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Background
Advances in high-throughput sequencing technologies are allowing large-scale profil-
ing of microbial communities. After quality control and data preprocessing, sequencing 
reads are organized into tables or matrices, in which the rows represent samples and the 
columns are counts of clustered sequences that represent community members (such 
as operational taxonomic units or amplicon sequence variants). In many microbial sur-
vey studies, there is also a phylogenetic tree that depicts the evolutionary relationships 
among microbes based on their genetic closeness, and a metadata matrix that contains 
information about the samples (such as body mass index or disease status).

Data from microbiome studies have proven useful for understanding the important 
role of microbes in human health and disease. However, analyzing and interpreting 
these data is challenging due to high dimensionality, uneven sequencing depth, data 
sparsity, and compositionality [1]. Apart from these challenges, there is an increasing 
need and unique opportunity to develop methods that efficiently leverage information 
on the phylogenetic relationships among taxa [2–4]. Although statistical and machine 
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learning approaches have been developed and publicly available to address some of the 
challenges, they typically ignore the phylogenetic tree. Here, we propose an R package, 
phyloMDA, for phylogeny-aware microbiome data analysis.

Implementation
phyloMDA takes as input a count matrix, a metadata matrix, and a phylogenetic tree. 
It consists of three modules: multivariate modeling of microbial counts, extraction of 
relative abundances from counts, and regression with relative abundances as predictors 
(Fig. 1). A user manual is provided in Additional file 1.

Multivariate modeling of microbial counts

Module I assumes that the multivariate count data are distributed according to Dir-
ichlet-tree multinomial (DTM) [5, 6]. Loosely speaking, DTM is the product of Dirichlet 
multinomials that factorize over the phylogenetic tree. The log link function is used to 
link parameters of DTM to covariates. Parameters of the DTM model are estimated by 
maximum likelihood or penalized maximum likelihood. Extensions to the zero-inflated 
DTM model [7] are also implemented.

Extraction of relative abundances from counts

Module II of the package applies an empirical Bayes strategy to estimate the relative 
abundances underlying raw count data [7, 8]. By specifying a multinomial distribution 
for multivariate counts and a prior for its probability vector, the posterior mean pro-
vides a natural estimate of relative abundances. The empirical Bayes procedure assumes 
a (zero-inflated) Dirichlet-tree prior and estimates the unknown hyper-parameters by 

Fig. 1  Chart illustrating the three modules of the phyloMDA package proposed here for phylogeny-aware 
microbiome data analysis. phyloMDA requires three input files: a count matrix, a metadata matrix, and a 
phylogenetic tree. Module I contains R functions for fitting (zero-inflated) Dirichlet-tree multinomial models 
for multivariate abundance data. Some of these functions are invoked in Module II to produce tree-guided 
empirical Bayes (eBay) estimates of microbial compositions. These relative abundances are then used as input 
into high-level analyses. In particular, Module III contains R functions for tree-based multiscale regressions 
with relative abundances as predictors
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maximizing the data evidence, which amounts to fitting a (zero-inflated) DTM model 
(Module I).

Extracted relative abundances, known as compositions, are used as input into down-
stream analyses such as diversity estimation, differential abundance testing, and compo-
sitionally aware data analysis.

Regression with relative abundances as predictors

Linear log-contrast models are popular for regressing a univariate response on a compo-
sitional predictor [9]. [10] introduce the concept of subcomposition selection and illus-
trate that, under the linear log-constrast model, component selection outputs a single 
subcomposition composed of selected components. They also develop a multiscale sub-
composition selection method, called tree-guided automatic subcomposition selection 
operator (TASSO), for selecting subcompositions at subtree levels.

Assuming that phylogenetically close taxa have similar associations with a host pheno-
type, [11] introduce the concept of variable fusion that is immune to zeros and is opera-
tionally adapted to the compositionality. They further propose tree-guided fused lasso 
under the standard linear model.

Module III implements these two procedures.

Results
For illustration, we apply phyloMDA to the COMBO dataset [12] which, after preproc-
essing, consists of a matrix that relates abundances of 62 OTUs to 98 subjects, a phylo-
genetic tree that reflects the evolutionary relationship of these OTUs, and metadata that 
provides information about the subjects such as body mass index (BMI). It took about 10 
minutes and 775 kilobytes to analyze the data on a Macbook Pro (Intel Core i5, 1.4 GHz, 
8GB RAM).

Modeling for multivariate abundance data

The (zero-inflated) DTM distribution can be used to model multivariate abundance 
data. The results of DTM fitting and regression can be found in Additional file 1.

Estimation of microbial compositions

Microbiome data are often normalized prior to downstream analysis. By assuming a 
multinomial distribution for microbial counts and a Dirichlet-tree prior for the propor-
tions, we transform raw counts into relative abundances by using the estimated posterior 
mean. The results of diversity estimation and differential abundance testing on extracted 
relative abundances can be found in Additional file 1.

Tree‑based regression with relative abundances as predictors

Since the compositions carry only relative information, subcompositions are fun-
damental objects of investigation in compositional data analysis. We consider the 
regression of BMI on the estimated composition and apply TASSO to select subcom-
positions at subtree levels. The results are shown in Fig. 2. We can see that TASSO 
detects four two-component subcompositions. We also apply tree-guided fused lasso 
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to construct predictive models comprised of bacterial taxa at multiple taxonomic lev-
els. The results can be found in Additional file 1.

Conclusion
We have presented a new and simple-to-use tool, phyloMDA, that offers three mod-
ules for analyzing microbiome data while simultaneously incorporating the phyloge-
netic information and mitigating the challenges posed by the data, ranging from the 
modeling of multivariate abundance data to estimation of microbial compositions to 
regression of a phenotype onto relative abundances. Note that the phyloseq pack-
age has been developed for microbiome data analysis [13], and that phyloMDA takes 
a phyloseq object as the input file. In addition to being a tool to import, store, and 
graphically display phylogenetic sequencing data, phyloseq also provides convenience 
analysis wrappers for common analysis tasks by leveraging tools available in R for 
ecology and phylogenetic analysis. phyloMDA can be easily extended or integrated 
into pipelines for microbiome data analysis, especially in cooperating with other R 
packages, such as phyloseq and the compositions package [14]; the latter offers meth-
ods for compositional data analysis by providing descriptive statistics, plotting, multi-
variate analysis, standard transforms, and so on.
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Fig. 2  Tree visualization of the results of applying TASSO to the COMBO data, with the selected features 
shown in red
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