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Abstract

Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater
fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among
threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage
basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network
and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation
describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation
in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated
by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some
circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that
conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we
consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist
species.
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Introduction

Species whose range encompasses multiple habitats often

exhibit functional trade-offs corresponding to local specialization

in resource use. For many of these species, morphology has been

shown to correlate strongly with habitat specialization, with even

subtle variation in body shape seen to be correlated with fitness

parameters such as foraging success, growth rate and body

condition. Selection pressures operating within different habitats

or habitat units favour specific traits. This can lead to fitness trade-

offs, since traits that are well suited to the conditions found in one

location may be ill-suited to those found in others. While such

traits can benefit their bearer by increasing the efficiency with

which specific resources can be exploited, giving them a

competitive advantage that ultimately translates into greater

fitness, the cost of acquiring such traits is reduced efficiency in

the use of other available resources [1,2,3,4].

Morphological variation corresponding to differences in habitat

and resource use have been described in a diverse array of animal

groups, including insects [5], gastropods [6]; amphibians [7]; reptiles

[8,9]; mammals [10] and birds [11,12]. In fishes, intraspecific

morphological variation has been described within populations of

numerous species occurring across environmental gradients such as

flow regime, water depth, water chemistry, substrate type, predation

risk and prey assemblage, in a diverse range of gross habitat types,

including high latitude post glacial lakes [13,14,15,16,17,18,19,

20,21,22,23,24,25], reviewed by [26,27], drainage networks [28,29,

30,31,32], surface-subterranean systems [33] and coastal environ-

ments [31].

As a first step towards identifying putative habitat specialization

within environmentally heterogeneous drainage basin systems this

study aimed to quantify morphological variation among threespine

sticklebacks (Gasterosteus aculeatus L.) collected from discreet but

connected habitat units comprising a lowland drainage basin.

These included the upper and lower reaches of the river, the

estuary, a man-made drainage ditch network and a coastal salt

marsh. These habitats varied markedly both in their physical

characteristics, such as channel size, flow rate, turbidity and

structural complexity, and also in the assemblages of predators

that they contained.

The threespine stickleback was selected as the focus of our study

because it is an ecological generalist, occurring across a diverse

range of freshwater, estuarine and coastal habitats throughout the

temperate Northern hemisphere, and because it is known to

exhibit substantial variation in resource use and morphology, both

within and between populations [34]. This variation ranges in

magnitude from the much studied benthic and limnetic species

pair [18] to subtle intra-population variation in prey resource use

[35]. This paper outlines a study designed to test the prediction

that sticklebacks collected from markedly different but connected
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habitat components of our focal drainage basin would exhibit

significant morphological variation. Specifically, we predicted that

we would see variation in both body depth and spine size between

fish from habitats that differed in fish predator assemblage. Local

responses to differences in the intensity and nature of predation

risk is a significant driver of morphological variation in many

species, and has been recorded in a range of taxa [5,6,15,36,

37,38,39,40].

In sticklebacks, large relative spine size is an adaptation to

mitigate predation by gape limited predators, and has been shown

to vary between population in this species, as a function of

predation risk [39,40]. Body depth varies as a trade-off between

predation risk and swimming energetics, where deeper bodies

reduce susceptibility to predation from gape limited predators,

while shallower bodies leader to greater swimming efficiency

through reduced drag. Many species possess the capacity for

phenotypic plasticity in body depth as a function of local predation

pressure [15,36]. In our study we predicted that fish from the river

and estuary habitats, which contain relatively high densities of

piscivorous fish predators, such as Eurasian perch (Perca fluviatilis)

and northern pike (Esox lucius) would have relatively larger spines

and deeper bodies compared to the fish from the ditches and salt

marsh, which contain no fish predators.

A second aim of our study was to gain insight into the

morphological responses of fish living in altered habitats. Our

study drainage contained not only natural elements, the river,

estuary and salt marsh, but also an entirely man-made and

intensively managed habitat, an extensive drainage ditch network

constructed in its current form in the mid 17th century [41] and

maintained through regular dredging. Given the marked physical

and ecological differences between the ditch network and the

natural river channel (see Table 1) to which it is connected at

multiple points, we further predicted that we would see

morphological variation between fish from these habitats.

Methods

Collection and housing
Sticklebacks were collected using dipnets from six sites in the

Great Eau drainage in Lincolnshire, eastern England during

September 2005. This drainage consists of four distinct but

interconnected habitat types; the river channel, the estuary, a

network of man-made drainage ditches, and a coastal salt marsh

system, which differ markedly in a number of environmental

parameters (Table 1). Sticklebacks are common in all of the four

habitat types. The six sites were (1) a 250 m long stretch of the

estuary (n = 21 fish), (2) a non-tidal 50 m stretch of the river

7.5 km upstream from the estuary, (‘the lower river site’, n = 37),

(3) a 50 m stretch of river 7.8 km further upstream (15.3 km

upstream from the estuary, ‘the upper river site’, n = 41), (4) a

50 m stretch of ditch approximately 200 m from its confluence

with the estuary (‘ditch site 1’, n = 28), (5) a 50 m stretch of ditch in

the same network, 2.5 km away from, and connected to ditch site

1 (‘ditch site 2’, n = 33) and (6) a 9000 m2 pool in the salt marsh

system that was intermittently connected to the estuary by a tidal

creek system (n = 56). Coordinates for the sites of collection are

presented in Table 1. All fish were fully plated. There were no size

differences between fish from the six sites (mean +/2 standard

error = 37.9 mm+/20.32 mm, range = 36 to 40 mm, one-way

ANOVA: F(5, 210) = 0.60, P = 0.72).

The fish were transported to the laboratory, where they were

held in 45 L aquaria at 12uC in groups of approximately 20. Fish

from different habitats were held separately. They were fed daily

with frozen bloodworm (Chironomus sp. larvae). Fish were

photographed for morphological analyses seven days after capture

and were food deprived for 24 hours before being photographed.

They were photographed while alive, and afterwards were

retained in the lab for use in a separate behavioral experiment

[42]. Photographing took around 30 s per fish, after which they

Table 1. Overview of environmental parameters at the six collection sites.

Estuary River River Ditch 1 Ditch 2 Salt marsh

(lower) (upper)

Coordinates 53u25902N 53u22911N 53u199016N 53u25905N 53u26906N 53u23958N

0u12917E 0u11922E 0u08916E 0u11954E 0u10937E 0u10952E

Maximum channel width (m) 20a 10 6 2 2 300 m630

Maximum channel depth (m) 6a 3 1.5 0.6 0.3 1.2

Maximum flow rate (m/s) 0.1a 0.3 0.5 0.05 0.01 none

Turbidityb 0.3 3 3 0.5 0.5 1

Salinity 1.000– 1.000 1.000 1.006– 1.006– 1.022–

(specific gravity) 1.024a 1.014c 1.020c 1.035c

Predator assemblage

Fishesd Presente Present Present Absent Absent Absent

Birdsf Present Present Present Present Present Present

Insect larvaeg Absent Present Present Absent Absent Absent

aDetermined by tidal cycle.
bMaximum visual range, based on estimated Secchi depth.
cObserved range over 12 month period (2005–2006), determined by variation in rates of precipitation and evaporation.
dIncluding brown trout, Salmo trutta; Eurasian perch, Perca fluviatilis, northern pike, Esox Lucius.
eEurasian perch and northern pike present at low tide only.
fIncluding grey heron, Ardea cinerea; kingfisher, Alcedo atthis and little egret, Egretta garzetta.
gIncluding emperor dragonfly, Anax imperator and great diving beetle Dytiscus marginalis.
doi:10.1371/journal.pone.0021060.t001
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were returned to different holding tanks. None were observed to

suffer injury or exhibit unusual behavior after being photo-

graphed.

Morphological analyses
Each fish was placed on its right flank within a groove in a

polystyrene block, to prevent deformation of the body along its

length and a digital image of the left flank was captured. The

camera tripod and polystyrene block weresecured to a bench in

order to ensure that the camera position was consistent across

samples. Morphology was analysed using landmark-based geo-

metric morphometrics and thin-plate spline analysis. The program

TpsDIG [43] was used to capture the x and y coordinates of 20

landmarks from each image (Figure 1). The landmarking

procedure was performed blind, so that the researcher who

digitised the landmark locations was not aware of the site of

collection of the fish. The data generated by TpsDIG was then

transferred to the program TpsRelw [43], which uses principle

component analysis (PCA) to describe shape variation in the

sample by comparing the landmark coordinates of each individual

with the landmark coordinates of all of the other individuals in the

sample. In order to control for allometry we used a MANCOVA

to obtain residuals of body size (length to the nearest 0.1 mm) and

the partial warp and uniform score values. This procedure was

performed using SPSS. These size-residual principal components

were then entered together as parameters into a multivariate

discriminant function analysis (DFA), also using SPSS. The sites of

capture of the fish were used as grouping variables. The DFA

combined all the scores obtained from TpsRelw into discriminant

functions, hereafter referred to as morphological indices, with a

unique variable for each individual that maximally discriminates

between the groups. TpsRegr [43] was used to visualize body

shape variation. This program performs a regression between the

coordinates captured by TpsDIG and the discriminant variables

obtained from the DFA to produce grid deformation plots. To

determine whether morphology varied between fish from the

different habitat types a one-way ANOVA with Tukey post-hoc

analyses was performed for each of the morphological indices

produced by the DFA, with site of collection as the grouping

variable.

Controlling for landmark precision
In order to confirm that landmarks could be identified

consistently, both within and between samples, we repeatedly

digitised landmarks on the same images, in order to determine

landmark precision. Five images were selected at random. For

each image, the same 20 landmarks were digitised each day, for

five consecutive days. The order in which the images were

landmarked was randomised for each day. Figure 2 shows that

landmarks could be readily identified with minimal error, ensuring

that the morphological variation described below in the results

section is due to between-habitat variation in body shape, and does

not reflect sampling error.

Dorsal and pelvic spine relative size
TpsDIG was also used to measure the length of the first dorsal

spine, the left pelvic spine and the standard length of each fish.

Proportional spine length was determined by dividing spine length

by body length. Using body length-adjusted spine measurements

alone is controversial, since the effectiveness of spines against gape-

limited predators is strongly dependent upon body depth, the

relative distance between the base of the pelvic spines and the

dorsal surface (Bell & Foster, 1994). In analysing both spine length

and whole body morphology together both subjects of variation

were accounted for. For each spine measure, the proportional

length values (normalised by arcsine transformation) were

compared between sites of collection using General Linear Models

(GLMs), with the whole body morphological indices included as

covariates.

Results

Body shape
The DFA revealed five morphological indices describing 37.5,

26.6, 22.1, 9.4 and 4.4% of the morphological variation in the

sample. We consider first three of these further, below.

Morphological index 1. The first morphological index

described variation in orbit diameter, which varied significantly

between sites (one-way ANOVA: F(5, 215) = 384.44, P,0.001,

Fig. 3). Individuals with negative indices had relatively larger eyes

compared to those with positive indices. Smaller eyes were typical

of fish from the two ditch sites, while fish from the estuary, river

and salt marsh sites had larger eyes. We saw no variation between

fish from the two ditch sites (Tukey post-hoc: P = 0.98), nor

between the estuary, river and salt marsh sites (estuary vs. lower

and upper river sites and salt marsh site: P = 0.55, 0.99 and 0.80

respectively; lower and upper river site versus salt marsh site:

P = 0.67, 0.88 respectively, lower versus upper river site: P = 0.57).

Fish from the salt marsh, the estuary and river sites differed

significantly from fish from the two ditch sites (P,0.001 in all

cases).

Morphological index 2. The second morphological index

described variation in body depth and the robustness of the caudal

peduncle (Fig. 4). Negative scores described fish that were ventrally

convex, and deeper bodied in the midsection, at the approximate

location of the pelvic spine. Fish with negative scores had shorter

but broader caudal peduncles. The relative positions of the pelvic

and dorsal spines differed between fish with negative and positive

scores; negative scores described fish with pelvic spines located to

the posterior of the first dorsal spine while in fish with positive

scores the pelvic and first dorsal spine were more or less vertically

Figure 1. Location of the landmarks used in the morphological
analysis. Line diagram of the left flank of a threespine stickleback,
showing the locations of the 20 landmarks that were used in the
morphological analyses. These landmarks correspond to: (1) the tip of
the premaxilla, (2) the axis of the jaws, (3–6) the anterior-most,
uppermost, posterior-most and lowermost point of the orbital
circumference, (7–9) the posterior most edge of the first, second and
third dorsal spines, at the points where they emerge from the dorsal
surface, (10–11) the anterior- and posterior-most edges of the dorsal fin,
at the points where it emerges from the dorsal surface, (12) the
beginning of the caudal fin, where the membrane contacts the dorsal
surface, (13–14) the upper- and lowermost points of the hypural fan,
(15) the beginning of the caudal fin, where the membrane contacts the
ventral surface, (16–17) the posterior- and anterior-most edges of the
anal fin, at the points where it emerges from the ventral surface, (19)
the posterior most edge of the left pelvic spine, (19–20) the lower and
uppermost points of the pectoral fin base.
doi:10.1371/journal.pone.0021060.g001
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aligned. Again, morphology varied between sites (one-way

ANOVA: F(5, 215) = 133.99, P,0.001).

Negative scores were typical of fish from the estuary, which

differed significantly from fish from all of the other sites (Tukey

post-hoc, P,0.001). Fish from the two river sites had positive

scores, describing shallower bodies and longer, narrower caudal

peduncles. Fish from these two sites did not differ significantly

from each other (P = 0.59), but differed significantly from fish from

all other sites (P,0.001). Fish from the salt marsh and ditch sites

scored intermediately and did not differ from each other

significantly (salt marsh vs. ditch sites 1 and 2 respectively:

P = 0.34 and 0.14; ditch site 1 versus ditch site 2, P = 0.98).

Morphological index 3. The third morphological index

also described variation in the form of the caudal peduncle, as

well as the degree of tapering posterior of the pelvic spine.

Negative scores described caudal peduncles that were relatively

short, while those in fish with positive scores were more

elongated with a slight downward curve. In fish with negative

scores we also saw elongation of the posterior section of the

body, in the region of the anal and dorsal fins relative to those

with positive scores. We also saw variation in the size and angle

of the base of the pectoral fin; fish with negative scores possessed

pectoral fins with broader bases that were angled vertically; in

fish with positive scores the base of the pectoral fin was larger

and angled forward.

Once again, morphology varied significantly between sites

(one-way ANOVA: F(5, 215) = 35.35, P,0.001, Fig. 5). Negative

scores were most apparent in fish from the upper river site, and

to a lesser extent in those from the estuary and first ditch site.

Fish from the upper river site differed significantly from those

from the other sites (Tukey post-hoc: P = 0.028 versus the

estuary site, P,0.001 all other comparisons). Fish from the salt

Figure 2. Plots showing consistency of landmark location. In order to confirm that landmarks could be identified precisely and consistently,
both within and between samples, we repeatedly digitised landmarks on the same images. Five images were selected at random. For each image, the
same 20 landmarks were digitised each day, for five consecutive days (see Methods and Figure 1 for discussion of the landmark selection criteria). The
order in which each image was landmarked was randomised for each day. Landmark locations for days 1 to 5 are represented by blue, red, yellow,
purple and black markers respectively. Each image represents a fish 36–40 mm in length.
doi:10.1371/journal.pone.0021060.g002
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marsh and the two ditch sites did not differ significantly

(P = 0.19; 0.99; 0.20, salt marsh versus ditch sites one and two

and ditch site one versus ditch site two respectively). Fish from

the lower river site had strongly positive scores and differed

significantly from fish from all the other sites (P,0.001 in all

comparisons).

Figure 3. Morphological index 1. The mean scores (+/2 standard error) of fish from each of the six collection sites for the first morphological
index, describing described 37.7% of the morphological variation in the sample. Morphological index 1 was primarily associated with variation in
orbit diameter. Orbit diameter increased with decreasing morphological index score. The deformation plots on the right of the figure show the
morphologies associated with the positive-most and negative-most scores. Tukey post-hoc analyses: * indicates P,0.05.
doi:10.1371/journal.pone.0021060.g003

Figure 4. Morphological index 2. The mean scores (+/2 standard error) of fish from each of the six collection sites for the second
morphological index, describing described 26.6% of the morphological variation in the sample. Morphological index 2 includes variation in
body depth and the robustness of the caudal peduncle and the size and angle of the base of the pectoral fin. The deformation plots on the
right of the figure show the morphologies associated with the positive-most and negative-most scores. Tukey post-hoc analyses: * indicates
P,0.05.
doi:10.1371/journal.pone.0021060.g004
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Dorsal and pelvic spine relative size
The sizes of the first dorsal and left pelvic spine were seen to be

only weakly positively correlated (Pearson correlation, pooled
across sites: n = 216, r = 0.30). Dorsal and pelvic spine sizes were
therefore analysed separately.

First dorsal spine length varied significantly between sites of

collection (F(5, 207) = 7.69, P,0.001), but did not co-vary with any of

the first three morphological index scores (F(1, 207) = 0.65, P = 0.42;

F(1, 207) = 0.17, P = 0.68 and F(1, 207) = 0.88, P = 0.35 respectively).

Fish from the estuary and lower river had proportionally longer

spines than did those from the upper river, while fish from all three

of these sites had longer spines than those from the two ditch sites

and the salt marsh (Tukey HSD: P,0.001, Figure 6).

Pelvic spine length also varied significantly between sites (F(5,

207) = 9.47, P,0.001), but again did not co-vary with any of the

first three morphological indices (F(1, 207) = 1.27, P = 0.21; F(1,

207) = 0.03, P = 0.86; and F(1, 207) = 0.04, P = 0.84 respectively).

Fish from the salt marsh had proportionally shorter pelvic spines

than fish from the other sites (Tukey HSD: P,0.001, Figure 6).

Discussion

General discussion
There was significant variation in the morphology of threespine

sticklebacks collected from connected habitats within a single

drainage basin that were separated by distances of at most

,20 km and in some cases just hundreds of meters. In line with

our predictions, sticklebacks from habitats where fish predators

were absent had proportionally smaller first dorsal spines (ditch

and salt marsh habitats) and pelvic spines (the salt marsh fish only).

However, while there was also variation in body depth, as

predicted, it was not clearly related to the presence of predatory

fishes, since fish from the estuary and the upper river, both high

predation sites (with respect to fish predators), had respectively the

deepest and shallowest bodies across the sample. Body depth may

depend upon complex interactions between predation pressure,

flow rate and habitat structural complexity [44]. Similarly, we saw

variation in caudal peduncle structure that was not apparently

linked to channel flow rate. Finally, there was striking variation in

orbit diameter. We discuss this variation in more detail below.

Morphological variation both in other populations of stickle-

backs as well as in other fish species can be brought about by

genetic factors, through phenotypic plasticity and through a

combination of both [20,25,45,46]. While we have no data on the

underlying causes of the morphological variation seen in our

population, it seems less likely that the observed variation is driven

by significant genetic differences between fish from the different

habitats. The four habitats we considered in our study are in close

proximity to each other, with no physical barriers to gene flow.

Fish are likely to move between habitats, both in order to breed

[47], and because some habitats (the ditches and salt marshes)

occasionally dry out completely and are presumably repopulated

following re-flooding and reconnection to the river and estuary. It

is possible, however, that there are other barriers to gene flow, for

example pre- and post-zygotic mate choice [47], while local

differences in water chemistry or other environmental conditions

might constitute barriers to fish from different habitats [33]. We

speculate that phenotypic plasticity may be more important in

determining the variation in body shape seen here. Studies of the

effects of rearing environment and resource use during ontogeny

have found that phenotypic plasticity can account for a sizeable

proportion of morphological variation in fishes of a number of

species [20,25,45,46]. Further work is needed in order to identify

both the underlying causal mechanisms of the between-habitat

morphological variation described in our study and the extent to

Figure 5. Morphological index 3. The mean scores (+/2 standard error) of fish from each of the six collection sites for the third morphological
index, describing described 22.1% of the morphological variation in the sample. Morphological index 3 describes variation in the form of the caudal
peduncle, as well as the degree of tapering posterior of the pelvic spine. The deformation plots on the right of the figure show the morphologies
associated with the positive-most and negative-most scores. Tukey post-hoc analyses: * indicates P,0.05.
doi:10.1371/journal.pone.0021060.g005
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which they represent ecological specialization, if at all [48].

Despite this, it is possible to speculate on these in light of the large

literature on morphological variation and divergence in threespine

sticklebacks and other fish species. Subjects of variation in our

study included orbit diameter, body depth and the relative size of

the dorsal and pelvic spines, and we discuss these below. Finally,

habitat specific variation in morphology also has implications for

our understanding of the behavioral ecology of generalist species

living across multiple habitat types, and we briefly discuss this with

regard to social organization, site fidelity and homing behavior.

Accounting for the observed morphological variation
Orbit diameter. The first morphological index revealed by

the DFA in our study, and accounting for around 37% of the

variation seen in our sample included significant variation in orbit

diameter between fish from different habitats. Proportionally

larger eyes are seen in the plankton feeding limnetic specialist

sticklebacks occurring in several lakes in British Columbia and

Alaska [13,14]. No data exists on the feeding ecology of

sticklebacks in the Great Eau drainage, though this could be

determined, for example, using stable isotope analyses [35,49].

Larger eyes were also seen in populations of the phenotypically

plastic Galaxid fish Aplochiton zebra from highly turbid lakes [17]. A

previous study [42] focusing on the foraging efficiency of

sticklebacks from the Great Eau drainage revealed that the

smaller-eyed ditch fish forage with intermediate efficiency (relative

to fish from the estuary, river and salt marsh habitats) under

conditions of increasing turbidity. It was also found that chemical

cues were at least as important as visual cues when foraging

for sticklebacks from all four of the studied habitats, a conclusion

that does not support the idea that variation in orbit diameter

necessarily reflects adaptation to foraging in turbid environments.

Further research is clearly required in order to determine the

significance of the observed habitat specific differences in orbit

diameter.

Body depth. The second and third morphological indices

obtained from the DFA included significant between-habitat

variation in body depth, ranging from relatively shallow-bodied

fish from the two river sites, to the estuary, where the fish had the

greatest body depth. Fish collected from the ditches and salt

marsh were of intermediate body depth. In many aquatic

vertebrates increased body depth has been demonstrated to be

an adaptive response to predation from gape-limited predators

[15,16,36,37,38,50]. Gape-limited predators ingest their prey

intact, and the maximum size of potential prey is therefore

determined by the minimum dimension of the predator’s mouth

and oesophageal tract.

Gape-limited predators have been shown to take longer to

handle and swallow deeper bodied prey compared to shallower

bodied prey, affording a greater window of opportunity for escape,

and some predators therefore preferentially select shallow-bodied

over deeper-bodied prey when both are available [51]. As such

there is a strong selection pressure favoring deeper bodied

phenotypes in prey populations that are subject to predation from

gape-limited predators. A significant cost of developing a deep

body is an increase in hydrodynamic drag and the associated

energetic losses [52,53]. Since predation pressure and the

energetic costs of locomotion (which might depend, for example,

upon flow rate) can vary across habitats, the balancing point of this

trade-off is dynamic. As a consequence, many aquatic prey species

of gape limited predators possess a capacity for plasticity in body

depth, with the development of deeper bodies only being induced

by exposure to predator specific chemical stimuli. Such plasticity

has been documented in both fishes (although not in sticklebacks)

[15,16,50] and larval anurans [37,38]. It is feasible that a similar

mechanism operates in sticklebacks, however to our knowledge

this remains to be explored.

In our study, body depth was shallower in the fish collected from

the two river channel sites, where flow rate was greater than in the

estuary or ditches. Furthermore the deeper bodied estuary fish also

had more robust caudal peduncles. Although sticklebacks are

labriform swimmers, propelled primarily by pectoral sculling, they

also use their caudal fins for propulsion, especially in fast-start

swimming [54].The observed morphological characteristics may

suggest adaptations to increase swimming power in response to the

increased hydrodynamic drag brought about by greater body

depth. While this finding is broadly consistent with a body depth

trade-off between flow rate and predation risk, the link remains to

be demonstrated categorically. Although predation pressure is

likely to be high in the estuary of our study drainage, a similar

assemblage of fish predators also occurs in the non-tidal reaches of

the river, and it is unclear to what extent predation intensity varies

between habitats. Habitat complexity, such as substrate structure

and vegetation density also varies between these locations, and

undoubtedly also has an effect upon flow rate.

Figure 6. Dorsal and pelvic spine relative size. The relative spines
lengths (spine length/body length; mean +/2 standard error) of fish
from each of the six collection sites. Tukey post-hoc analyses: * indicates
P,0.05.
doi:10.1371/journal.pone.0021060.g006
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Body depth may also be linked to feeding mode. Spoljaric &

Reimchen [23] report that more streamlined bodies are typical of

sticklebacks found in deep lakes and feeding predominantly on

zooplankton, while those found in small shallow lakes and feeding

on benthic prey possess deeper bodies. They suggest that the

shallow body of planktivores may be an adaptation for the high

mobility required to maximize encounter rates with patchily

distributed prey in open water. At present we have no data on prey

use in our focal population. Further research is needed if we are to

gain a clearer understanding of the likely complex relationship

between swimming energetics, habitat structure, feeding mode,

predation regime, and body depth variation in this species.

Dorsal and pelvic spines. Like environmentally induced

plasticity in body depth, stickleback spines are an evolved

countermeasure to predation from gape limited fish and bird

predators. By erecting its spines the stickleback can increase its

effective body diameter, preventing itself from being swallowed, or

else increasing the handling time of the predator, prolonging

its window of opportunity for escape [55]. Spines are costly

to produce however, since their development requires the se-

questration of resources that might otherwise be invested in

growth or reproduction. Defensive spines and similar structures

are a common response to predation from gape-limited predators

and plasticity in the presence, size and number of such structures

in response to predation pressure has been described in species

from a range of taxa [5,39,40,56,57]. In sticklebacks, populations

under low or no predation pressure exhibit reduced spine size, and

in some cases a complete absence of spines and bodily armor

[39,40]. Consistent with this, we saw that the length of the first

dorsal spine was proportionally lower in fish from the ditch and

salt marsh sites, which contain no fish predators, compared to the

river and estuary sites, while pelvic spines were also proportionally

shorter in the salt marsh fish.

While it was possible to document the presence or absence of fish

predators, it is likely that predation from birds (including grey

heron, Ardea cinerea; kingfisher, Alcedo atthis and little egret, Egretta

garzetta) occurs at all sites to some extent. As endotherms, predatory

birds almost certainly consume more prey per unit of body mass

than do predatory fish and this likely increases during colder

months. Predation from birds may therefore be more important

than predation from fishes in some or all locations at our study site,

while the impact of avian predation may interact with local

variation in depth, turbidity, vegetation coverage and season.

Sexual dimorphism. Recently, a number of studies have

described sexual dimorphism in threespine sticklebacks [58,59,

60,61,62]. Typically this is seen in head size, with males having a

larger, proportionally longer heads than females [58,59,60,62],

while females can have longer pelvic girdles [60]. Aguirre &

Akinpelu [59] reported this pattern in each of ten populations

originating from anadromous, stream and lake environments, while

Spoljaric & Reimchen [62] described males with larger heads, a

larger gape, longer anal fin, and deeper posterior caudal depth

compared to females in fish from 52 lake, stream and marine sites.

Kitano et al. [60] established that sexual dimorphism with respect to

head size has a genetic basis. Reimchen & Nosil [61] report that for

one population males and females differ in the extent to which they

use open water niches, ecological variation which may explain some

of the observed morphological variation between the sexes.

In our study, the sex of the fish was not known. It is unfortunate

that this potential source of variation cannot be accounted for,

however we have no reason to believe that sexual dimorphism

might underlie the habitat-specific morphological variation

described in our study. While we saw variation in orbit diameter,

we did not see the kind of intersexual variation in relative head size

or elongation described in the above cited studies. We can think of

no plausible mechanism for habitat-biased sex distributions, such

as male nest site location preferences, or sex-biased post-mating

mortality, since the fish used in our study we collected in late

summer, after the breeding season had finished and would have

been unmated young of the year, spawned several months

previously in the spring. Nevertheless, future studies at this site

will include subject sex as a variable.

Implications for behavioral ecology
The high-levels of habitat-specific morphological variation seen

in our study imply either assortive mating and limited gene flow

between adjacent habitats, or that the variation is driven primarily

by phenotypic plasticity. In either case, local functional trade-offs

with respect to morphology may restrict the freedom of individuals

to move between populations, since any immigrants would likely

be at a competitive disadvantage relative to residents. In other fish

species, where morphology is known to correspond to resource

specialization, such as in some pelagic and littoral polymorphic

species, individuals suffer significant fitness costs associated with

lower foraging efficiency and competitive disadvantage when

moving out of the habitat to which they are adapted and entering

other areas [21,22,24]. It would be useful to determine whether

similar fitness trade-offs are also exist with respect to movement

between habitats in our study system.

If such fitness costs exist among the sticklebacks in our study

system they should promote site or habitat fidelity. One mech-

anism by which this could be achieved is through self-referent

matching of resource derived cues in shoaling decisions. Recent

work has shown that a number of shoaling fish species, including

sticklebacks, preferentially shoal with others that have recently

eaten the same foods or been exposed to the same environmental

conditions as themselves [63,64,65,66,67,68,69,70]. Further, this

mechanism of social organization has been shown to operate

among sticklebacks in the field in our study drainage with

individuals showing shoaling preferences for conspecifics from

their own location over those from other areas [66]. These

preferences were seen both within and between habitats, with fish

being able to discriminate between those from their own point of

capture and from locations less than half a kilometer away.

Conceivably, one factor driving the evolution of self-referent

shoaling behavior could be adaptation to local conditions, and the

subsequent fitness costs of moving into the ‘wrong’ habitat and this

idea merits further research. Social organization and the

distribution of individuals through the environment, by whatever

mechanisms it operates, influences social and competitive

interactions, determines the rate and patterns of transmission of

information and pathogens and can affect patterns of mating, all of

which have implications for the ecology and evolution of species.

Conclusions
Body shape varied significantly among threespine sticklebacks

from separate but interconnected habitats within a single drainage

basin. Variation included differences in orbit diameter, body depth,

caudal peduncle shape, pectoral fin positioning and relative dorsal

and pelvic spine size. Interestingly, one of the habitats, the ditch

system, is entirely artificial and is managed through regular dredging,

suggesting that human management of habitats can in some

circumstances lead to morphological variation among the animals

that inhabit them. Though an ecologically generalist species, the

threespine sticklebacks in our study system were seen to exhibit lower

variation in body shape within habitats than between them. Whether

this indicates local, inter-habitat functional trade-offs remains to be

determined. Finally, while we speculate that phenotypic plasticity
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rather than genetic differentiation is likely to be the major driving

force behind the observed variation, further work is required in order

to determine their relative importance.
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