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Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative
disease. While genetics and other factors contribute to ALS pathogenesis, critical
knowledge is still missing and validated biomarkers for monitoring the disease
activity have not yet been identified. To address those aspects we carried out this
study with the primary aim of identifying possible miRNAs/mRNAs dysregulation
associated with the sporadic form of the disease (sALS). Additionally, we explored
miRNAs as modulating factors of the observed clinical features. Study included 56
sALS and 20 healthy controls (HCs). We analyzed the peripheral blood samples
of sALS patients and HCs with a high-throughput next-generation sequencing
followed by an integrated bioinformatics/biostatistics analysis. Results showed
that 38 miRNAs (let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-103a-3p,
miR-106b-3p, miR-128-3p, miR-130a-3p, miR-130b-3p, miR-144-5p, miR-148a-
3p, miR-148b-3p, miR-15a-5p, miR-15b-5p, miR-151a-5p, miR-151b, miR-16-5p,
miR-182-5p, miR-183-5p, miR-186-5p, miR-22-3p, miR-221-3p, miR-223-3p, miR-
23a-3p, miR-26a-5p, miR-26b-5p, miR-27b-3p, miR-28-3p, miR-30b-5p, miR-30c-5p,
miR-342-3p, miR-425-5p, miR-451a, miR-532-5p, miR-550a-3p, miR-584-5p, miR-
93-5p) were significantly downregulated in sALS. We also found that different miRNAs
profiles characterized the bulbar/spinal onset and the progression rate. This observation
supports the hypothesis that miRNAs may impact the phenotypic expression of the
disease. Genes known to be associated with ALS (e.g., PARK7, C9orf72, ALS2, MATR3,
SPG11, ATXN2) were confirmed to be dysregulated in our study. We also identified other
potential candidate genes like LGALS3 (implicated in neuroinflammation) and PRKCD
(activated in mitochondrial-induced apoptosis). Some of the downregulated genes are
involved in molecular bindings to ions (i.e., metals, zinc, magnesium) and in ions-related
functions. The genes that we found upregulated were involved in the immune response,
oxidation–reduction, and apoptosis. These findings may have important implication
for the monitoring, e.g., of sALS progression and therefore represent a significant
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advance in the elucidation of the disease’s underlying molecular mechanisms. The
extensive multidisciplinary approach we applied in this study was critically important for
its success, especially in complex disorders such as sALS, wherein access to genetic
background is a major limitation.

Keywords: sporadic amyotrophic lateral sclerosis, microRNA, target genes, peripheral blood markers, high
throughput next-generation sequencing (HT-NGS), clinical parameters, bioinformatics, pathway analysis

INTRODUCTION

Amyotrophic lateral sclerosis is a progressive neurodegenerative
disease in which different pathogenic mechanisms, including
inflammation, oxidative stress, glutamate excitotoxicity, protein
misfolding, apoptosis and dysfunction of axonal transport,
have been identified (Al-Chalabi et al., 2017; Vejux et al.,
2018). Clinically, the disease predominantly affects upper and
lower motor neurons, although impairment of extramotor
systems – such as temporal, behavioral and executive frontal
circuits – has also been reported suggesting that ALS should be
better considered a multisystem disorder (Phukan et al., 2007;
Goldstein and Abrahams, 2013). Progressive spinal muscular
atrophy and primary lateral sclerosis have been classified as
restricted phenotypes of ALS (10% of cases) but a clear separation
is still controversial (Gordon et al., 2013). Isolated bulbar
involvement (5%) and association with cognitive/behavioral signs
that fulfill the diagnostic criteria of frontotemporal dementia
(FTD) (5–15%) (Strong et al., 2017) underline the heterogeneity
of the disease that also involves the age at onset, the rate
of progression and finally the overall prognosis, thus drawing
a complex scenario of the ALS phenotypes (Swinnen and
Robberecht, 2014).

Most ALS cases are sporadic (sALS), whereas a family history
(fALS) is found in 10% of patients. Indeed, several factors other
than genes (toxic exposures, diet, and others) seem to possibly
contribute to ALS pathogenesis (Paez-Colasante et al., 2015;
Morgan and Orrell, 2016; Al-Chalabi et al., 2017) but a definitive
conclusion on the effective role of the different factors is still
awaited, mostly due to methodological biases (i.e., low power of
the studies) (van Es et al., 2017).

Another unsolved issue is the lack of validated biomarkers for
ALS pathogenesis and monitoring, mainly due to the phenotypic
heterogeneity of the disease. Molecular markers have been first
searched in the CSF, since liquor may provide more biological
information on the biochemical and molecular processes
underlying the disease, given its intimate connection with the
central nervous system (CNS). Indeed, suggestive CSF markers
have been evaluated over the years, with particular attention to
those related to neuroinflammation, like metalloproteinases-2

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis;
ALSFRS-r, revised ALS Functional Rating scale; CSF, cerebrospinal fluid;
DE, differential expression; fALS, familial amyotrophic lateral sclerosis; FTD,
frontotemporal dementia; HC, healthy control; HT-NGS, high-throughput next-
generation sequencing; miRNA, microRNA; MMT, manual muscle testing;
mRNA, messenger RNA; nc-RNA, non-coding RNA; ncRNAdb, non-coding
RNA database; NF, neurofilament; ODI, onset-diagnosis interval; RNA-Seq, RNA
sequencing; sALS, sporadic amyotrophic lateral sclerosis; sRNA, smallRNA; sRNA-
Seq, smallRNA sequencing.

and -9, IL-2 and -6, or neurodegeneration, e.g., Tau-protein
or TDP-43 (Vejux et al., 2018). However, presently only the
neurofilament (NF), main product of neuroaxonal breakdown,
seems to represent a sensitive biomarker of neurodegeneration
(Lu et al., 2012). Significant increase of NF was found in the CSF
and serum of ALS patients, thus justifying its inclusion in the
diagnostic protocol as well as in the evaluation of clinical course,
given an increased level of NF-light chain in CSF of ALS that was
found to be predictive of rapid clinical progression (Tortelli et al.,
2015; Steinacker et al., 2016). Recently, a report showed increased
levels of three macrophage-derived chitinases (CHIT1, CHI3L1,
and CH13L2) in CSF of ALS patients and found a correlation
with the progression rate of the disease, independently of their
NF levels (Thompson et al., 2018). However, lately the search
for biomarkers has increasingly focused on blood samples (i.e.,
serum and plasma) obtained from a less invasive procedure,
in an effort to identify early markers of ALS onset as well as
those useful for monitoring its progression (Vu and Bowser,
2017).

The report on the implication of two ALS genes, TDP-43 and
FUS, in the biogenesis of microRNAs (miRNAs) has sparked
great interest about their potential role in the pathogenesis
and progression of ALS (Freischmidt et al., 2013). miRNAs
are small non-coding RNA molecules that regulate at the post-
transcriptional level the expression of genes involved in cellular
response to stressors and other pathogenic insults (Viader et al.,
2011; Kye and Goncalves Ido, 2014). Interestingly, despite being
found rapidly degraded in post-mortem brain tissue, miRNAs
are stable in serum and other body fluids, such as CSF (Saraiva
et al., 2017). Therefore their evaluation can be informative in
healthy as in pathological conditions. In ALS, several studies have
reported the occurrence of miRNAs dysregulation (Waller et al.,
2017b; Matamala et al., 2018; Vejux et al., 2018; Vrabec et al.,
2018). Among the others, a disease-specific two-fold upregulation
of miR-338-3p, involved in apoptosis, neurodegeneration and
glutamate clearance, has been reported in blood leukocytes,
CSF serum, and spinal cords of patients with sALS compared
to controls (De Felice et al., 2014). Furthermore, 30 miRNAs
significantly downregulated have been identified in the serum
of fALS patients, the majority of them already dysregulated
in pre-symptomatic subjects carrying some of the mutations
causative of the disease (Freischmidt et al., 2014). These miRNAs
represent potential targets for therapeutic interventions at the
very early stages of the disease.

The availability of high-throughput technologies for large
scale sequencing (HT-NGS) significantly improved the possibility
of investigating with an unbiased approach the patterns
of miRNAs associated with diseases like ALS. Importantly,
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miRNAs expression profiles can reflect the activation of specific
pathogenic pathways in many neurodegenerative diseases,
including ALS (Waller et al., 2017a). That approach, in
combination with the evaluation of genes expression (i.e.,
mRNA), could reveal novel pathogenic hypotheses worthy of
testing.

Based on the above developments we performed an extensive
transcriptomic investigation in sALS patients with the primary
aim of identifying dysregulation of miRNAs and mRNAs
associated with the disease, and secondly to analyze their possible
role as modulating factors of clinical features.

MATERIALS AND METHODS

We planned a multidisciplinary strategy starting with the
subjects’ selection, the molecular analyses on their peripheral
blood samples, as well as the bioinformatics/statistics evaluations
of the data.

Subject Recruitment and Clinical
Evaluation
Patients with probable or definite ALS (revised El Escorial
Criteria) (Brooks et al., 2000) were recruited at the time of
their first diagnosis (age ranging from 18 to 80 years) at
the Department of Basic Sciences, Neurosciences and Sense
Organs, University of Bari, Bari, Italy. Subjects with positive
history of other neurological diseases, head/spinal trauma,
psychiatric disorders, and alcohol/psychotropic drug use were
excluded from the study. The search for mutations within
those genes (and flanking intron–exon boundaries) that are
commonly associated with ALS in our geographic area (Southern
Italy) returned negative for all except six patients (two with
SOD1 mutation, one patient with TARDBP mutation and three
carrying the pathogenic C9orf72 expansions). Since no familial
history of ALS was ascertained at the study entry, they were
considered de novo mutations or mutations with incomplete
penetrance.

We divided the study in two phases. In the first one (discovery
phase) a small sample of sALS patients was recruited, whereas
in the second phase (validation phase) we examined a larger
and distinct sample of sALS patients. We collected the following
information from all patients: demographic and clinical data
including gender, age at symptom onset as referred by the patient,
site of onset (bulbar or spinal), ODI (onset to diagnosis interval),
time to generalization (time interval between disease spreading
from spinal to bulbar district or vice versa), disease duration
(time interval between symptom onset and blood sampling).
Clinical severity was assessed by the revised ALS Functional
Rating scale (ALSFRSr) (Cedarbaum et al., 1999) and the Manual
Muscle Testing (MMT) (medium score). Disease progression rate
was calculated as: (48-ALSFRSr score at blood sampling)/disease
duration at blood sampling. Forced vital capacity was also
measured. The enrollment end-date was December 31, 2017.

We recruited healthy subjects with no history of neurological
diseases as HCs in the same geographic area (Bari, Southern
Italy).

The Ethic Committee of Azienda Ospedaliera Policlinico,
University of Bari, Italy, approved the study and we obtained
a signed informed consent from all participants at the
time of their enrollment (according to the Declaration of
Helsinki1).

Molecular Analysis
Peripheral blood samples were taken from patients and
controls and stored at −20◦C in 3 ml PAXgene Blood
RNA Tubes (PreAnalytiX Qiagen/BD, Hombrechtikon,
Switzerland). Total RNA was isolated using the PAXgene
Blood RNA Kit (PreAnalytiX Qiagen/BD, Hilden, Germany)
at the Institute of Biomedical Technologies, National
Research Council, Bari, Italy. RNA concentration and
purity were measured by Nanodrop ND-1000 (Thermo
Scientific, Wilmington, DE, United States) and RNA 6000
Pico chip on Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, United States), respectively. Samples with RNA
integrity number (RIN) scores higher than 7 and with
A260/A280 values in the 1.8–2.2 range were processed for
deep sequencing.

HT-NGS (Discovery Phase)
The RNA samples were sequenced using an Illumina HiSeq2500
platform. SmallRNA (sRNA) libraries were prepared by the
TruSeq sRNA Sample Preparation kit (Illumina) and their
quality was confirmed on a Bioanalyzer 2100 instrument.
A multiplexed pool of equimolar amounts of individual
sRNA-derived libraries was sequenced to generate 50 bp single-
end reads, resulting in around 10 million reads/sample.
The mRNA libraries were prepared using the TruSeq
Stranded mRNA Sample Preparation kit, fluorimetrically
quantified and analyzed, pooled together to obtain equimolar
concentrations into a multiplex sequencing pool and sequenced
to generate 2 bp × 100 bp paired-end reads (around 30 million
reads/sample).

RT and Microfluidic_qPCR (Validation
Phase)
Total RNA/sample was reverse transcribed into cDNA, amplified,
diluted, and used as a template for microfluidic_qPCR analysis
(TaqMan Advanced miRNA Cards, ABI). PCR amplification
was performed under the manufacturer’s protocols. Raw_Ct-
values were calculated using Expression SuiteTM software v1.1
(Life Technologies, Thermo Fisher Scientific). The auto-baseline
algorithm in the software was used to compensate for background
noise for each amplification curve, and the thresholds were
automatically adjusted to the log-linear range (Liguori et al.,
2018).

HT-NGS Data Analysis
We processed sRNA/RNA-Seq data according to a bioinformatics
pipeline that we developed and tested in other neurological

1https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-
principles-for-medical-research-involving-human-subjects
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diseases (Liguori et al., 2018) and that consisted in the steps
described below.

Quality Check
The quality control of the obtained reads was performed using
the FastQC package2. We checked for low-quality reads by base
sequence quality, sequence quality scores, base sequence content,
base GC content, sequence GC content, base N content, sequence
length distribution, sequence duplication levels, overrepresented
sequences, and kmer content. If reads were of low quality by the
above criteria, we removed them from the subsequent analysis.

Read Identification (sRNA)
The sRNA reads were mapped, using Bowtie aligner (Langmead
et al., 2009), an ultrafast and memory-efficient alignment of short
DNA sequences to the human genome, against an in-house-
developed reference database ncRNAdb, a comprehensive and
non-redundant dataset of non-coding (nc-RNA) sequences and
annotations extracted from public database like miRBase3, Vega4,
Ensembl5, RefSeq6, piRNAbank7, GtRNAdb8, and HGNC9. The
reads that were not mapped to known ncRNAs were aligned
against the human genome and passed to mirDeep2 software10,
which computationally identifies novel miRNA and their mature
miRNA products.

Read Identification (mRNA)
The reads obtained from total RNA were mapped against the
human genome and known human transcripts (GRCh38), using
Bowtie2 which supports gapped alignment and is faster on long
paired-end reads.

Expression Quantification
In order to obtain reliable read counts and to fix the problem of
multireads (reads mapping to more than one reference location)
(Consiglio et al., 2016), we employed the RSEM tool for accurate
expression estimations (Li and Dewey, 2011). The count values
produced by the Bayesian model implemented in RSEM were
used as expression values in this work. When normalization
of the expressions was necessary for some analysis steps, the
trimmed mean of M-values (TMM) normalization method was
used (Robinson and Oshlack, 2010).

Differential Expression (DE) Analysis
Expression estimations computed for mRNAs (coding genes)
and small ncRNAs were compared among the sALS and HC
groups with the aim of determining statistically significant
changes in the levels of expression. Since this is a very crucial
step in the bioinformatics workflow and there is no general

2http://www.bioinformatics.babraham.ac.uk/projects/fastqc
3http://www.mirbase.org
4http://vega.archive.ensembl.org/info/about/gene_and_transcript_types.html
5https://www.ensembl.org/index.html
6https://www.ncbi.nlm.nih.gov/refseq
7http://pirnabank.ibab.ac.in
8http://gtrnadb.ucsc.edu
9http://www.genenames.org
10https://www.mdc-berlin.de/media/16193

consensus regarding which method performs best in a given
situation, we combined the results of three different software
packages for DE analysis: edgeR11, the DESeq212, and the limma13.
The edgeR and DESeq2 were designed for NGS data and
include data normalization and p-value correction for multiple
testing by false discovery rate (FDR). The limma software was
recently upgraded to enable measurements from read counts
while taking into account the peculiarities of RNA-seq data
(Law et al., 2014). Specifically, genes were filtered out if they
failed to achieve a count per million (cpm) value of 1 in
at least 20% of samples. The expressions were simultaneously
scale normalized using TMM and variance was stabilized using
the voom technique. The corresponding log-cpm values and
associated weights were the inputs in the limma standard linear
modeling and empirical Bayes for DE analysis. The change in the
expression was considered statistically significant if the adjusted
p-value was < 0.05.

Statistical Analysis
For qRT-PCR Data
Two normalization tools, NormFinder and geNorm, were used
to identify the most suitable endogenous reference genes. The
comparison of normalized values between the subgroups was
obtained according to the 2−11Ct method (p-value < 0.05).
Normality of data was assessed by the Shapiro–Wilk test. We
performed the statistical analysis between miRNAs (DE) with
the Expression Suite software, which consists of two-tailed
Student’s t-test followed by Benjamini–Hochberg FDR, in order
to adjust p-value (adjusted p-value < 0.05). We performed
the comparison for every miRNA, and ratios between miRNAs
and multiple patterns, representing specific transcriptome
profiles.

For Clinical Correlations
Spearman correlation coefficient test was used to evaluate
the main clinical features within sALS subjects, as well as
the association between these characteristics and each miRNA
(fold change). Furthermore, in order to evaluate the prediction
accuracy of each miRNA with respect to the type of disease
onset (spinal/bulbar) we used boxplots and ROC curves. ROC
curves were plotted with the R package pROC (Robin et al.,
2011), while boxplots were produced with the basic R drawing
tools.

MicroRNA Target Analysis
Starting from the results of the DE analysis performed on the
two datasets (sRNAs and mRNAs), the relationships between
DE miRNAs and DE target genes were investigated through a
bioinformatics approach. Their interactions were selected using
two databases of experimentally validated bindings (miRtarbase
and DIANA-Tarbase). In order to consider the most reliable
information about the interactions between the significant
miRNAs and their target genes, we selected those bindings

11https://bioconductor.org/packages/release/bioc/html/edgeR.html
12https://bioconductor.org/packages/3.7/bioc/html/DESeq2.html
13https://bioconductor.org/packages/3.7/bioc/html/limma.html
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that were confirmed in tests with multiple reporters and that
were positive at least by Dual Luciferase Reporter Assay, an
in vitro test that explores the ability of a single miRNA to
post-transcriptionally downregulate putative targets through its
binding to specific sites within their 3′ UTRs (Clancy et al., 2007;
Jin et al., 2013).

Pathway Analysis
Functional and pathway enrichment analysis of identified DE
genes was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID v6.814)
tool. DAVID is a gene functional enrichment program
that provides a large series of functional annotation tools
and pathway databases (e.g., KEGG, Biocarta, Reactome
databases). We determined statistical significance using the
one-tailed Fisher’s exact test followed by the Benjamini
correction; adjusted p-value < 0.05 was set as the threshold
value.

RESULTS

Study Subjects Characteristics
Table 1 shows the demographic and clinical characteristics of the
sALS and HC groups, at both the discovery and the validation
phases. In the discovery phase, the age at blood sample of the
HC group was on average about 20 years younger than the sALS
patients (p = 0.018). In the validation phase, age, or gender
did not differ between the patients and controls. Age at disease
onset significantly correlated with the progression rate (rs = 0.36,
p = 0.010) and ALSFSRr (rs =−045, p = 0.001).

Identification of miRNAs and mRNAs
Differentially Expressed (DE) in sALS
Versus HC
After the discovery experiment performed with HT-NGS
methodology, the comparisons of miRNAs expression levels
within the study groups revealed 107 mature miRNAs
significantly DE between sALS and HC. According to our
selection criteria (Liguori et al., 2018), we decided to consider
only miRNAs with mean number of reads higher than 25, a Fold
Change higher than 2, and a Dispersion Index range of 0–1.6.
The 42 miRNAs included in the final list (all downregulated in
our sALS population, see Table 2) were subjected to qRT-PCR
validation as described in the section below. Most of these
miRNAs have been shown to be associated with ALS or other
neurogenerative diseases (references of the more recent citations
in Table 2).

The analysis of mRNA-seq reads identified 4,136 genes
that are significantly DE between sALS and HC groups. After
filtering for the above three criteria, the expression changes of
1,566 upregulated and 1,761 downregulated genes distinguished
sALS patients from HC subjects (total 3,327 genes, adjusted
p-value < 0.05) (see also Supplementary Files). Interestingly,

14http://david.abcc.ncifcrf.gov

TABLE 1 | Demographic and clinical characteristics of the study groups.

ALS HC

Discovery phase (n = 6) (n = 5)

Gender (number) 4F, 2M 3F, 2M

Age at sample (mean + SD), years∗ 69.7 + 7.6 49.2 + 14.9∗

Age at onset (mean + SD), years 66.3 + 6.1

Clinical signs at onset:

Spinal 5

Bulbar 1

Disease duration (median, IQR), months 28.6 (13.0)

Onset-to-diagnosis interval (median,
IQR), months

17.3 (6.1)

ALSFRSr (mean + SD) 24.7 + 2.3

MMT-m (median, IQR) 6.5 (3.6)

Disease progression rate (median, IQR) 0.8 (0.5)

Generalization (number) 6 (100%)

Time to generalization (median, IQR),
months

21.8 (16.0)

Validation phase (n = 50) (n = 15)

Gender (number) 23F, 27M 9F, 6M

Age at sample (mean + SD), years 64.2 + 11.0 60.9 + 5.4

Age at onset (mean + SD), years 62.5 + 11.0

Clinical signs at onset:

Spinal 36

Bulbar 14

Disease duration (median, IQR), months 18.5 (15.4)

Onset-to-diagnosis interval (median,
IQR), months

12.5 (10.4)

ALSFRSr (median, IQR) 35.0 (12.0)

MMT-m (median, IQR) 8.8 (2.0)

Disease progression rate (median, IQR) 0.7 (0.6)

Generalization (number) 45 (90%)

Time to generalization (median, IQR),
months

10.7 (12.2)

Data are presented as means + standard deviation (SD), in case of normal
distribution, or as median and InterQuartile Ratio (IQR). ∗Mann–Whitney U-test:
p = 0.018. F = female; M = male: ALSFRSr, ALS Functional Rating scale; MMT-m,
Manual Muscle Testing medium score.

12 genes (PFN1, TUBA4A, PARK7, SQSTM1, DCTN1, C9orf72,
TMEM106B, ALS2, TRPM7, MATR3, SPG11, and ATXN2) have
been previously associated with ALS (Chia et al., 2018).

Validation of Significant DE miRNAs in
sALS Compared to HC
Five candidate endogenous reference miRNAs (miR-331-3p,
miR-423-3p, miR-423-5p, miR-484, and miR-320a) were selected
from qRT-PCR blood studies and from miRNA endogenous
controls in the TaqMan Advanced miRNA Assays white paper
(Applied Biosystem, Thermo Fisher Scientific) (Zheng et al.,
2013; Niu et al., 2016). The candidate endogenous reference
miRNAs were tested for stable expression across sRNA-Seq data
results using the following criteria: (a) high read count in all
samples; (b) no intra- and inter-group DE (p-value < 0.05).
Among the five candidates, Normfinder and GeNorm algorithms
determined miR-484 as the best endogenous normalizer and thus
we selected it as internal references.
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TABLE 2 | miRNAs/mRNAs interactions.

Transcript_id Regulation Published association with ALS or other NDDs Validated target genes

let-7a-5p Down ALS (Waller et al., 2017b; Taguchi and Wang, 2018) HMGA1, MYO1F, PKM, RAB40C

let-7d-5p Down ALS (Waller et al., 2017a; Taguchi and Wang, 2018)

let-7f-5p Down ALS (Waller et al., 2017b)

let-7g-5p Down AD (Mendes-Silva et al., 2016)

let-7i-5p Down ALS (Waller et al., 2017b; Taguchi and Wang, 2018)

miR-103a-3p Down AD (Chang et al., 2017)

miR-106b-3p Down ∗ALS (Si et al., 2018); AD (Guo et al., 2017)

miR-128-3p Down ALS (Kovanda et al., 2018); MS (Vistbakka et al., 2017) ABCG1, BAX, CTDSP1, LGALS3

miR-130a-3p Down IFITM1, TGFB1

miR-130b-3p Down ALS (Taguchi and Wang, 2018) SNAI3

miR-144-5p Down ALS (Raheja et al., 2018)

miR-148a-3p Down ALS (D’Erchia et al., 2017; Waller et al., 2017b) BAX, ITGA5

miR-148b-3p Down MS (Liguori et al., 2018) ITGA5

miR-15a-5p Down ALS (Recabarren-Leiva and Alarcon, 2018) HMGA1, UCP2

miR-15b-5p Down ALS (Waller et al., 2017a)

miR-151a-5p Down ALS (Taguchi and Wang, 2018) ARHGDIA, OTUB1

miR-151b Down

miR-16-5p Down ALS (Waller et al., 2017b); ∗(Si et al., 2018) ARHGDIA, HDGF, HMGA1, ZYX

miR-181a-2-3p Down

miR-182-5p Down ALS (D’Erchia et al., 2017); MS (Liguori et al., 2018) FLOT1, NFKBIB, PFN1, SMARCD3

miR-183-5p Down ALS (D’Erchia et al., 2017) PTPA

miR-186-5p Down AD (Satoh et al., 2015) PTTG1

miR-192-5p Down ALS (Raheja et al., 2018)

miR-22-3p Down ALS (Waller et al., 2017b; Kovanda et al., 2018) BSG, CD151, LGALS9, PTMS

miR-221-3p Down ALS (D’Erchia et al., 2017; Di Pietro et al., 2018; Taguchi and
Wang, 2018)

BBC3, GRB10

miR-223-3p Down MS (Ebrahimkhani et al., 2017) HAX1, MYL9

miR-23a-3p Down ALS (Di Pietro et al., 2018); MS (Ebrahimkhani et al., 2017) MT2A

miR-25-3p Down ALS (Taguchi and Wang, 2018); ∗(Si et al., 2018); MS (Liguori
et al., 2018)

miR-26a-5p Down ALS (Waller et al., 2017b; Di Pietro et al., 2018; Kovanda et al.,
2018; Taguchi and Wang, 2018)

HMGA1, ITGA5, PHB, PRKCD

miR-26b-5p Down AD (Chang et al., 2017) MIEN1, MT-CO2

miR-27b-3p Down ALS (Waller et al., 2017b); ∗(Si et al., 2018) PHB, PINK1

miR-28-3p Down ALS (Waller et al., 2017b); (Kovanda et al., 2018)

miR-30b-5p Down ALS (Raheja et al., 2018); MS (Ebrahimkhani et al., 2017)

miR-30c-5p Down AD (Satoh et al., 2015) IER2, VIM

miR-342-3p Down AD (Wang et al., 2017); MS (Ebrahimkhani et al., 2017)

miR-409-3p Down ALS (D’Erchia et al., 2017); MS (Ebrahimkhani et al., 2017)

miR-425-5p Down ALS (Raheja et al., 2018) TACC3

miR-451a Down ALS (Taguchi and Wang, 2018); MS (Ebrahimkhani et al., 2017) CDKN2D

miR-532-5p Down MS (Selmaj et al., 2017)

miR-550a-3p Down MAPK3

miR-584-5p Down ALS (Kovanda et al., 2018; Taguchi and Wang, 2018)

miR-93-5p Down ∗ALS (Si et al., 2018) RHOC

In the first column (left) are listed those miRNAs that were significantly downregulated in the sALS group compared to HCs (in bold the sRNA-Seq confirmed after
qRT-PCR). In the last column (right) we report the correspondent experimentally validated (upregulated) genes resulted from our integrated analysis. In the central column
(second from the right) are listed some of the references reporting the association between each miRNA and ALS or other neurodegenerative disease. ∗Data referred to
muscles in animal models (mouse).

In the comparison analysis between subjects with sALS
and HC, we confirmed that 38 miRNAs were significantly
downregulated in sALS patients with p-values < 0.05. These
miRNAs were: let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p,
miR-103a-3p, miR-106b-3p, miR-128-3p, miR-130a-3p,

miR-130b-3p, miR-144-5p, miR-148a-3p, miR-148b-3p, miR-
15a-5p, miR-15b-5p, miR-151a-5p, miR-151b, miR-16-5p,
miR-182-5p, miR-183-5p, miR-186-5p, miR-22-3p, miR-221-3p,
miR-223-3p, miR-23a-3p, miR-26a-5p, miR-26b-5p, miR-27b-3p,
miR-28-3p, miR-30b-5p, miR-30c-5p, miR-342-3p, miR-425-5p,
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FIGURE 1 | Volcano plot of validated miRNAs. Green dots represent the 38 differentially expressed miRNAs obtained from the comparison between sALS and HC
subjects by qRT-PCR (p < 0.05). All black dots below the blue line did not discriminate sALS from HC. The Y-axis represents the log10 of the p-value and the X-axis
represents log fold change of miRNA expression in the sALS versus HC.

miR-451a, miR-532-5p, miR-550a-3p, miR-584-5p, miR-93-5p
(Figure 1 and Supplementary Data).

Some of the miRNAs that were significantly DE in our
study – all downregulated – resulted to be part of five
polycistronic miRNA clusters. Specifically, let-7a-5p, let-7d-5p,
and let-7f-5p are members of let-7a-1∼let-7d cluster (located
in the intergenic region at 9q22.3); miR-16-5p and miR-15a-5p
belong to the miR-15a/16-1 cluster (intronic region of DLEU2
gene, locus at 13q14); miR-106b-3p, miR-93-5p, and miR-25-3p
are part of the miR-106b∼25 cluster (intronic region of
MCM7 gene, located at 7q23.1), although miR-25-3p was not
confirmed after the validation step; miR-182-5p and miR-183-5p
are members of the miR-182∼96 cluster (intergenic region
at 7q32.2) and finally miR-144-5p and miR-451a belong to
the miR-144∼451a cluster (located in the intergenic region at
17q11.2).

Impact of Validated miRNAs Expression
on sALS Clinical Measures
Since the most informative clinical data of our sALS patients
were longitudinally collected, to identify prognostic markers,
e.g., of disease progression, we tested whether the expression
of the significant validated miRNAs correlated with any of
those markers. Interestingly, the sALS subjects with the most
frequent spinal onset (36 out of 50) were characterized by
a statistically significant lower expression of miR-106b-3p

(rs = −0.302, p = 0.033), miR-128-3p (rs = −0.302, p = 0.033),
miR-148b-3p (rs = −0.284, p = 0.046), miR-186-5p (rs = −0.342,
p = 0.015), miR-30b-5p (rs = −0.324, p = 0.022), miR-30c-5p
(rs = −0.309, p = 0.029), and miR-342-3p (rs = −0.312,
p = 0.028), compared to patients with bulbar onset. Figure 2A
shows the expression trend of these seven miRNAs grouped by
disease onset: their significant overexpression in bulbar onset
is clearly visible in the boxplots, even if the distribution of
the values are partly overlapping. In Figure 2B, the prediction
accuracy of each miRNA in discriminating the sALS onset
type is represented. The AUC obtained is about 0.7 for all
the seven miRNAs; this result means that the correlations
between the miRNAs expression and the spinal/bulbar onset
is confirmed, although a definite threshold for separating the
samples in the two onset conditions (as already seen in the
boxplots) is not possible. The similar AUCs obtained also
suggest that no miRNA emerges, but the whole group of seven
miRNAs synergistically contribute to the different molecular
profiles that seem to characterize the phenotypical onset of the
disease.

Among the other parameters, the progression rate positively
correlated with the expression of miR-130a-3p, miR-151b and
miR-221-3p, as indicated in Figure 3 (where the correspondent
rs and p-values are indicated). We also found significant
correlations between the expression of (1) miR-27b-3p and
the time to disease generalization (rs = 0.329, p = 0.036),
(2) miR-151b and the scores obtained at the ALSFRS-r scale
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FIGURE 2 | Prediction accuracy of significant miRNAs with respect to the type of disease onset (spinal/bulbar). (A) Each boxplot shows the 25th and the 75th

percentiles on the bottom and top of the box, the band inside the box is the 50th percentile (the median) and the ends of the whiskers are the minimum and
maximum of the data. Outliers are showed as isolated circles. (B) ROC curves based on miRNAs relative expression data (as resulted from qRT-PCR analysis). In our
sample, the AUCs close to 0.7 suggest that none of the seven miRNAs exerts an exclusive impact on the type of sALS onset, but more likely they act together in
order to modulate this phenotypic feature. Note that each value in the ROC curves is considered as a putative numerical threshold for separating the samples in the
two onset conditions (spinal/bulbar). Then the sensitivity [true positive rate (TPR)] and Specificity [false positive rate (FPR)] are computed for that threshold. The more
the expression values are not-overlapping between the two experimental conditions, the more the ROC curve is near the left and the top axes of the plot, and we
obtain an area under the curve (AUC) = 1. The less the conditions are separable, the more the ROC curve approaches the bisector of the plot, with an AUC = 0.5.

(rs = −0.353, p = 0.013), and (3) the expression of miR-30b-5p
and the MMT-m scores (rs = 0.313, p = 0.027).

Identification of Significant Target Genes
Possibly Involved in sALS Pathogenesis
The availability of the expression data referred for both miRNAs
and mRNAs compounds in our two study groups allowed us to
perform an integrated analysis of the expression profiles, which in
turn suggested possible functional genetic interactions (miRNA–
mRNA) for subsequent experimental validations, thus narrowing
down the range of significant candidate genes that resulted from
the discovery step.

In fact, the analysis of mRNAs that have been reported as
validated targets of the 38 significantly downregulated miRNAs
(at least by two algorithms of target prediction, as indicated
in Section “Materials and Methods”) returned 162 DE target
genes (up or downregulated in our dataset), several in common
between different miRNAs; 51 of them were also experimentally
validated. Since genes targeted by downregulated miRNAs are
expected to be upregulated (due to the reduction of gene silencing
effect), we considered experimentally validated interactions only
those occurring with 43 genes that fulfilled these criteria (Table 2
and details in Supplementary Data).

Figure 4 shows an example of one of the resulted molecular
networks outputs that includes nine miRNAs (let-7a-5p, miR-
128-3p, miR-148a-3p, miR-148b-3p, miR-15a-5p, miR-151a-
5p, miR-16-5p, miR-26a-5p, miR-27b-3p) and 17 target genes

(ABCG1, LGALS3, CTDSP1, BAX, ITGA5, PRKCD, OTUB1,
ZYX, ARHGDIA, HDGF, HMGA1, PKM, RAB40C, MYO1F,
UCP2, PINK1, and PHB) already shown to be involved
in neurodegenerative processes as well as in the immune
response functional categories (see below for details and
comments).

Implication of Computationally Predicted
Molecular Pathways in ALS
Pathogenesis
A total of 1,936 genes (58% of all DE genes) were significantly
enriched (p-value = 4,8e−42) through an alternative splicing
process (Figure 5A). Upregulated genes were related to
oxidation–reduction and immune response, and mainly
located in extracellular exosome, mitochondrion and its inner
membrane (cellular component GO-terms). Interestingly,
downregulated genes were significantly related to metal binding
processes, including zinc, magnesium, and manganese binding.
Furthermore, pathway enrichment analysis demonstrated that
upregulated genes were significantly involved in metabolic
pathways and oxidative phosphorylation (KEGG). In addition,
several upregulated genes in ALS samples were associated
with other neurodegenerative human disorders such as
Parkinson’s disease, Huntington’s disease and AD, whereas
downregulated genes were significantly enriched in the
transcriptional pathway and the FoxO signaling pathway
(Figure 5B).
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FIGURE 3 | Correlations between miRNAs expression and sALS clinical features. The expressions (fold changes) of three validated miRNAs correlated with the
progression rate observed in our sALS population. ∗Spearman rank-correlation test: p < 0.05.

DISCUSSION

In a well-characterized group of sALS patients we found
38 downregulated miRNAs and 43 experimentally validated
upregulated target genes (out of the overall 3,327 DE genes
resulted from HT-NGS) in comparison to age-matched HC
from the same geographic area. Functional in vitro studies are
in progress in order to confirm the interactions between the
validated miRNAs and the remaining computationally predicted
target genes. In our view these findings are a significant
contribution to the definition of circulating biomarkers for the
diagnosis and monitoring of this devastating disease. In addition,
they represent an important step toward the identification of
novel candidate genes potentially implicated in the pathogenic
mechanisms of ALS.

In the present investigation we were able to evaluate both
miRNAs and mRNAs in the same subjects with an extensive
and already validated multidisciplinary approach (Liguori et al.,
2018) that may be extremely valuable in disorders like ALS, in
which the genetic background is usually unavailable. Indeed, the
family history ascertained in a limited percentage of ALS patients
(fALS) contributed to the identification of inherited mutations in
more than 30 genes (Renton et al., 2014; Zou et al., 2017; Chia
et al., 2018). However, in the (apparently) sporadic occurrence of
the disease only few of these genes (i.e., SOD1, TARDBP, FUS)
were found to be implicated. Small sample size of the study

groups, misdiagnosis of the affected subjects and incomplete
penetrance of genetic risk factors have been evoked to explain
the difficulty in identifying the genetic factors contributing to
sALS. The risk was found to be substantially lower than expected
when estimated through a combined approach of both allele
frequency and variant pathogenic prediction (Gibson et al., 2016).
Recently, a hexanucleotide expansion in the C9orf72 locus was
genotyped both in fALS and sALS patients who more frequently
showed a pronounced cognitive impairment compared to those
carrying other genetic mutations. This observation suggests that
genetic variants may also be associated with ALS phenotypic
variability (Shatunov et al., 2010). Modifier genes possibly
involved in the prognostic evolution of the disease have also
been reported (Brown and Al-Chalabi, 2017; van Es et al., 2017)
hence confirming the complexity of the genetic influence in ALS
pathogenic definition.

The evidence that miRNAs are implicated in a wide range
of fundamental molecular networks as in neurodegeneration
(Goodall et al., 2013) has focused the attention on this class of
non-coding genes as potential key players in diseases like ALS.
In fact, one of the first studies reported a downregulation of a
small subset of TDP-43-binding candidate miRNAs in serum and
peripheral cell lines of ALS patients (Freischmidt et al., 2013).
Homogeneous miRNA alterations were detected in fALS and in
asymptomatic mutation carriers, independently from the affected
genes (Freischmidt et al., 2014). On the contrary, the observation
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FIGURE 4 | miRNA-target interaction network. An example of experimentally validated miRNA-target gene interactions is visualized as a network (by Cytoscape
3.6.0). Nodes are colored according to the log2 fold change between sALS and HC (red: downregulated; blue: upregulated), and the node size is proportional to
the p-value in the DE analysis.

of a highly heterogeneous miRNA profile in sALS indicates a
multiform molecular etiology in the sporadic occurrence of the
disease (Freischmidt et al., 2015; Prudencio et al., 2015). Also
a different expression of several miRNAs found in ALS-FTD
further supports the existence of many patterns related to the
main causative genes and it suggests that different mutations may
be characterized by subtype-specific miRNA signatures (Gascon
and Gao, 2014). Several other studies have been carried out
to identify suggestive miRNAs associated with sALS in CSF
as well as in other biological fluids (Waller et al., 2017a,b;
Matamala et al., 2018; Raheja et al., 2018; Vejux et al., 2018;
Vrabec et al., 2018) and in skeletal muscles (Di Pietro et al.,
2018; Kovanda et al., 2018) of affected individuals. Based on
computational prediction of miRNAs that targeted significant
mRNAs available in public repository (GEO), new strategies that
used both the transcriptomic compounds (miRNAs and mRNas)
to delineate the complete picture of ALS showed to be very
effective (Mitropoulos et al., 2018; Taguchi and Wang, 2018).

Using our sALS cohort data (all but six negative for the
most common ALS-associated genes) we were able to identify
38 downregulated miRNAs significantly associated with sALS
(data confirmed with/without the mutated cases). Our study

confirmed the possible pathogenic involvement of these miRNAs,
since most of them were previously reported in ALS (let-7a-
5p, let-7d-5p, let-7f-5p, let-7i-5p, miR-128-3p, miR-130b-3p,
miR-144-5p, miR-148a-3p, miR-15a-5p, miR-15b-5p, miR-151a-
5p, miR-16-5p, miR-182-5p, miR-183-5p, miR-22-3p, miR-221-
3p, miR-23a-3p, miR-26a-5p, miR-27b-3p, miR-28-3p, miR-
30b-5p, miR-425-5p, miR-451a, and miR-584-5p) and/or other
neurodegenerative syndromes, especially Alzheimer’s Dementia
(let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-103a-3p,
miR-106b-3p, miR-144-5p, miR-148a-3p, miR-15a-5p, miR-15b-
5p, miR-186-5p, miR-22-3p, miR-26a-5p, miR-26b-5p, miR-28-
3p, miR-30c-5p, miR-342-3p, and miR-425-5p, see Table 2 for
references). Among the remaining, miR-223-3p (never associated
with ALS) was reported to positively impact the neuronal activity,
since its overexpression induced a neuroprotective effect by
targeting the glutamate receptors (Harraz et al., 2012). Therefore
it is reasonable to hypothesize that its downregulation (as
documented here) may promote the neuronal cell death, leading
to the irreversible neurodegenerative processes observed in ALS.

We also found that some of the significant miRNAs belong
to five different clusters. This observation supports evolutionary
as well as functional implications in the pathogenic processes in
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FIGURE 5 | Functional categories (A) and Pathway (B) enrichment analyses of DE genes. (A) Categories enriched in both upregulated (blue) and downregulated
(red) genes are illustrated in the upper part. The more representative categories enriched in downregulated genes are illustrated in the middle section. Categories in
the lower part are enriched in upregulated genes. (B) Pathways enriched in upregulated (blue) and downregulated (red) genes are illustrated in the upper and lower
part, respectively. The X-axis represents gene counts involved in each functional category and pathway.
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which they were involved (Altuvia et al., 2005). In vitro functional
studies will allow future testing of related hypotheses, e.g., the
possibility that all or some of these miRNAs may act in synergy on
the target genes. In our investigation, however, downregulation of
both miR-15a/16-1 and miR-106b∼25 clusters did not correlate
with the expression of their respective host genes (DLEU2
and MCM7), as resulted in the analysis of our RNA-Seq data.
The discordance in the expression between intronic miRNA-
host mRNA pairs could be explained by the occurrence of an
alternative splicing event in the region of clustered miRNAs
(Ramalingam et al., 2014). Finally, it is worthy to mention
that the downregulation of miR-106b-25 cluster seems to play
an important role in the apoptosis induced by endoplasmic

reticulum stress strongly associated with the disease progression
and the motoneuron degeneration in the ALS animal model
(Gupta et al., 2012).

The analysis of DE genes (mRNAs) confirmed the importance
of 12 genes (PFN1, TUBA4A, PARK7, SQSTM1, DCTN1, C9orf72,
TMEM106B, ALS2, TRPM7, MATR3, SPG11, and ATXN2)
whose mutations have been already identified as causative of
sALS/fALS (Renton et al., 2014; Morgan and Orrell, 2016; Al-
Chalabi et al., 2017; Brown and Al-Chalabi, 2017; van Es et al.,
2017; Zou et al., 2017; Chia et al., 2018). In future analysis
we will perform exomes sequencing to check the presence
of pathogenic mutations in the genes of recruited patients.
However, by looking at the upregulated and downregulated

FIGURE 6 | Combined molecular analysis in sALS. Functional annotations of experimentally validated target genes together with their miRNAs are visualized as a
network (Cytoscape 3.6.0). Each node size is proportional to the degree of the node (connectivity). Green nodes correspond to functional annotations obtained by
functional enrichment analysis (DAVID tool). Color gradient intensity of miRNA and target nodes correlates with upregulated (blue) or downregulated (red) expression
levels.
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DE genes we were able to delineate a pathogenic landscape
where several molecular functions are evoked. In particular, the
downregulated genes are involved in the molecular bindings
of ions (i.e., metal ions, zinc, and magnesium) and in some
ions-related functions. The upregulated genes (less numerous)
are implicated in the immune response, oxidation–reduction
processes, and apoptosis. Taken together, our data confirm the
idea that dysfunctions in these networks might contribute to the
pathogenesis of the disease, as already reported by functional
in vitro studies (Bourassa et al., 2014; Alvarez-Zaldiernas et al.,
2016; Peters et al., 2017). Furthermore, the downregulated
9-miRNAs system (Figure 4) evoked significant upregulation of
genes found to be associated with the pathogenic background
of ALS. In particular, the gene coding for galactin-3 (LGALS3)
(Chen et al., 2014), a protein with controversial functions in
neuroinflammation and possibly involved in the deposition of
intracellular pathological aggregation of gamma-synuclein was
observed in ALS (Peters et al., 2015). As confirmation, high levels
of plasma galactin-3 have been reported in Chinese ALS patients
(Yan et al., 2016). Furthermore, our data strongly support the
mitochondrial pathogenic hypothesis of the disease, as indicated
by the significant differences in the expressions of target genes
like BAX (a pro-apoptotic marker interacting with 14-3-3 protein
and responsible for increased cell death, in presence of mutant
SOD1) (Park et al., 2017), UCP2 (its overexpression has been
demonstrated to further deteriorate mitochondrial dysfunctions
and the ALS progression in animal models of the disease)
(Peixoto et al., 2013), PRKCD (activation of the gene seems to
modulate mitochondrial-induced apoptosis) (Dave et al., 2005)
and PINK-1 (ablation of this gene rescued the mitochondrial
axonal transports defective in complex model of ALS) (Moller
et al., 2017).

Incomplete expression overlap was found between the
validated miRNAs and their target genes, as already reported
(Freiesleben et al., 2016). In vitro studies investigating the impact
of the significant miRNAs in the expressions of the complete
panel of their target genes may clarify this aspect. Meanwhile,
in Figure 6 we summarized the network composed by the
38 validated miRNAs, their 43 validated target genes and the
common functional annotations between them, in which the
above-mentioned genes represent the connection nodes. In this
representation we highlighted other genes in the intermodal
connections that may be worthy of further investigations, like
TGF-beta1. This gene seems in fact to be involved in ALS
pathogenesis, as enhanced secretion of TGF-beta1 was observed
in reactive astrocyte that greatly contributed to motor neuron
protein aggregation and neurite degeneration, e.g., via the
inhibition of cellular autophagy, independently from SOD1
wild-type/mutation status (Tripathi et al., 2017). We also noted
that other genes like MT-CO2, MT2A, and ABCG1 are placed in
specific nodes of our molecular networks, thus suggesting that
they may play important role/s in ALS, as it has been already
reported in other neurodegenerative diseases like AD (Hayashi
et al., 2006; Beecham et al., 2014; Lunnon et al., 2017).

One limitation in our study is a possible bias related to the age
of HC subjects, significantly younger than the sALS individuals,
in the discovery phase. This occurred because of the difficulty

FIGURE 7 | Distribution of the study samples by sRNA-seq output (discovery
phase). The sRNA-Seq data were explored by generating multi-dimensional
scaling (MDS) plots. This visualizes the differences between the expression
profiles of different samples in two dimensions using the biological coefficient
of variation (BCV). The MDS plot shows clear separation of the sALS vs. HC
samples.

in finding age-matched subjects without any comorbidity, i.e.,
cardiovascular risk factors, at the very early phase of the
investigation. However, as we have shown, this gap was filled
out in the validation step. Since 38 out of 42 miRNAs (90.5%)
were confirmed in the independent validation sample, we believe
that the group difference in age at the discovery phase did
not impact the identification of the final set of genetic data.
Another limitation is the relatively small number of subjects
submitted to the NGS analysis. However, our study numbers
are in line with others using the same time-consuming and
expensive approach. Most importantly, the analysis of both the
raw data of sRNA-Seq and RNA-Seq showed that we were able to
significantly discriminate the two populations (as represented in
the Figure 7).

In the last few decades, neurodegenerative diseases have
become a major challenge for the National Public Health systems
due to the increasing social and economic implications of these
diseases. Therefore, the discovery of circulating markers in
diseases like ALS will be of great value also in the perspective of
finding more effective therapeutic tools.

Our comprehensive investigation of combined
miRNAs/mRNAs profiles in sALS revealed a complex molecular
network in which miRNAs and target genes connect to several
functional categories. The results also suggest the presence
of peculiar molecular prognostic traits, associated with the
bulbar/spinal onset and the slope of clinical progression.
If these results will be confirmed in a larger study, then
changes in these circulating biomarkers may represent

Frontiers in Molecular Neuroscience | www.frontiersin.org 13 August 2018 | Volume 11 | Article 288

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00288 January 4, 2019 Time: 19:1 # 14

Liguori et al. Transcriptomics in Sporadic Amyotrophic Lateral Sclerosis

critical early prognostic signs of clinical deterioration and be
extremely relevant in guiding future therapeutic efforts.
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