

essential for the survival of these parasites [3–5]. Thus, it seems

plausible that trypanosomatids should acquire extracellular heme

from their invertebrate hosts. In this regard, our group has

previously demonstrated that heme stimulated T. cruzi epimasti-

gote proliferation in a dose-dependent manner [6].

Ferriprotoporphyrin-IX (heme) constitutes a key molecule in

many biological reactions, including respiration, detoxification and

oxygen transport [7], processes that are essentially mediated by

heme proteins such as cytochromes, catalase, myoglobin and

hemoglobin. However, ‘‘free’’ heme exerts a number of toxic

effects, causing not only molecular damage to lipids, DNA and

proteins [8–10], but also decomposing organic hydroperoxides

into highly reactive alkoxyl and peroxyl radicals that are included

in the pool of reactive oxygen species (ROS) [11–12]. In addition,
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due to its amphiphilic features, heme can associate with lipid

membranes, leading to altered membrane permeabilisation and

cell disruption markedly a redox independent mechanism [13].

It is known that cells are capable of generating endogenously

and constitutively ROS which are utilized in the induction and

maintenance of signal transduction pathways involved in cell

growth and differentiation [14]. However, a high level of pro-

oxidant species overcomes the cells pro-oxidant/antioxidant

balance disturbing the redox signalling and control [15–18]. An

aberration in endogenous ROS production, known as oxidative

stress, has been involved in the process of aging [16] and in the

pathogenesis of several diseases such as cancer [19], diabetes [20]

and atherosclerosis [21]. Conversely, the regulated increase in free

radicals leads to a temporary imbalance that represents the

physiological basis for redox regulation [22]. Several cytokines

[23], growth factors [24] and hormones [25] trigger ROS

production. In response to these triggers, ROS act as secondary

messengers in the intracellular signal transduction pathway in

normal physiological events [14,26,27].

A multifunctional serine/threonine protein kinase that responds

to changes in the redox state of cells is the Ca2+ calmodulin kinase

II (CaMKII) [28,29]. CaMKII is known to mediate the

downstream effects of Ca2+/ CaM [30]. CaMK II holoenzyme

contains three main regions: an N-terminal catalytic region

responsible for catalyzing the phosphotransferase reaction, a

regulatory region that contains Ca2+/CaM binding sites and an

auto inhibitory domain (AID). In the absence of bound Ca2+/

CaM, the CaMKII is maintained in an inactive state because of

an interaction of the AID with the catalytic domain of its own

subunit [30]. The Ca2+/CaM complex binding induces the

phosphorylation of the CaMKII in Thr286 and enhancing its

kinase activity [30].

We have recently shown that heme-induced T. cruzi growth is

associated with calcium-calmodulin-dependent kinase II (CaM-

KII) activity [31]. Based on previous evidence showing that heme

can exert potent pro-oxidant actions [8,11] and that CaMKII

activity can be stimulated by oxidation [28,29], here we

hypothesized whether heme would drive T. cruzi proliferation

through a redox dependent CaM Kinase II-like cascade and in

fact, the data presented herein indicate that heme induces a

transient oxidative stress condition that stimulates T. cruzi growth

via a mechanism mediated by a CaM Kinase II-like pathway.

Materials and Methods

Chemicals
Rabbit anti-a/b tubulin polyclonal antibody was purchased

from Sigma-Adrich Fine Chemicals (St. Louis, MO, USA). Hemin

and other porphyrins were from Frontier Scientific (Logan, UT,

USA). 5-(and-6)-chloromethyl-29,79dichlorodihydrofluorescein di-

acetate acetyl ester (CMH2-DCFDA) and Dihydroethidium (DHE)

were purchased from Invitrogen Corporation (Carlsbad, Califor-

nia, USA). Mouse monoclonal anti-4-hydroxy-2-nonenal (4-HNE)

antibody was from Abcam Inc. (Cambridge, UK). Anti-mouse

secondary antibody was from GE Healthcare (Uppsala, Sweden).

The inhibitors used in the work were from Calbiochem (La Jolla,

CA, USA). All other reagents used were of analytical purity.. .

Parasites
Trypanosoma cruzi Dm28c (CT-IOC-010) strain was provided by

the Trypanosomatid Collection of the Oswaldo Cruz Institute,

Fiocruz, Brazil. Parasites were grown at 28 uC for 7 days in brain–

heart infusion medium (BHI) and supplemented with 30 mM

hemin (heme-Cl) and 10% foetal calf serum (FCS). Parasite growth

was monitored by cell counting in a Neubauer chamber. Unless

otherwise indicated, the parasites were adapted for two passages in

BHI supplemented with 10% FCS without heme supplementation

prior to the experiments.

Effects of porphyrins on T. cruzi proliferation
Epimastigotes stocks were maintained in BHI supplemented

with 10% FCS and 30 mM heme. For the experiments,Cells were

harvested from culture the flasks, washed twice in BHI and

suspended in fresh BHI, 10% FCS without the addition of heme.

Next, 2.56106 parasites/mL were grown at 28 uC for 10 or 12

days in BHI medium supplemented with 10% FCS in the absence

or presence of different concentrations of porphyrins. Parasite

proliferation was monitored by cell counting in a Neubauer

chamber.

Effect of urate on T. cruzi proliferation
Epimastigotes were maintained in BHI supplemented with 10%

FCS and 30 mM heme for 7 days. Next, 2.56106 parasites/mL

were grown at 28 uC for 10 days in BHI medium supplemented

with 10% FCS in the absence or presence of 30 mM heme and

1 mM urate. Parasite growth was monitored by cell counting in a

Neubauer chamber.

Effects of H2O2 and CaMKII inhibition on T. cruzi
proliferation

Epimastigotes were maintained in BHI supplemented with 10%

FCS and 30 mM heme for 7 days. Next, 2.56106 parasites/mL

were grown at 28 u in BHI medium supplemented with 10% FCS

in the absence (control) or in the presence of 20 mM H2O2, 30 mM

heme, 30 mM Myr-AIP, 30 mM Myr-AIP plus 20 mM H2O2 and

30 mM Myr-AIP plus 30 mM heme. Parasite proliferation was

monitored by cell counting in a Neubauer chamber after 5 days

of culture

Fluorescence microscopy
Parasites were collected by centrifugation at 1500 g for 5 min

(Hermle-z323k, rotor: 220.72V04) and washed in PBS (100 mM

phosphate buffer and 150 mM NaCl, pH 7.4). The cells (16107)

were re-suspended in PBS and incubated with 2 mM CM-

H2DCFDA and different concentrations of heme at 28 uC for

30 min. Aliquots of cells were mounted on slides and coverslips

and were observed by differential interference contrast (DIC) and

fluorescence using an Axioplan 2 Zeiss fluorescence microscope

(Zeiss, Göttingen, Germany). All obtained images were processed

equivalently with Adobe PhotoShop software (Adobe, Seattle,

USA).

Flow cytometry - Epimastigotes (16107cells/mL) were loaded in

PBS (100 mM phosphate buffer and 150 mM NaCl, pH 7.4) with

2 mM CM-H2DCFDA or 5 mM DHE for 30 min and 20 mM

H2O2, 30 mM heme or other porphyrins for 15 min unless

otherwise stated. ROS production was analysed by flow cytometry

using a FACS Calibur apparatus with a 488 nm ion-argon laser

(BD Biosciences, Mississauga, Canada). Controls with classical

antioxidants were carried out by pre-incubating parasites with

1 mM urate for 15 min or 5 mM GSH for 2 h prior to heme

exposure. To analyse the effect of CaMKII inhibition, parasites

were pre-incubated with 2 mM KN-93 or 30 mM Myr-AIP for 1 h.

Hydrogen peroxide production
For the H2O2 release measurements, adapted epimastigotes

(16107cells/mL) were loaded in PBS (100 mM phosphate buffer

and 150 mM NaCl, pH 7.4) containing 1.25 mM of Amplex Red

Heme Induces Proliferation by Redox Signaling
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reagent and 1 U/mL horseradish peroxidise and 30 mM heme for

30 min. Afterwards, parasites were separated by centrifugation at

2000 g for 5 min and then the supernatants were analysed in a

Cary Eclipse fluorescence spectrophotometer using an excitation

wavelength of 530 nm and an emission wavelength of 590 nm.

Data were calibrated by adding increasing concentrations of a

freshly prepared H2O2 solution.

Thiobarbituric acid reactive substances (TBARS)
Adapted epimastigotes were collected by centrifugation at

1500 g for 5 min and washed twice in PBS (100 mM phosphate

buffer and 150 mM NaCl, pH 7.4). The pellet was re-suspended

in the reaction solution (PBS containing 200 mM desferoxamin

and 2 mM CaCl2) and incubated in the absence or presence of

different concentrations of heme and 300 mM H2O2 at 37 uC for

30 min. The cells were then lysed by freezing and thawing, and

the cell-free extracts of T. cruzi were incubated at 95 uC for 30 min

with 2% trichloroacetic acid (TCA) and 0.134% thiobarbituric

acid (TBA). Next, the tubes were cooled, and 500 mL of n-butanol

was added. Thiobarbituric acid reactive substances (TBARS) were

separated by centrifugation at 9300 g for 5 min, the supernatants

was collected and the absorbance was measured at 532 nm.

Western blotting
Adapted epimastigotes (46108cells/mL) were incubated in BHI

supplemented with 10% FCS in the absence (control) or in the

presence of 30 mM heme at 28 uC f or 30 minutes. Parasites were

collected by centrifugation at 1500 g for 5 min, washed with PBS

and the pellet was re-suspended in lysis buffer (50 mM HEPES,

1 mM MgCl2, 1% Triton X-100, 0.1% SDS, 10 mM EDTA;

pH 6.4).containing protease inhibitor cocktail Sigma-Adrich

Fine Chemicals (1.04 mM AEBSF, 800 nM aprotinin, 20 mM

leupeptin, 40 mM bestatin, 15 mM pepstatin A and 14 mM E-64).

After parasite lysis, the samples were centrifuged at 9300 g, 4 uC
for 10 min, the pellet was discarded and the supernatants were

used for protein quantification according to Lowry et al. [32].

Whole protein extracts of T. cruzi (about 80 mg) were subjected to

electrophoresis in a 15% SDS-polyacrylamide gel under reducing

conditions. Proteins were transferred to a nitrocellulose membrane

at 4 uC for 2 h. Membranes were blocked with Tris-buffered saline

(25 mM Tris, 192 mM glicine, pH 8.3, 20% methanol) solution

containing 0.1% Tween 20 (TBS-T) and 5% bovine serum

albumin (BSA). The membranes were then incubated overnight

with anti-4-HNE antibody (1:1000), or anti-a/b tublin (1:1000)

diluted in blocking solution, washed in TBS-T, and finally

incubated for 1 h with horseradish peroxidase-conjugated anti-

mouse antibody or horseradish peroxidase-conjugated anti-rabbit

antibody (1:10.000). The bands were revealed by chemilumines-

cence using the ECL substrate. Blots were exposed to ECL

Hyperfilm (Amersham) and quantification was performed by

densitometric analysis of the exposed films (Adobe Photoshop 5

programme) using anti- a/b tublin as a load control.

Effects of kinase inhibitors on T. cruzi
In the experiments employing protein kinase inhibitors, the

drugs were initially used at the following final concentrations,

corresponding to five-fold the Ki values for mammalian cells:

LY294002 (phosphatidylinositol 3-kinase inhibitor, 8.0 mM);

roscovitine (inhibitor of cyclin-dependent kinases; 3.5 mM); H-89

(inhibitor of cyclic AMP-dependent protein kinase, 0.24 mM); H-9

(inhibitor of cyclic GMP-dependent protein kinase 5 mM);

bisindolylmaleimide I (inhibitor of protein kinase C, 0.05 mM);

KN-93 (inhibitor of CaM kinase II, 2 mM); Myr-AIP (inhibitor of

CaM kinase II, 30 mM).

Figure 1. Molecular structure of the different porphyrins utilised in this study.
doi:10.1371/journal.pone.0025935.g001
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Figure 2. Porphyrins and T. cruzi proliferation. Epimastigotes (2.56106 cells/mL) were incubated in BHI medium supplemented with 10% FCS in
the absence (control) or in the presence of the porphirins (A) mesoporphyrin IX (MPIX), (B) protoporphyrin IX (PPIX), (C) Fe-mesoporphyrin IX (Fe-
MPIX), (D) Sn-protoporphyrin IX (SnPPIX), (E) Zn-protoporphyrin IX (ZnPPIX), for ten or twelve days. All data are presented as the mean 6 standard
deviation (n = 3), * p,0.001 or # p,0.05 as compared to the control group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g002
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Figure 3. Effect of heme on ROS formation in T. cruzi epimastigotes. (A) Epimastigotes (16107 cells/mL) were incubated with 2 mM
CMH2DCFDA and different concentrations of heme. Images a, c, e,g and i show differential interference contrast, whereas b, d, f, h and j show
fluorescence images. The CMH2DCFDA (2 mM) signal indicated in green was acquired with lEm 517–527 nm: (a and b) autofluorescence, (c and d) no

Heme Induces Proliferation by Redox Signaling
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Statistical analyses
Statistical analysis were conducted with GraphPad Prism 3

software (GraphPad Software, Inc., San Diego, CA). Data are

presented as the mean 6 standard deviation (SD), and all

experiments were repeated at least three times. Data were analysed

by one-way analysis of variance (ANOVA), and differences between

groups were assessed with Tukey’s post-test. The level of

significance was set at p,0.05.

Results

T. cruzi proliferation is induced specifically by heme but
not by other porphyrins

Previous data from our group have shown that heme, but not

hemoglobin or its peptides, stimulates T. cruzi proliferation in vitro in

a dose-dependent manner [6]. Thus, to investigate the structural

determinant of the heme molecule that causes T. cruzi proliferation,

cells were treated with several heme analogues (Figure 1). We tested

porphyrins that lack the central iron atom: protoporphyrin IX

(PPIX) and mesoporphyrin IX (MPIX). We also used Fe-

mesoporphyrin IX (Fe-MPIX), which has a structure similar to

heme but lacks the two vinyl groups, which are replaced by two

ethyl groups, as well as MPIX. Others porphyrins such as SnPPIX

and ZnPPIX were also used. Figure 2 shows that among all of the

porphyrins tested, only heme was able to induce a potent

proliferative effect on T. cruzi. In fact, treatment with MPIX, Fe-

MPIX and ZnPPIX for 10 or 12 days significantly impaired T. cruzi

proliferation even at low concentrations (3 mM). We also added free

iron to cell cultures and the proliferation was not increased (data not

show). Thus, these results show that the ferriprotoporphyrin (heme)

molecule, and not other porphyrins, is required to potentiate T. cruzi

growth. Interestingly, the vinyl groups are also important for heme-

induced T. cruzi growth, indicating that the central iron is not solely

responsible for the observed effects.

Heme, but not other porphyrins, induces reactive species
(ROS) formation in T. cruzi

It has been known that heme is able to promote peroxides and

others reactive species formation [11] but in the case of T. cruzi,

heme induces proliferation as well Thus, to gain insight on the

mechanism by which heme promotes T. cruzi proliferation, we

next investigated ROS formation in heme-exposed T. cruzi by

measuring the fluorescence intensities of two distinct ROS-

sensitive probes: CMH2-DCFDA and dihydroethidium (DHE).

Figure 3A shows that heme caused a dose-dependent increase of

ROS formation in T. cruzi, as assessed by the CMH2-DCFDA

fluorescence signal using an epifluorescence microscope. Heme

treatment did not affect parasite viability or structure because they

appeared to be well preserved and to possess the expected, normal

shape (Figure 3A, DIC images). We then evaluated ROS

Figure 4. Porphyrins and ROS formation T. cruzi. Epimastigotes (16107 cells/mL) were incubated in PBS with 2 mM CMH2DCFDA for 30 min with
the addition of 30 mM heme, 30 mM PPIX, 30 mM MPIX or 30 mM Fe-MPIX for the final 15 min. The production of ROS was analysed by flow cytometry.
The histograms show autofluorescence (gray), 2 mM CMH2DCFDA (control-black), 30 mM heme (green), 30 mM PPIX (blue), 30 mM MPIX (red) and
30 mM Fe-MPIX (orange). The histograms are representative of four independent experiments. The inset graph represents the fluorescence intensity
values obtained by the ratio of experimental group median to the control group median (without heme). Data are expressed as the mean 6 standard
deviation (n = 2), * p,0.001 as compared to the control group and # p,0.001 relative to the heme group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g004

heme, (e and f) 30 mM heme, (g and h) 100 mM heme and (i and j) 300 mM heme. (B) Epimastigotes (16107cells/mL) were incubated in PBS with 2 mM
CMH2DCFDA and 30 mM heme for 30 min. The ROS formation was analysed by flow cytometry. The histograms correspond to: autofluorescence
(gray), 2 mM CMH2DCFDA (control-black), 30 mM heme (green), 100 mM heme (blue) and 300 mM heme (purple). The histograms are representative of
five independent experiments. The inset graph represents the fluorescence intensity values obtained by the ratio of the experimental group median
to the control group median (without heme). Data are expressed as the mean 6 standard deviation (n = 5), * p,0.001 as compared to the control
group by Tukey’s test. (C) Epimastigotes (16107cells/mL) were incubated in PBS with 5 mM DHE and heme for 30 min, and ROS formation was
measured by flow cytometry. The histograms show autofluorescence (gray), 5 mM DHE (control-black), 30 mM heme (green), 100 mM heme (blue) and
300 mM heme (purple). The histograms are representative of two independent experiments. The inset graph represents the fluorescence intensity
values obtained by the ratio of the experimental group median to the control group median (without heme). Data are expressed as the mean 6

standard deviation (n = 2), * p,0.001 as compared to the control group by Tukey’s test. (D) Epimastigotes (16107cells/mL) were incubated in PBS
with 1.25 mM Amplex red, 1 U/mL HRP and 30 mM heme for 30 min, and H2O2 production was measured in the supernatant by fluorescence
spectrophotometry. Data are expressed as the mean 6 standard deviation (n = 3), * p,0.01, ** p,0.05 and *** * p,0.001 as compared to the control
group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g003
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formation in parasites treated with several heme concentrations by

measuring the CMH2-DCFDA fluorescence signal using flow

cytometry (Figure 3B). There was a clear dose-dependent increase

in CMH2-DCFDA fluorescence in the parasites treated with

increased heme concentrations (Figure 3B). Heme-induced ROS

production was further investigated with another ROS-sensitive

probe, DHE. Figure 3C show that, similarly to the data obtained

for CMH2-DCFDA, heme caused a dose-dependent increase in

DHE fluorescence intensity. Additionally, we employed Amplex

red reagent in combination with horseradish peroxide (HRP), to

detect H2O2 released from heme treated epimastigotes. As shown

in figure 3D H2O2 levels increased in a dose-response manner to

the addition of heme. To check if the heme analogues are also able

to promote the ROS formation in parasites, we measured the

CMH2-DCFDA fluorescent signal using flow cytometry (Figure 4).

Despite of the structural similarities with heme, the challenge of

epimastigotes with 30 mM PPIX, 30 mM MPIX or 30 mM Fe-

MPIX was unable to induce ROS, confirming that heme, is in

fact, required to trigger ROS formation in T. cruzi.

Heme induces lipid peroxidation in T. cruzi
Lipid peroxidation is one of the hallmarks of the pro-oxidant

effects of heme [8]. Lipid peroxides are usually decomposed into

reactive aldehydes such as malondialdehyde (MDA) and 4-

hydroxy-2-nonenal (4-HNE), which are also reactive oxygen

species [33]. Figure 5 shows that both end-products of lipid

peroxidation were observed in cellular extracts of Trypanosoma

cruzi, and their levels were increased in the presence of heme. In

fact, heme induced a significant, dose-dependent increase in MDA

formation (Figure 5A). Due to its electrophilic properties, the

aldehyde 4-HNE forms adducts with cellular proteins [26,33–35].

In Figure 5B, we can observe a great increment in 4-HNE-protein

adduct formation after heme exposure. The a/b tubulin antibody

was used to normalize the protein load. The protein oxidation

seems to target specific proteins, named as bands 1–3, which

increased 4-HNE label in about 3 to 4 fold when compared to the

control group (without heme) (Figure 5C).

Antioxidants prevent heme-induced ROS and impair
T. cruzi proliferation

ROS normally occur in living tissues at relatively low steady-

state levels because of the large number of antioxidants

mechanisms involved in cellular protection. Here, the antioxidants

urate (Figure 6A) and GSH (Figure 6B), which are potent ROS

scavengers, were able to reverse all fluorescence signals. Assuming

that ROS is in fact important for the proliferation of these cells

and since antioxidants remove these species from the cell milieu

we can suppose that the growth of the parasites does not increase

in the presence of antioxidants. So, in order to prove this

hypothesis we tested the effect of urate upon the parasite growth.

Figure 7 shows that 1 mM urate significantly decreased parasite

proliferation, even in the presence of heme, indicating that ROS

levels greatly influence the parasite growth homeostasis.

Heme-induced ROS formation in T. cruzi is kinetically
regulated

An increased magnitude and longer duration of the ROS

concentration demonstrates that the process is not able to protect

the cells against ROS. However, a temporary increase of the ROS

concentration indicates the presence of a regulatory process that helps

the cells or tissues to achieve low, steady-state ROS levels [14]. Next,

we investigated the dynamics by which heme induces ROS formation

in T. cruzi. Figure 8 shows that heme induced a transient increase in

ROS formation, as assessed by the fluorescence signal of CMH2-

DCFDA, and maximum levels of fluorescence were observed after

incubation with heme for 30 min. This result shows that in heme-

Figure 5. Heme triggers lipid peroxidation in T. cruzi. (A) Epimastigotes (16109 cells /mL) were challenged with 30 mM, 100 mM heme or
300 mM H2O2 (as a positive control) at 37 uC for 30 min. Next, the cells were lysed, and the cell-free extracts were incubated at 95 uC for 30 min in
acidic TBA. Lipid peroxides were extracted in n-butanol and separated by centrifugation. The supernatant was used to determine the absorbance at
532 nm. Data are expressed as the mean 6 standard deviation (n = 3), * p,0.05 as compared to the control group (no heme) by Tukey’s test. (B)
Epimastigotes (46108 cells /mL) were incubated in BHI supplemented with 10%FCS, in the absence (control without heme) or in the presence of
30 mM heme for, 30 min. Parasites were lysed, and 80 mg of whole protein were electrophoresed in a 15% PAGE gel, transferred onto a nitrocellulose
membrane, and incubated with monoclonal anti-4-HNE (1:1000). The bands were visualised using the ECL kit. This result is representative of three
independent experiments. (C) Quantification of the level of 4-HNE adducts was determined by densitometry of three independent experiments using
a/b tubulin as a load control. Data are expressed as the mean 6 standard deviation (n = 3), * p,0.001 as compared to the control group (without
heme) by Tukey’s test. The bands were analyzed using Adobe Photoshop 5.0.
doi:10.1371/journal.pone.0025935.g005

Heme Induces Proliferation by Redox Signaling

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e25935



induced ROS formation in T. cruzi, there is an important antioxidant

mechanism that can efficiently reverse the redox imbalance in a short

period. This result suggests the presence of a regulatory event since

ROS formation is dependent exclusively on the heme molecule and

can be regulated intracellularly very quickly. Changes in the redox

balance can indicate the involvement of redox signalling.

Induction of T. cruzi proliferation by heme is mediated by
ROS formation and requires CaMKII redox signalling

In an attempt to elucidate the mechanisms by which heme

regulates redox-dependent T. cruzi proliferation, we tested the effect

of specific inhibitors of several specific enzymes involved in

signalling cascades (Table 1). Table 1 shows that heme-induced

ROS formation in T. cruzi was not affected by protein kinase A

(PKA), protein kinase C (PKC), protein kinase G (PKG), cyclin-

dependent kinases, or phosphatidyl inositol-3 kinase (PI3K) specific

inhibitors. We also tested the CaMKII inhibitors KN-93, a

molecule that acts by competitively binding to the calmodulin

binding domain of the enzyme and Myr-AIP, a myristoylated form

of the specific autocamtide-2-related inhibitory peptide (Figures 9A

and 9B). These specific inhibitors of CaMKII, KN-93 and Myr-

AIP, were able to block heme-induced ROS formation, strongly

implicating the involvement of this enzyme in the redox

mechanisms required by heme to promote T. cruzi proliferation.

Next, we determined whether similar to heme, exogenous H2O2

and pharmacological blockade of CaMKII would exert an

inhibitory effect on epimastigotes ROS formation and parasite

proliferation. As shown in figure 10A, the specific inhibitor of

CaMKII blocked ROS production in epimastigostes. Further-

more, figure 10B shows that the treatment of parasites with Myr-

AIP disturbed the H2O2-induced parasite growth.

In fact, this result is in agreement with previous evidence from

our group showing that T. cruzi epimastigote proliferation is

completely blocked following inhibition of CaMKII activity by

Figure 6. Classical antioxidants are able to prevent ROS induced by heme in T. cruzi epimastigotes. (A) Epimastigotes (16107cells/mL)
were pre-incubated in PBS containing 2 mM CMH2DCFDA for 30 min and treated with 1 mM urate and 30 mM heme for 15 min. ROS formation was
analysed by flow cytometry. The histograms show autofluorescence (gray), 2 mM CMH2DCFDA (control-black), 30 mM heme (green), 1 mM urate
(yellow) and heme+urate (purple). The histograms are representative of four independent experiments. The inset graph shows the fluorescence
intensity values obtained by the ratio of the experimental group median to the control group median (without heme). (B) Epimastigotes (16107 cells/
mL) were pre-incubated in PBS containing 5 mM GSH for 2 h and incubated with 2 mM CMH2DCFDA for 30 min with the addition of 30 mM heme for
the final 15 min. The production of ROS was analysed by flow cytometry. The histograms are representative of 4 experiments. The histograms show
autofluorescence (gray), 2 mM CMH2DCFDA (control-black), 30 mM heme (green), 5 mM GSH (blue) and heme+GSH (pink). The inset graph shows the
fluorescence intensity values obtained by the ratio of experimental group median to the control group median (without heme). Data are expressed as
the mean 6 standard deviation (n = 4), * p,0.001 as compared to the control group and # p,0.001 relative to the heme group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g006
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Myr-AIP and that subsequent heme-induced proliferation does

not occur [31].

Discussion

Altogether, the data presented herein indicate the importance of

the heme molecule, an abundant and important molecule in

Trypanosoma cruzi biology, and the value of elucidating the defence

and regulatory mechanisms developed by this parasite in response

to heme. The drugs currently available for the treatment of

Chagas disease (benznidazole , nifurtimox) seem to act by inducing

oxidative stress [36,37]. In this regard, the identification of systems

involved in the formation and detoxification of ROS as well as its

role in the life cycle of the parasite, provide a valuable target for

the development of an effective chemotherapy. The data presented

herein demonstrate that heme is able to induce ROS in a dose-

dependent manner in T. cruzi epimastigotes favouring the increase

of the parasite proliferation. Also, the impairment of the parasite

proliferation by the antioxidant urate, corroborate the idea that

redox signalling in fact governs T. cruzi biology. Although the

heme molecule serves as a component of many essential enzymatic

activities, as an amphiphilic compound, it may promote

deleterious cellular processes such as lipid peroxidation and

oxidative membrane damage [8,11,33]. Consistent evidence

indicates that heme-induced lipid peroxidation is exerted mainly

via the decomposition of organic hydroperoxides – instead

of H2O2 – into alkoxyl and peroxyl radicals [38,39]. The

measurement of TBARS revealed that heme induced lipid

peroxidation after 30 min of incubation in a dose-dependent

manner, corroborating our results demonstrating a peak of ROS

formation after 30 min. In the present study, immunoblotting

against 4-HNE adducts indicated an increase of 4-HNE-modified

proteins in parasites exposed to heme as compared to unexposed

parasites. These results suggest that T. cruzi might benefit from the

induction of aldehydes with biological activities necessary for the

modulation of its cellular signalling. In fact, recent reports indicate

that 4-HNE is a potent cell signalling molecule [26,34]. The

present findings corroborate the data in the literature demonstrat-

ing that 4-HNE is involved in the proliferation and differentiation

of several cell types in vitro [35].

Current perspectives favour evidence for the existence of a

redox-based network of regulatory mechanisms that are intimately

linked to cellular function. Unlike oxidative stress, which is

characterised by an increase of ROS and radical-induced damage,

redox regulation, or ‘‘redox signalling,’’ describes a reversible

phase of physiological regulatory reactions that occur over shorter

time periods. In such processes, the oxidative reactions are

returned to the resting state through the activation of reductive

pathways [15,17,22,40,41]. PI3K, MAPK and CaMKs have been

related to redox signalling. ROS-induced kinases activation

appears to occur, at least in part, through the inactivation of

phosphatases, which can occur via the oxidation of these proteins

[42–46]. These observations lead us to suggest that heme could be

Figure 7. Urate and T. cruzi proliferation. Epimastigotes
(2.56106cells/mL) were incubated in BHI medium supplemented with
10% FCS in the absence (control) or in the presence of 30 mM heme and
1 mM urate for ten days. The growth curve is representative of three
independent experiments. All data are presented as the mean 6
standard deviation (n = 3), * p,0.05 compared to the control group or
# p,0.05 as compared to the heme group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g007

Figure 8. Heme generates ROS in T. cruzi in a transient manner.
Epimastigotes (16107cells/mL) were treated in PBS with 30 mM heme
for different periods of time (5, 10, 15, 30, 60, 120 and 240 min) and
loaded with 2 mM CMH2DCFDA in PBS for 30 min. ROS formation was
analysed by flow cytometry. Fluoresence intensity values were obtained
by the ratio of the heme group median to the control group median.
Data are expressed as the mean 6 standard deviation (n = 5), * p,0.05
as compared to the control group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g008

Table 1. The effect of kinase inhibitors on ROS production
stimulated by heme in T. cruzi.

Inhibtor Target ROS (Fluorescence intensity)

No heme Heme

Control ---- 1 3.24060.435

H-89 0.24 mM PKA 1.06160.085 2.59660.505

Roscovitine 3.5 mM cyclin dependent kinase 1.19460.226 2.64360.533

BIS 0.05 mM PKC 1.02160.017 2.29760.624

Ly 294002 8 mM PI3-K 1.46860.198* 3.30560.120

H9 5 mM PKG 1.06360.016 2.37560.404

Epimastigotes (16107cells/mL) were pre-incubated in PBS with the PK inhibitors
(56Ki) for 1 h and loaded in PBS with 2 mM CMH2DCFDA for 30 min and with
30 mM heme for the final 15 min. ROS formation was measured by flow
cytometry. Fluorescence intensity values were obtained by the ratio of the
experimental group median (with heme) to the control group median (without
heme). Data are expressed as the mean 6 standard derivation (n = 3),
*p,0.01 as compared to the control group (no heme) by Tukey’s test.
doi:10.1371/journal.pone.0025935.t001
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involved in ROS formation in T. cruzi epimastigotes by

modulating an intracellular signalling pathway that is redox-

sensitive.

Among all of the pathways tested, inhibition of the PI3K

increased ROS formation by approximately 47% independently of

the presence of heme. Goldshmit et al. [47] suggested that the

PI3K pathway regulates the toxic levels of ROS induced by

oxidative stress in neurons. Recent studies have shown that

CaMKs can function as sensors of the redox status of different

cellular types. Oxidative stress induced by H2O2 activates

CaMKII and CaMKIV in T Jurkat lymphocytes independently

of calcium influx in these cells [29,40], thus stimulating the

antiapoptotic pathway through IkB and Akt [29]. These events are

probably due to the oxidation and inactivation of intracellular

phosphatases.

Recently, Cosentino-Gomes et al have shown that hydrogen

peroxide inhibits ecto-phosphatase in Trypanosoma rangeli [48].

According to these observations, any cellular process that involves

ROS production could potentially activate CaMKs, even in the

absence of a calcium influx. Through pharmacological and

molecular inhibition, it has been demonstrated that CaMKII

participates in ERK phosphorylation induced by H2O2 in human

Figure 9. The CaMKII inhibitor is able to prevent ROS formation in T. cruzi epimastigotes. (A) Epimastigotes (16107cells/mL) were pre-
incubated in PBS with 2 mM KN-93 for 1 h and then incubated in PBS with 5 mM DHE and 30 mM heme for 30 min. The production of ROS was
analysed by flow cytometry. The histograms show autofluorescence (gray), 5 mM DHE (control-black), 30 mM heme (green), 2 mM KN-93 (blue) and
KN-93+heme (red). The histograms are representative of two independent experiments. The inset graph represents the fluorescence intensity values
obtained by the ratio of experimental group median to the control group median (without heme). Data are expressed as the mean 6 standard
deviation (n = 2), * p,0.05 as compared to the control group and # p,0.05 relative to the heme group by Tukey’s test. (B) Epimastigotes (16107cells
/mL) were pre-incubated in PBS with 30 mM Myr-AIP for 1 h and then loaded with 2 mM CMH2DCFDA for 30 min with the addition of 30 mM heme for
the final 15 min. ROS formation was analysed by flow cytometry. The histograms show autofluorescence (gray), CMH2DCFDA (control- black), 30 mM
heme (green), 30 mM Myr-AIP (blue) and Myr-AIP+heme (red). The histograms are representative of three independent experiments. The inset graph
represents the fluorescence intensity values obtained by the ratio of the experimental group median to the control group median (without heme).
Data are expressed as the mean 6 standard deviation (n = 3), * p,0.001 as compared to the control group (without heme) and # p,0.001 compared
to the heme group by Tukey’s test.
doi:10.1371/journal.pone.0025935.g009
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breast cancer cells [49]. This pathway could be one of the

pathways responsible for allowing cancer cells to survive

treatments that induce oxidative stress, such as chemotherapy or

ionising radiation [49]. In addition, Bouallegue et al, demonstrated

that CaMKII act as a critical upstream component triggering the

H2O2-induced phosphorylation of IGF-1R, ERK and PKB in

vascular smooth muscle cells [50]. In this case, the ROS induced

upregulation of CaMKII could contribute to the abnormal cell

proliferation related to the pathogenesis of vascular disease

[50,51].

We have searched the Trypanosoma cruzi genome for CaMKII

homologs and identified two ORFs that encode putative CaMKII

in the database representing two alleles of the same gene: one

allele sequenced from strain CL Brenner, non-Esmeraldo-like

haplotype (XP_815126) and another allele sequenced from strain

CL Brenner, Esmeraldo-like haplotype (XP_816286) (Figure S1).

These two alleles are extremely similar among themselves

(7 different residues in a total of 545) and both present

approximately 37% identity and 55% similarity to the kinase

domain (residues 23–271) of the human CaMKII alpha subunit

[52]. These sequences had been previously identified as members

of the CaMK family by Parsons and coworkers [53]. We have used

in this and previous work [31] reagents considered to be specific

for the identification of CaMKII protein activation (phospho-

specific CaMKII antibody) and activity (the substrate camtide-2

and the inhibitor Myr-AIP). All three reagents were developed

Figure 10. The CaMKII inhibitor is able to prevent ROS formation in T. cruzi epimastigotes. (A) Epimastigotes (16107 cells/mL) were pre-
incubated in PBS with 30 mM Myr-AIP for 1 h and then incubated in PBS with 2 mM CMH2DCFDA and 20 mM H2O2 for 30 min. The production of ROS
was analysed by flow cytometry. The histograms show autofluorescence (gray), 2 mM CMH2DCFDA (control-black), 20 mM H2O2 (blue), 30 mM Myr-AIP
(orange) and Myr-AIP+H2O2 (purple). The histograms are representative of two independent experiments. The inset graph represents the
fluorescence intensity values obtained by the ratio of experimental group median to the control group median (without heme). Data are expressed as
the mean 6 standard deviation (n = 2), * p,0.05 as compared to the control group and # p,0.05 relative to the H2O2 group by Tukey’s test. (B)
Epimastigotes (2.56106 cells/mL) were incubated in BHI medium supplemented with 10% FCS in the absence (control) or in the presence of 30 mM
heme, 20 mMH2O2, 30 mM Myr-AIP, or 30 mM Myr-AIP plus heme or H2O2. After five days parasites were quantified using a Neubauer chamber. All data
are presented as the mean 6 standard deviation (n = 2), * p,0.05 as compared to the control group and # p,0.05 relative to the H2O2 group by
Tukey’s test.
doi:10.1371/journal.pone.0025935.g010
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based on the aminoacid sequence neighbouring the autophospho-

rylation T286 residue from CaMKII subunits. In Figure S2 we

show that this region is conserved in the T. cruzi sequences

identified giving support to the use of these reagents to study the

function of CaMKII in T. cruzi [52]. The results of these studies

support the hypothesis that a CaMKII-like enzyme is involved in

the redox imbalance, thus modulating the adaptation to the redox

status in different cell types such as Trypanosoma cruzi. In this

present work we demonstrate that, despite the presence of large

amounts of heme within the insect midgut, which is assumed to

cause redox imbalance to the insect [2,54], T. cruzi epimastigotes

require heme for proliferation in a mechanism that involves

parasite CaM kinase II-like activation. Additionally, this is another

indication for the beneficial effect of ROS if is tightly controlled.

Furthermore, these two T. cruzi sequences presents a conserved

calmodulin binding region (residues 290–300 of the human

CaMKII alpha subunit – Figure S1) and an autoinhibitory

domain containing a threonine residue in a position similar to the

T286 residue of the human CaMKII alpha subunit (marked in

green in Figure S1). The autophosphorylation of the T286 residue

is directly involved in the regulation of a calcium/calmodulin

independent activity that is observed after the first activation of

this enzyme by calcium/calmodulin binding [49]. This charac-

teristic distinguishes CaMKII from other members of the calcium/

calmodulin dependent protein kinase family [49]. Another feature

of CaMKII enzyme that differ them from other members of the

CaM-dependent protein kinase family is the formation of a

dodecamer complex. This association occurs via its C-terminal

region [49] and although the similarity is not as good as in other

functional domains, we can observe in the alignment (Figure S1)

[52] an overall conservation of the characteristics in this region as

well. Therefore, the conservation of these features (kinase domain,

calcium/calmoduling binding region, autophosphorylation site

and C-terminal association domain) on these two T. cruzi

sequences makes a strong argument for their election as putative

CaMKII enzymes.

The biochemical interplay between T. cruzi and the triatomine

vectors has been investigated since 1909 [1]. Notwithstanding, a

comprehensive study describing the physiological role of heme in

T. cruzi-vector interaction has been lacking. Several important

issues must be considered in this context: i) the total heme levels in

the vector midgut reach millimolar concentrations; of note, heme

crystallisation into hemozoin (Hz) is a very efficient heme

detoxification process that takes place in the midgut of different

triatomine species [55,56]. Interestingly, recent evidence has

demonstrated that Hz represents by far the dominant iron-

containing compound found in the triatomine midgut, comprising

at least 97% of whole iron species [57]. Therefore, despite the very

low ‘‘free’’ heme levels in the R. prolixus midgut [57], it is

conceivable that small amounts of heme would be physiologically

relevant to allow progression of the T. cruzi life cycle in this

compartment. ii) at micromolar concentrations, heme exerts a

potent pro-oxidant effect, iii) the drugs currently available for the

treatment of Chagas disease (nifurtimox and benznidazole) seem

to act via the alteration of redox metabolism [36,37], and novel

drug candidates, such as the naphthofuranquinones and the

putrescine analogue diaminobutanone, exert their trypanocidal

activity by causing a mitochondrial dysfunction that results in

increased ROS generation [58,59]. Thus, the identification of

mechanisms involved in ROS formation and detoxification as well

as their role in the T. cruzi life cycle would provide valuable data

for the development of novel, effective therapeutic approaches.

The heme molecule represents a key molecule in the interface

between the vector and the parasite and this interaction determine

the transmition of Chagas disease. In this study we demonstrate

that ROS (H2O2) or heme-induced ROS activated CaMKII,

triggering the proliferation of the epimatigote forms. Also, the

antioxidants, such as urate and GSH, inhibited heme-induced

ROS and parasite proliferation. In addition, Myr-AIP, the specific

CaMKII inhibitor extinguished heme-induced ROS in epimasti-

gotes, decreasing parasite growth. The data presented herein

indicate that heme induces a transient oxidative stress condition

that stimulates T. cruzi proliferation via a mechanism mediated by

a CaM Kinase II-like pathway.

Supporting Information

Figure S1 Multiple sequence alignment of human
CaMKII isoforms and two putative isoforms of CaMKII
from T. cruzi. Asterisk ‘‘*’’ means that the residues are identical

in all sequences in the alignment. ‘‘:’’ means that conserved

substitutions have been observed, while ‘‘.’’ means that semi-

conserved substitutions are observed. Residues marked in red are

the 7 different aminoacids observed between the two T. cruzi

isoforms. Residues marked in green are homologous to the T286

from the human CaMKII alpha isoform which is phosphorylated

during the process of autophosphorylation/ autoactivation in-

duced by calcium/calmodulin binding. The alignment was made

using CLUSTALW program version 2.0.12 (52).

(DOC)

Figure S2 Sequence alignment of Myr-AIP with human
and T. cruzi isoforms of CaMKII. Alignment of the

aminoacid sequences of MyrAIP (A), the peptide epitope used to

generate the phospho-CaMKII antibody (B) and Camtide2 (C)

with the homologous region of human and T. cruzi CamKII

isoforms. XP_816286 sequence was omitted from the figure since

it is identical to the sequence of XP_815126. Residue highlighted

in yellow indicates the T286A mutation introduced in Myr-AIP

sequence to inhibit the phosphorylation of this peptide. Asterisk

‘‘*’’ means that the residues are identical in all sequences in the

alignment. ‘‘:’’ means that conserved substitutions have been

observed, while ‘‘.’’ means that semi-conserved substitutions are

observed.

(DOC)
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33. Catalá A (2009) Lipid peroxidation of membrane phospholipids generates

hydroxy-alkenals and oxidized phospholipids active in physiological and/or
pathological conditions. Chem Phys Lipids 157: 1–11.

34. Petersen DR, Doorn JA (2004) Reactions of 4-hydroxynonenal with proteins and

cellular targets. Free Radic Biol Med 37: 937–945.
35. Barrera G, Pizzimenti S, Dianzani U (2004) 4-hydroxynonenal and regulation of

cell cycle: effects on the pRb/E2F pathway. Free Radic Biol Med 37: 597–606.
36. Docampo R, Mason RP, Mottley C, Muniz RP (1981) Generation of free

radicals induced by nifurtimox in mammalian tissues. J Biol Chem 21:

10930–10933.
37. Wilkinson SR, Kelly JM (2009) Trypanocidal drugs: mechanisms, resistance and

new targets. Expert Rev Mol Med 11: e31.
38. Kalyanaraman B, Mottley C, Mason RP (1983) A direct electron spin resonance

and spin-trapping investigation of peroxyl free radical formation by hematin/
hydroperoxide systems. J Biol Chem 258: 3855–3858.

39. Van der Zee J, Barr DP, Mason RP (1996) Spin trapping investigation of radical

formation from the reaction between hematin and tert-butyl hydroperoxide.
Free Rad Biol Med 20: 199–206.

40. Gough NR (2009) Focus issue: the long and short of redox signaling. Sci Signal
2: eg12.
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