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ABSTRACT Germline stem cell proliferation is necessary to populate the germline with sufficient numbers
of cells for gametogenesis and for signaling the soma to control organismal properties such as aging. The
Caenorhabditis elegans gene glp-4 was identified by the temperature-sensitive allele bn2 where mutants
raised at the restrictive temperature produce adults that are essentially germ cell deficient, containing only a
small number of stem cells arrested in the mitotic cycle but otherwise have a morphologically normal soma.
We determined that glp-4 encodes a valyl aminoacyl transfer RNA synthetase (VARS-2) and that the prob-
able null phenotype is early larval lethality. Phenotypic analysis indicates glp-4(bn2ts) is partial loss of
function in the soma. Structural modeling suggests that bn2 Gly296Asp results in partial loss of function
by a novel mechanism: aspartate 296 in the editing pocket induces inappropriate deacylation of correctly
charged Val-tRNAval. Intragenic suppressor mutations are predicted to displace aspartate 296 so that it is
less able to catalyze inappropriate deacylation. Thus glp-4(bn2ts) likely causes reduced protein translation
due to decreased levels of Val-tRNAval. The germline, as a reproductive preservation mechanism during
unfavorable conditions, signals the soma for organismal aging, stress and pathogen resistance. glp-4(bn2ts)
mutants are widely used to generate germline deficient mutants for organismal studies, under the assump-
tion that the soma is unaffected. As reduced translation has also been demonstrated to alter organismal
properties, it is unclear whether changes in aging, stress resistance, etc. observed in glp-4(bn2ts) mutants
are the result of germline deficiency or reduced translation.
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Germline stem cells produce daughter cells that differentiate into
gametes. The generation of a sufficiently large number of gametes for
reproductive success requires significant germline stemcell activity. The
Caenorhabditis elegans hermaphrodite exhibits this extensive stem cell
activity. At hatching, each hermaphrodite contains two germ cells that
proliferate to more than 800 germ cells per gonad arm in the young
adult and that continue to proliferate during the subsequent progeny
production period (Hubbard and Greenstein 2005; Pazdernik and

Schedl 2013). To identify genes that specify the germline stem cell fate
as well as genes that are necessary for stem cell proliferation and cell-
cycle progression, genetic screens have been conducted inC. elegans for
mutations that result in an abnormal Germ Line Proliferation (Glp)
phenotype. Two genes identified in these screens are of particular in-
terest, glp-1 and glp-4. Mutations in the glp-1 gene were used to identify
the Notch pathway as the key signaling system between the somatic
niche and germ cells for the specification of the germline stem cell fate
(Austin andKimble 1987; 1989; Yochem andGreenwald 1989). In glp-1
loss of function mutants, germline stem cells prematurely enter meiosis
to form gametes. Temperature-sensitive (ts) glp-1 alleles have been
identified and used to further understand the role of GLP-1 signaling
in the proliferation vs. meiosis decision at the cellular level and to
identify other genes involved in the stem cell fate decision through
suppressor and enhancer screens (e.g., Austin and Kimble 1987; Fox
and Schedl 2015; Maine and Kimble 1989). The glp-4 gene was iden-
tified by the ts allele bn2; when homozygous mutant embryos or L1
larvae are grown at the restrictive temperature (25�) adults contain only
approximately 12 germ cells, which appear to be arrested in prophase of
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the mitotic cell cycle (Beanan and Strome 1992). When glp-4(bn2ts)
mutant adults are shifted back to the permissive temperature, cell-cycle
arrest is reversed and extensive proliferation occurs, restoring the nor-
mal pattern of meiotic development and oogenesis. The regeneration of
the germline indicates that the arrested cells correspond to the germline
stem cell population. glp-4 was suggested to interact with GLP-1 sig-
naling as mutations reported to be alleles of glp-4 were isolated in a
screen for enhancers of the premature meiotic entry phenotype of glp-1
partial loss of function (Qiao et al. 1995). glp-1(ts) and glp-4(bn2ts)
adult mutants grown throughout larval development at the restrictive
temperature have 1% or less the normal number of germ cells but have
a soma that is morphologically indistinguishable from wild type at the
level of light microscopy (Austin and Kimble 1987; Kodoyianni et al.
1992; Beanan and Strome 1992), suggesting that only the germline is
affected in the mutants. These properties have led glp-4(bn2ts) and glp-
1(ts) mutants to be widely used to generate populations of germline
deficient adult hermaphrodites for molecular biology experiments to
identify genes whose RNAs and proteins are enriched in the germline
(e.g., Rosenquist and Kimble 1988; reviewed in Reinke 2006).

Germlineproliferation inC. eleganshas been linked to rapidorganismal
aging. Elimination of all germ cells by laser ablation results in lifespan
extension (Hsin and Kenyon 1999), which appears to be unrelated to
the production of oocytes or sperm, whereas mutants that result in germ
cell overproliferation cause lifespan shortening (Arantes-Oliveira et al.,
2002). Stimulated by the finding that loss of germ cells leads to lifespan
extension, researchers have investigated the role of germ cells in signaling
for regulation of other organismal characteristics. However, removal of the
germline by laser ablation is technically challenging and very low through-
put. Therefore, researchers have turned to the use of glp-1(ts) and glp-4
(bn2ts) mutants and temperature shifts to generate populations of adult
hermaphrodites that have very few germ cells. For example, glp-4(bn2ts)
mutants, as well as glp-1(ts)mutants, have been used to examine the role of
the germline in aging, stress resistance, pathogen resistance and fat metab-
olism (e.g., Wang et al. 2008; TeKippe and Aballay 2010; Greer et al. 2010;
Labbadia and Morimoto 2015). Nevertheless, interpretation of findings
after use of glp-4 and glp-1 mutants to assess the role of germ cell pro-
liferation on organismal properties relies on the assumption that the mu-
tant conditions do not also affect somatic tissues in a way that could
influence aging, stress resistance, pathogen resistance andmetabolism.This
assumption has not been fully investigated.

The molecular identity and null phenotype of glp-4 are unknown.
This limits our understanding of its role in germ cell proliferation,
potential interaction with GLP-1 signaling, and interpreting results
when glp-4(bn2ts) is used to generate germ cell2deficient adults for
studies of organismal properties such as aging and stress resistance.We
used whole-genome sequencing to demonstrate that glp-4 encodes the
valyl aminoacyl transfer RNA (tRNA) synthetase VARS-2 and deter-
mined that the null phenotype is early larval lethality, consistent with a
major disruption of protein synthesis. Based on phenotypic analysis we
find that glp-4(bn2ts) is partially deficient for valine-tRNA synthetase
function in the soma at the restrictive temperature, thus raising the
question whether changes in organismal properties in glp-4(bn2ts)mu-
tants are due to germ cell deficiency or reduced protein synthesis.

MATERIAL AND METHODS

C. elegans strains
All strains were cultivated on nematode growth medium plates seeded
with E. coli strain OP50 (Brenner 1974) and were maintained at 20�
unless indicated. The strains used in these studies are as follows: N2
(Bristol) as wild type. glp-4(bn2ts) (grown at 15�), glp-4(bn2bn39), and

glp-4(bn2bn40) were obtained from Susan Strome. Enhancer of glp-1
(bn18), om14, was obtained from Eleanor Maine. Y87G2A.5 (tm3947)
was obtained from the Japanese National Bioresource Project and bal-
anced over hIn1[unc-54], agef-1(ok1736)/hIn1[unc-101(sy241)] and
F22G12.5(ok2367) were obtained from the Caenorhabditis Genetics
Center. unc-75(e950) glp-4(bn2ts) and unc-75(e950) unc-101(m1) were
constructed by standard methods. Phenotypes were scored using a
dissecting microscope or Nomarski DIC microscopy with a 40 or
63· objective.

Molecular methods
Genomic DNA was isolated by a minor modification of the CTAB
method of Mello and Fire (1995). Whole-genome sequencing of glp-4
(bn2ts) was obtained by paired-end reads (average 30· coverage) using
an Illumina Genome Analyzer through The McDonnell Genome In-
stitute,WashingtonUniversity, St LouisMO. Following read pair align-
ment to the C. elegans reference genome with BWA (Li and Durbin
2009), five coding sequence changes in a previously mapped genetic
interval were identified in glp-4(bn2ts) that differed from the N2 wild-
type reference sequence (WormBase.org, release WS248): C54C8.5
(glct-5), nt position 12454271, G-.A, Trp-.Stop; F22G12.5, nt posi-
tion 13168458, G-.C, His-.Asp; Y87G2A.5 (formerly called vars-2,
see below), nt position 13556729, C-.T, Gly-.Asp; Y6B3A.1a (agef-1),
nt position 13616715, C-.T, Asp-.Asn; and Y71A12B.17 (gadr-5),
nt position 13985048, A-.G, Lys-.Glu. To identify the molecular
lesion in the glp-4(bn2ts) intragenic revertants, we isolated total RNA
from each mutant strain. Reverse-transcription polymerase chain re-
action with three sets of overlapping primers for Y87G2A.5 was then
used to generate the corresponding coding region cDNA, which was
Sanger sequenced. Feeding RNA interference (RNAi) was performed
(Lee et al. 2007) for each of the five candidate genes with the use of
clones obtained from the Ahringer library (Rual et al. 2004), with the
rrf-1(pk1417) background to largely limit knockdown to the germline
(Kumsta and Hansen 2012). RNA in situ hybridization was per-
formed as described (Motohashi et al. 2006).

Genetics methods

Complementation testing:Wetesteddeletionalleles for three of thefive
candidate genes by placing them in trans to unc-75(e950) glp-4(bn2ts),
verifying the genotype at 15�, and then shifting to 25� to examine the
phenotype. Only in the case of Y87G2A.5 (tm3947)/ unc-75(e950) glp-4
(bn2ts) were abnormal phenotypes observed.

Isolation of suppressors of glp-4(bn2ts): We isolated recessive sup-
pressors of glp-4(bn2ts) with an ethyl methanesulfonate mutagenesis
screen similar to the method described by Beanan and Strome (1992),
except that the screen for fertility was at 24�. We assessed linkage of the
suppressor mutation to glp-4(bn2ts) by constructing unc-75(e950) glp-4
(bn2ts)/ glp-4(bn2ts); suppressor/+ strains and screening for unc-75
(e950) glp-4(bn2ts) animals that were fertile at 24� in the following
generation.We recovered 26 suppressors from~1.1 · 106 F2 generation
worms, which included suppressors that were both linked and unlinked
to glp-4(bn2ts). Linked suppressor bn2oz283 was examined further.

Analysis of glp-1 enhancer om14: A screen for extragenic enhancers
of glp-1(bn18) was performed previously in an effort to identify new
genes involved in GLP-1 Notch signaling (Qiao et al. 1995); among the
mutations identified was om14, which was reported to be an allele of
glp-4. We used complementation and linkage analysis to test whether
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om14 was an allele of glp-4. First, om14/ unc-75(e950) glp-4(bn2ts)
animals were generated at 15� and shifted to 25�. We found that at
25� heterozygotes were fertile and segregated ~1/4 of progeny that
displayed theUnc-75Glp-4 phenotypes, ~1/4 of progeny that displayed
the oogenesis defective phenotype of om14 (Qiao et al. 1995), and ~1/2
of progeny that were nonUnc fertile hermaphrodites. Second, om14
was placed in trans to unc-75(e950) unc-101(m1), markers that are
tightly linked to glp-4. In the next generation we found that ~1/4 of
the Unc animals [unc-75(e950) unc-101(m1)] displayed the oogenesis
defective phenotype of om14. Based on finding that om14 and glp-4
(bn2ts) complement and that om14 is unlinked to the right arm of
chromosome I, om14 appears not to be an allele of glp-4.

Comparative structural modeling of glp-4 valine-
tRNA synthetase

Construction of the model: The 2.9 angstrom crystal structure of the
valine tRNA-synthetase (valRS) from Thermus thermophilius [PDB id:
1IVS (Fukai et al. 2003)] was used as a template for constructing a
structural model of the valRS from C. elegans (glp-4 VARS-2, see be-
low). Protein sequences for valRS and glp-4VARS-2 were aligned using
ClustalW (Larkin et al. 2007). Three general issues were addressed to
generate a homology model: 1) substitution of amino acids at aligned
positions; 2) deleted regions; and 3) inserted regions.

To address the first issue, we used RosettaDesign (Leaver-Fay
et al. 2011; Kaufmann et al. 2010) to computationally substitute all
nonidentical, aligned residues on the valRS structural template to their
identity in glp-4 VARS-2. The repulsive term in the Rosetta full-atom
scoring function was drastically reduced, and the amino acids at altered
positions were mutated in silico to adopt the glp-4 VARS-2 sequence.
Next, several rounds of rotational isomer (rotamer) sampling (Bower
et al. 1997) were used to resolve steric clashes whereas the repulsive
component of the Lennard-Jones termwas gradually increased to ~60%
of its standard value (Kaufmann et al. 2010). Finally, once all substitu-
tions had been made and clashes resolved, gradient minimization
(Payne et al. 1992) was performed on each domain in several iterations.

With each iteration, the repulsive term was slowly increased to its
standard value to alleviate remaining clashes. Although some signifi-
cant clashes remained, they were outside the regions of interest for this
study, and no further effort was made to remove them.

Second, for elements of valRS that are not present in glp-4VARS-2,
we manually deleted residues from the PDB file, leaving “gaps” in the
structure. One side of the gap was manually chosen as the stationary
partner (or target to which the other end of the gap would be aligned)
whereas the other side was considered the mobile partner. Selection of
the stationary andmobile partners was done depending on which end
appeared less likely to be hindered by the surrounding structure. A
single amino acid was added onto the mobile partner that overlapped
with the targeted stationary partner. Harmonic constraints that forced
the overlap residue (on the mobile partner) and the template residue
(on the stationary partner) to be superimposedwere then enforced, and
the structure minimized in several steps with gradually increasing re-
pulsive energy. This allowed efficient closure of the deletion gaps.

Third, for inserted stretches of amino acids that were present in
glp-4VARS-2 but not in valRS, we added themwithin Rosetta by a well-
developed process called fragment assembly (Misura et al. 2006).
Briefly, fragment assembly employs a user-generated library of 3 or 9
amino acid peptide structures extracted from the protein databank.
These fragments are selected to be of similar sequence as the insertion
region. A Monte Carlo sampling algorithm selects the combination of
short fragments that both optimize the Rosetta fullatom scoring func-
tion and satisfy the starting and ending points for the insertion in the
structural model. The fragment insertion that results in the best overall
score is retained and manually inspected for the best fit, which in this
case was the lowest root-mean square deviation (RMSD) compared
with the template. RMSD is a cumulative measure of the mean distance
between equivalent atoms in themodel and template, which is routinely
used to compare the similarity of two regions of homologous protein
structure.

Next, we positioned the valyl-adenylate substrate in the editing
site by structurally aligning a valyl-adenylate fromPDB1IVSonto to the
59-O-(N-(L-threonyl)-sulfamoyl) adenosine substrate in PDB 1WK9

Figure 1 Relative positions of genetic loci
and mutant alleles within the genetic and
physical map regions around glp-4. (A) Dis-
plays the genetic map on the right arm of
Chromosome I with morphologic loci in the
region used to localize glp-4 indicated
(top) and the physical map (bottom) of the
region with genes that contain missense
mutations from whole genome sequencing
indicated. (B) Shows the intron–exon struc-
ture of Y87G2A.5, which encodes the cy-
toplasmic valyl aminoacyl transfer RNA
synthetase VARS-2. (C) Shows an expan-
sion of exon 3 with the relative position of
glp-4 genetic lesions characterized in this
paper indicated. Arrows in (B) and (C) are
included to indicate the direction of tran-
scription, with 39 to the left. Diagrams are
drawn to scale based on nucleotide posi-
tion on Chromosome I. The tm3947 dele-
tion spans nucleotide positions 13,555,971
to 13,556,472. The bn2, bn39, bn40 and
oz283 point mutations occur at positions
13,556,729, 13,556,285, 13,556,288 and
13,556,310, respectively.
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Figure 2 Alignment of C. elegans glp-4 VARS-2 with human and Thermus thermophilus orthologs. Alignment performed with ClustalW (Larkin
et al. 2007). Protein domains are color coded—the split Rossman fold in blue, CP1 domain in magenta, editing domain in green, alpha peptide
in purple, transfer RNA (tRNA) recognition domain 1 in turquoise, helical bundle in pink, and tRNA recognition domain in yellow; this color
code is used again in Figures 4A to indicate the relevant domains in the 3D structures. Point mutations (bn2, oz283, bn40, and bn39) are
marked in the alignment in gray, whereas the deletion allele tm3947 is indicated by the dashed line above the alignment. The editing active
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(editing domain only) (Fukunaga and Yokoyama 2005). PDB 1WK9
was then aligned to the model and the coordinates for the valyl-adeny-
late substrate were transferred to the model.

Finally, once the model amino acids were fully substituted,
insertions/deletions integrated, and the valyl-adenylate substrate added,
full structural refinement (Misura et al. 2006) using constraints on the
template yielded the completed model (see Figure 4). All structural
manipulations and calculations were performed using standard and
custom Rosetta programs (Leaver-Fay et al. 2011; Kaufmann et al.
2010) and all visualization performed using PyMol (DeLano 2002;
The Pymol Molecular Graphics System, version 1.3. http://pymol.
org/).

Modeling mutations and paralogous substitutions: Amino acid
changes were modeled using RosettaDesign. Briefly, we performed
Monte Carlo sampling of discrete rotamer side-chain conformations
on a fixed backbone. This is referred to as “fixed-backbone” design and
involves computationally cycling through predefined, low-energy con-
formations of a particular amino acid, calculating the whole structure
energy for each conformation and finding the one with the lowest
energy (Leaver-Fay et al. 2011; Kaufmann et al. 2010). After fixed
backbone mutation/substitution, a number of small perturbations in
the backbone and side-chain torsion angles are applied in combination
with gradient minimization. This allows the backbone to be reposi-
tioned along an energy gradient based on new requirements from
changing an amino acid identity. In each step, both the tRNA and
the bound valyl-adenylate substrate were constrained to their original
position (such that they could move, but such motion was heavily
penalized by the scoring function). We performed flexible backbone
optimization iteratively until no further improvement in energy due to
the sequence change was observed (Misura et al. 2006).

RESULTS

Molecular Identity of the glp-4 locus
The glp-4 locus was previously mapped genetically to an approximately
two-megabase interval between markers unc-75 and lev-10 on Chro-
mosome I (Beanan and Strome 1992). We performed whole-genome
sequencing (Hobert 2010) of the glp-4(bn2ts) reference allele-containing
strain and identified five candidate genes in the mapped region that
contained coding sequence changes compared to the Bristol N2 wild-

type reference genome (see the sectionMaterials and Methods; Figure
1). To determine which of the five genes encodes glp-4, we performed
RNAi knockdown of each in the rrf-1 mutant background, which is
proficient for RNAi in the germline but largely defective for RNAi in
the soma (Kumsta and Hansen 2012). We then assessed the treated
animals at 20� for a sterility phenotype similar to that observed for
glp-4(bn2ts) at 25�. Only knockdown of Y87G2A.5 displayed a sterile
phenotype, showing a strong reduction in germ cell number and little
or no gametogenesis. We next performed complementation tests for
the three candidate genes in the mapped region where deletion alleles
were available from the knockout consortium (C. elegans Deletion
Mutant Consortium 2012): Y87G2A.5 (tm3947), agef-1(ok1736)
[Y6B3A.1], and F22G12.5 (ok2367). Only Y87G2A.5 (tm3947) failed
to complement glp-4(bn2ts). The trans-heterozygotes, although
weakly fertile at 15�, are fully sterile at 25� with a limited number
of germ cells (also see below). Three tightly linked, possibly intra-
genic, suppressors of the glp-4(bn2ts) temperature sensitive sterility
have been identified, bn2bn39, bn2bn40 and bn2oz283 (Beanan and
Strome 1992; see the section Materials and Methods). The coding
sequence of Y87G2A.5 in each of the suppressors was sequenced; in
addition to the original bn2missense change in exon 3, we found that
the suppressors contained a second missense mutation in exon 3
(Figure 1). These findings together provide strong evidence that
glp-4, defined by allele bn2, encodes a valyl aminoacyl tRNA synthe-
tase (VARS-2, Y87G2A.5). Based on the large body of literature on
glp-4, the gene name will remain glp-4, while the protein will be
identified as VARS-2 to indicate its molecular identity.

glp-4 VARS-2 is a cytoplasmic class I valyl aminoacyl tRNA syn-
thetase that catalyzes the transfer of valine to its cognate tRNA for
protein synthesis. glp-4 VARS-2 has two tRNA recognition domains
(1 and 2); a split class 1 Rossmann-fold, which functions in catalyzing
the synthesis of aminoacyl-adenylate and aminoacyl-tRNAval; an edit-
ing domain; and the connective polypeptide (CP1) domain, which also
functions in post-transfer editing (Figure 2, Fukai et al. 2000). tm3947
deletes 502 base pairs and inserts four base pairs, removing part of the
editing domain, all of the CP1 and alpha peptide domains and part of
the Rossmann-fold. Thus tm3947 is likely a null allele. bn2 is a missense
mutation, G296D, in the CP1 domain. Intragenic revertants bn2bn39-
T444M, bn2bn40-P443L, and bn2oz283-E436K, are missense muta-
tions in the adjacent editing domain (Figure 2; also see Structural
analysis of glp-4 VARS-2).

site aspartates D379 and D382 are underlined. Below the alignment, residues that are identical (�), strongly similar (:), or weakly similar (.) for all
three proteins are indicated. Note that glp-4 VARS-2 and human valRS are more closely related to each other than to T. thermophilus.

Figure 3 In situ hybridization demonstrates expres-
sion of glp-4 VARS-2 in the germline and soma.
Higher (A) and lower (B) magnification views of a
young adult hermaphrodite showing accumulation
of glp-4 mRNA by in situ hybridization using the
method of Motohashi et al. 2006. Very strong germ-
line expression (overexposed dark staining) is ob-
served in the two U-shaped gonad arms (B). The
anterior region, boxed in (B), is enlarged in (A) to
illustrate expression of glp-4 mRNA in the intestine
(dark staining, indicated with black arrow).
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glp-4 VARS-2 has somatic functions
The soma of glp-4(bn2ts) homozygotes grown at the restrictive tem-
perature throughout development does not have any obvious morpho-
logical abnormalities by light microscopy (Beanan and Strome 1992).
Therefore, it was of interest whether glp-4 VARS-2 has somatic func-
tions. tm3947-null homozygotes arrest during early larval development.
Although there is some variability in animal size, based on somatic
gonad and germ cell counts (from 4–12 cells) the arrest is in the L1
stage. By contrast, tm3947 heterozygotes are morphologically normal.
These results are consistent with slow growth and larval lethality ob-
served in genome-wide RNAi screens with Y87G2A.5 (Simmer et al.
2003; Nehme et al. 2010; Dunbar et al. 2012). In situ hybridization
reveals that glp-4 mRNA is expressed in the intestine and somatic
gonad, in addition to strong expression in the germline (Figure 3). Thus
glp-4 VARS-2 is expressed and functions in both the germline and
soma.

Based on the germline phenotype, bn2 is a partial loss of function
mutation; bn2 fails to complement the tm3947 deletion allele for the
reduced germ cell number phenotype at 25� and the reduced germ cell
number can be phenocopied by RNAi of glp-4 VARS-2. In addition to
defects in germline development, glp-4(bn2ts) is also partially defective
in somatic function. bn2/tm3947 trans-heterozygotes at 25� are slow
growing, reaching adulthood more than a day later than the tm3947/+
control, and have a protruding vulva that often results in bursting in
adults. Thus, notwithstanding the apparently normal somaticmorphol-
ogy of bn2 homozygotes, glp-4 VARS-2 activity is partially compro-
mised in the soma of glp-4(bn2ts) animals at 25�.

Structural analysis of glp-4 VARS-2

Structural homology model: We have used structural analysis to
provide insight into (a) the effect of bn2 on glp-4 VARS-2 activity;
(b) the mechanism by which the intragenic revertants suppress the
effect of bn2; and (c) the unique function of glp-4 VARS-2 relative to
the valyl-tRNA synthetase paralog VARS-1. The crystal structure of the
T. thermophilus valRS has been determined (Fukai et al. 2000; 2003).
Each of the structural domains identified in valRS is readily discerned in
the glp-4 VARS-2 sequence (Figure 2) and secondary structure pre-

dicted with DSSP (Kabsch and Sander 1983). Although the overall
primary sequence identity is modest (37%), the aligned predicted sec-
ondary structure of the two proteins in placement of helical and sheet
segments is in 92% agreement. These findings, along with previous
work that successfully generated a homology model with proteins of
similar modest sequence identity (Misura et al. 2006), indicate that a
reasonably accurate structural homology model for glp-4 VARS-2 can
be generated using valRS as a template. An initial model was generated
as described in the Materials and Methods section and assessed by
visual examination of themodel to look for obvious structural inaccura-
cies and by computation of the model RMSD, which is a quantitative
scalar measure of the generated model backbone’s fit relative to the
template backbone. Our structural model for glp-4VARS-2 (Figure 4A)
has a backbone RMSD of 0.8 angstroms (determined by pyMol align-
ment) from the starting template, indicating that the crystal structure
can be used for homology modeling of the C. elegans protein with only
modest backbone rearrangement.

Effect of bn2 on GLP-4 VARS-2 activity: During the process of
charging tRNAs with amino acids for subsequent translation, an amino
acid residue can be misacylated to result in a noncognate tRNA-amino
acid pair. Class I tRNA synthetases can correct such errors via post-
transfer editing, i.e., the removal of an amino acid that is attached to a
noncognate tRNA. This is an essential part of the “double-sieve”mech-
anism critical for maintaining translational fidelity. Isosteric threonine
charged onto tRNAval is the major misacylation that is post-transfer
edited by valyl-tRNA synthetases. Although a number of residues
have been shown to be critical for coordination and recognition of
the amino-acylated tRNA during post-transfer editing, hydrolytic
cleavage of the misacylated Thr-tRNAval substrate is thought to take
place in a hydrophilic pocket of the tRNA’s editing domain. This
domain contains a pair of conserved aspartates (D379 and D382, in
green in Figure 2 and Figure 4) that are about 6.5 and 4.4 angstroms
from the scissile bond (Fukai et al. 2000; Fukunaga and Yokoyama
2005). One of these aspartate residues deprotonates an adjacent
water molecule to create an activated hydroxyl ion, which nucleo-
philically hydrolyzes the Thr-adenylate bond of the noncognate
amino acid tRNAval substrate.

Figure 4 Homology model of the three-
dimensional structure of glp-4 VARS-2 from
C. elegans (solid, multicolored as described
in Figure 2) generated using the crystal struc-
ture of the orthologous valyl aminoacyl tRNA
synthetase valRS from T. thermophilus as the
template (black). (A) The entire homology
model of glp-4 VARS-2 with conserved do-
mains color coded and regions of interest in-
dicated with arrows: editing active site (CP1
domain in purple and editing domain in
green), anti-codon recognition pocket (red)
(see Figure 5), the amino acylation active site
and tRNAval (orange). (B) Close-up view of the
editing pocket with active site residues D379
and D382 (green), peptide backbone (yellow),
valyl adenylate (purple) located just right of
center in the pocket, wild type G296 on the

opposite side of the pocket (red) and distances between aspartate carboxyl or glycine alpha-carbon and the scissile bond (dashed black line)
indicated. (C) Close-up view of the editing pocket in bn2 G296D where the carboxyl of the substituted aspartate 296 is 7.4 angstroms from the
scissile bond and is proposed to catalyze inappropriate deacyalation of correctly charged Val-tRNAval. (D) Close-up view of the editing pocket in
bn2bn40 intragenic suppressor, where bn40 P443L (outside of the close-up region) results in displacement of bn2 substituted aspartate so that it
is now 11 angstroms from the scissile bond.
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glp-4(bn2ts) G296D lies just inside a region of the valyl-tRNA syn-
thetase called the CP1 domain (Figure 2 and Figure 4), a region that
links the Rossman-fold of class I tRNA synthetases to the editing do-
main (Fukai et al. 2000), and plays an important editing role of its own
for the isoleucyl, leucyl, and valyl-tRNA synthetases (Chen et al. 2000;
Sarkar et al. 2007). In the wild-type model, G296 resides on a flexible
region of the CP1 domain, opposite from the catalytic aspartates in the
hydrophilic editing pocket. The glycine 296 alpha-carbon sits approx-
imately 9.2 angstroms from the scissile bond (Figure 4B). In the bn2
G296D mutant, the aspartate 296 carboxyl is now 7.4 angstroms from
the scissile bond (Figure 4C). Given this short distance and the fact that
the environment is solvent accessible, it is possible that mutant aspar-
tate 296 can act as a proton acceptor to activate a water molecule for
nucleophilic attack of the scissile bond. Although the bn2 aspartate 296
mutation is in a position opposite the native catalytic aspartates, it is
oriented such that the acidic side-chain is immediately adjacent to the
valyl-adenylate substrate.

We propose that bn2 aspartate 296 catalyzes inappropriate (rogue)
deacylation of the correctly charged Val-tRNAval. Catalysis due to such
a mechanism would not necessarily require the stringent positioning
enforced by the binding pocket in the editing domain that is required
for deacylation of mischarged Thr-tRNAval via the native catalytic as-
partate residues. In fact, we speculate that the temperature sensitivity
exhibited by the glp-4(bn2ts)mutant is due to an increased tendency to
mis-deacylate Val-tRNAval at elevated temperatures. Because the
G296D mutation is located in a flexible region opposite the active site
residues, lower temperatures may provide insufficient dynamic acces-
sibility of mutant aspartate 296, resulting in low levels of inappropriate
deacylation of Val-tRNAval. At greater temperatures, catalysis of the
inappropriate deacylation reaction would be increased, as aspartate 296
would be brought into contact with the valyl-adenylate substrate more
frequently. Thus we propose that bn2 G296D causes inappropriate
deacylation of Val-tRNAval at elevated growth temperatures, leading
to reduced levels of correctly charged Val-tRNAval that result in de-
creased bulk protein synthesis.

Theproposed roguedeacylation of correctly chargedVal-tRNAval by
the bn2 mutant protein can be considered as antimorphic, where in-
appropriate activity results in less Val-tRNAval and thus failure to com-
plement the deletion allele tm3947. The recessive nature of the bn2
mutation is likely explained by glp-4 VARS-2 activity from the wild-
type allele catalyzing and releasing sufficient Val-tRNAval for normal
function, consistent with tm3947 being recessive. Other examples of
recessive antimorphs have been described, e.g., sup-10(n983) andmett-
10(oz36) (Greenwald and Horvitz 1986; Dorsett et al. 2009), although
themolecular mechanisms appear to be very different. The prior failure

to recover new loss of function alleles in trans with bn2 in a noncom-
plementation screen (Beanan and Strome 1992) was probably because
of severely reduced fertility, as we observed for tm3947/bn2 at the
permissive temperature, which would be exacerbated by a general re-
duction in progeny production that typically occurs following chemical
mutagenesis.

Suppression of bn2 G296D by the intragenic revertants: The glp-4
(bn2bn39) T444M and glp-4(bn2bn40) P443L suppressor mutations lie
in the editing domain, approximately 23 and 21 angstroms from the
bn2 G296D mutation, respectively. Each sits in what is likely a ‘hinge’
region that joins the editing and CP1 domains to the rest of the protein.
Modeling of these mutations into the G296D model introduces local
steric clashes around residues 443 and 444 that, when resolved, alter
the orientation of the beta-sheet linker in which they are contained. In
the case of glp-4(bn2bn39)T444M,minimizing the clashes increases the
distance between the bn2 aspartate 296 mutation and the scissile bond
from 7.4 to 8.5 angstroms, as the beta-sheet linker is “pushed” away
from the editing domain. This is likely due to the physical change when
replacing a relatively polar amino acid (threonine) with a larger, hy-
drophobic residue (methionine). Specifically, the surrounding region
may “collapse” to minimize the solvent exposure of methionine, thus
shifting the “upstream” beta-sheet. For glp-4(bn2bn40), the P443L mu-
tation increases the distance between the bn2 aspartate 296 mutation
and the scissile bond from 7.4 to 11 angstroms as well as rotating the
carboxyl side-chain away from the valyl-adenylate substrate (Figure
4D). Replacement of constraining proline 443 with the larger side chain
in leucine results in a major disruption in the beta-sheet in which it
resides. For the third intragenic suppressor glp-4(bn2oz283), E436K, the
side chain of lysine 436 faces the external solvent and does not reveal an
obvious disruption of the structure and positioning of aspartate 296.
Thus the mechanism of suppression by E436K must be more indirect,
with the structural model providing little insight. In sum, the intragenic
suppressor mutations T444M and P443L result in displacement of the
mutant aspartate in the editing pocket through steric effects that are
propagated to bn2 G296D (Figure 4D), such that its ability to catalyze
inappropriate deacylation of the cognate Val-tRNAval is reduced.

Intragenic suppressors of bn2 were isolated at 100- to 1000-fold
lower frequency following EMS mutagenesis than typical loss of func-
tion frequency, which was interpreted by Beanan and Strome (1992) as
the bn2mutant not being reverted through simple loss of gene activity
and that the gene product is likely to be essential. Both inferences were
correct based on our findings: (a) glp-4VARS-2 is an essential gene; and
(b) only a small subset of intragenic mutations are expected to suppress
bn2, those that displace G296D in the editing pocket and thus decrease

Figure 5 Enlargement of anticodon bind-
ing pocket homology model for the two C.
elegans valRS paralogs glp-4 VARS-2 (A)
and VARS-1 (B). In both panels the tRNAval

anticodon is shown as a stick structure
interacting with the pocket. (A) The glp-4
VARS-2 anticodon binding pocket contains
tyrosine at residue 816, proline at 813 and
threonine at 940, which generate a pocket
that is large enough to accommodate anti-
codons whose wobble positions contain ei-
ther purines or pyrimidines. (B) The VARS-1

binding pocket contains bulky substitutions at these residues (816 is tryptophan, 813 is lysine and 940 is glutamine) that result in steric clashes
when the antiocodon wobble position contains purines, suggesting that VARS-1 is unable to efficiently charge tRNAval for the codons GUC and
GUU.
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its inappropriate deacylation activity without otherwise damaging
tRNA synthetase function. bn2bn40 was observed to be a stronger in-
tragenic suppressor (weakly dominant, larger brood size) than bn2bn39
(fully recessive) (Beanan and Strome 1992), which is consistent with the
structural model where bn2bn40 P443L results in a greater displace-
ment of the bn2 aspartate 296 from the valyl-adenylate substrate, com-
pared with bn2bn39 T444M, as well as rotating the carboxyl side-chain
away from the scissile bond (Figure 4D).

Unique function of glp-4 VARS-2: C. elegans contains a second valyl-
tRNA synthetase paralog, vars-1. To determine why vars-1 is unable to
compensate for the reduced ability of glp-4 bn2 and tm3947 to produce
Val-tRNAval, we aligned sequences in glp-4 VARS-2 that are in direct
contact with the anticodon with the same region in VARS-1, and then
mapped the VARS-1 anti-codon recognition residues onto our model
(Figure 4A and Figure 5). The model reveals several bulky substitutions
in the immediate vicinity of the anticodon in VARS-1. Tyrosine 816 of
glp-4VARS-2 lies in direct contact with the wobble position in the anti-
codon; VARS-1 has a bulkier tryptophan substitution for residue 816.
Two nearby residues in glp-4 VARS-2, proline 813 and threonine 940,
also have substitutions in VARS-1 to bulkier amino acids, lysine and
glutamine, respectively. Thus, although the anticodon recognition
pocket in glp-4 VARS-2 appears to easily accommodate binding of
either purines or pyrimidines in the wobble position, the three bulky
substitutions inVARS-1 decrease the pocket volume, sterically prevent-
ing binding anticodons with larger purines in the wobble position.
Therefore VARS-1 is not able to efficiently charge tRNAval that recog-
nize valine codons GUC and GUU, which provides an explanation for
the unique and essential function of glp-4VARS-2 in viability, germ cell
proliferation, and protein synthesis.

DISCUSSION
glp-4 encodes the VARS-2 valyl aminoacyl tRNA synthetase
[Y87G2A.5] based on (a) genetic mapping of the canonical allele bn2
to a 2 megabase region surrounding Y87G2A.5, (b) finding the G296D
missense change in VARS-2, (c) finding that of all the genes within the
genetically mapped region containing missense mutations in the glp-4
(bn2ts) strain, only RNAi of Y87G2A.5 phenocopies the glp-4(bn2ts)
mutant, (d) finding that the tm3947 deletion in Y87G2A.5 fails to
complement glp-4(bn2ts), and (e) finding that tightly linked glp-4
(bn2ts) suppressor mutations are missense changes within VARS-2.
Genetic analysis indicates that glp-4(bn2ts) is a partial reduction-of-
function mutation while structural modeling suggests that bn2 G296D
in the CP1 domain results in substitution of an asparate in the editing
pocket opposite to the catalytic aspartates, in a position where it can
catalyze inappropriate deacylation of the correctly charged Val-tRNAval

and thus reduce levels of Val-tRNAval. Structural modeling of the
bn2bn39 T444M and bn2bn40 P443L intragenic suppressor mutations
suggests that the bulkier missense changes result in displacement of the
bn2 asparate 296 in the editing pocket so that it is less able to efficiently
catalyze inappropriate deacylation of Val-tRNAval. glp-4 VARS-2 is
essential for somatic and germline development as the likely null phe-
notype is early larval lethality. The widely used allele bn2, in addition to
its germline defects at the restrictive temperature, is also defective in
somatic development and function as glp-4(bn2ts)/glp-4 null displays
slow growth, protruding vulva, and bursting at the vulva. These find-
ings reinforce the caution that a loss-of-functionmutant that displays a
strong morphologic phenotype in one cell type but no morphologic
phenotype in other cell types does not preclude that the mutant is also
partially defective in other cell types, although not manifested at a

morphologic level. A partial loss-of-function allele of the arginyl-tRNA
synthetase rars-1(gc47) was identified in a forward genetic screen for
mutations that result in resistance to hypoxia (Anderson et al. 2009).
Although rars-1(gc47)mutants, like glp-4(bn2ts)mutants, are morpho-
logically normal, they nevertheless have reduced protein translation
rate. Thus by analogy, glp-4(bn2ts) mutants at the restrictive tempera-
ture are likely to be partially defective in protein synthesis, which lead to
the observed mutant phenotypes.

glp-4(bn2ts) and glp-1(ts)mutants have been usedwidely to generate
germline deficient adults to study the role of signaling between germ
cells and somatic tissues for organismal aging, stress resistance, path-
ogen resistance, and metabolism. Interpretations of results from such
studies rely on the assumption that the glp-4(bn2ts) and glp-1(ts) germ
cell2deficient animals have a soma that is unperturbed. However, our
results indicate that glp-4(bn2ts) at the restrictive temperature is partial
loss of function in the soma. In addition, a large body of literature in C.
elegans has implicated partial inhibition of translation in lifespan ex-
tension, stress resistance and pathogen resistance (e.g., Hansen et al.
2007; Pan et al. 2007; Anderson et al. 2009; Wang et al. 2010; Dunbar
et al. 2012). glp-4(bn2ts) mutants, although germline deficient, very
likely have partial inhibition of translation due to reduced levels of
charged Val-tRNAval . Thus it is unclear whether organismal lifespan
extension, stress resistance, pathogen resistance, and increased fat ac-
cumulation observed in glp-4(bn2ts) mutants is a result of germline
deficiency, reduced protein synthesis or a combination of both pheno-
types. It should be noted that glp-1 also has functions in the larval/adult
soma (Mango et al., 1991; Berry et al., 1997; Singh et al., 2011), which
raises concern about interpretation of studies of organismal properties
of germline deficient glp-1(ts) mutants. We suggest that attribution of
organismal phenotypes to signaling from the germline is best demon-
strated through laser ablation of the germline precursors, Z2 and Z3
(Kimble and White 1981).

glp-4(bn2ts) mutants display two intriguing temperature shift phe-
notypes that can now be correlated with protein translation. Partial
disruption of protein translation (at 25�) through decreased levels of
charged Val-tRNAval leads to mitotic cell cycle arrest in the stem cell
population, whereas restoration of protein translation in the adult (fol-
lowing shift back to 15�) results in release of mitotic cell-cycle arrest,
extensive stem cell proliferation, and the resulting reformation of the
normal germline distal-proximal polarity of meiotic prophase progres-
sion and gametogenesis. These phenotypes are remarkably similar to
adult reproductive diapause (Angelo and Van Gilst 2009; Seidel and
Kimble 2011) where complete food deprivation at the late L4 stage leads
to cell cycle arrest among the stem cells, autophagy/apoptosis mediated
resorption of the remaining germline and extended lifespan; upon
refeeding there is extensive stem cell proliferation and reformation of
the polarized meiotic and gametogenic germline organization. Studies
of glp-4(bn2ts) may thus contribute to understanding of how physio-
logical perturbations (changes in levels of charged Val-tRNAval and/or
protein translation) affect entrance and exit from adult reproductive
diapause and used to model reformation of the polarized germline
organization in adults that contain only a small stem cell population.
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