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Abstract

Background: Prolyl isomerase Pin1 may be involved in innate immunity against microbial infection, but the mechanism how
Pin1 controls the innate immunity is poorly understood.

Methodology/Principal Findings: Injection of lipopolysaccharide (LPS) into the mice induces inflammatory pulmonary disorder
and sometimes the serious damages lead to death. Comparing to the wild-type (WT) mice, the Pin12/2 mice showed more
serious damages in lung and the lower survival rate after the LPS injection. We compared the levels of typical inflammatory
cytokines. Pin12/2 mice overreacted to the LPS injection to produce inflammatory cytokines, especially IL-6 more than WT mice.
We showed that Pin1 binds phosphorylated PU.1 and they localize together in a nucleus. These results suggest that Pin1 controls
the transcriptional activity of PU.1 and suppresses overreaction of macrophage that causes serious damages in lung.

Conclusions/Significance: Pin1 may protect the mice from serious inflammation by LPS injection by attenuating the
increase of IL-6 transcription of the mouse macrophages.
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Introduction

The peptidyl prolyl cis/trans isomerase Pin1 specifically

isomerizes phosphorylated serine or threonine residues preceding

proline in certain proteins [1]. It has been reported that Pin1

regulates the functions of transcription factors, such as NFAT [2],

STAT3 [3], and NF-kB [4] that play important roles in the

immune system.

Pin1 regulates innate immunity that is an essential component of

the immune system for host defense. The most important

characteristic of innate immunity is the recognition of pathogens

through Toll-like receptor (TLR). Thirteen TLRs have been

identified so far. Each TLR specifically recognizes structural

components of pathogens and triggers the innate immune response

[5]. Lipopolysaccharide (LPS) is an outer membrane component of

Gram-negative bacteria. It is specifically recognized by TLR4 [6].

Massive activation of innate immunity caused by LPS leads to

excess production of cytokines and other molecules, and develop-

ment of septic shock or endotoxin shock syndrome, a fatal syndrome

that is characterized by fever, hypotension, disseminated intravas-

cular coagulation, and multiple organ failure [7]. Pin1 affects LPS

signal. Pin1 regulates degradation of inducible nitric oxide synthase

and inhibits the production of LPS-induced nitric oxide in murine

aortic endothelial cells (MAEC) [8]. Pin1 prevents the production of

prostaglandin E2 in MAEC by regulating the degradation of

cyclooxygenase-2 induced by LPS [9]. These results suggest that

Pin1 weaken LPS signal and corresponding inflammation.

In this study, we compared LPS-induced inflammatory damage

between WT and Pin12/2 mice [10], and found that Pin1 plays a

key role in suppressing LPS-induced PU.1 activation and protects

mice from serious inflammation.

Results

Pin1 suppressed LPS-induced inflammation
To determine whether Pin1 plays a critical role in response to

inflammatory signals, 15–20 week old WT and Pin12/2 mice were

injected with LPS at 10 mg/g body weight intrapenitoneally and their

survival rates were monitored. Injection of LPS into the Pin12/2

mice induced trepidation, lameness, and eye mucus. WT mice

showed the same symptoms as Pin12/2 mice, but they were less

severely affected and survived significantly longer than Pin12/2 mice

(Figure 1). The median survival time of WT mice was 98.760.84 h

and that of Pin12/2 mice was 59.8612.4 h after LPS injection

(Table S1). Inflammation caused by LPS leads to the development of

multiple organ failures in vivo [7]. WT and Pin12/2 mice were

sacrificed 50–100 h after LPS injection, and the histopathology of

lung, liver, kidney, and spleen were investigated. As a result, we

found that LPS injection caused excessive lung injury in Pin12/2

mice than WT mice (Figure 2). We measured the levels of several

inflammation- related cytokines, such as IL-12p70, TNFa, IFNc,

MCFP-1, IL-10 and IL-6 in serum of these mice at 24 hours after

LPS injection by EIA. Among these cytokines, TNFa and IL-6

increased the most. TNFa was increased 2.5- and 3-folds and IL-6
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was increased 3- and 10-folds in WT and Pin12/2 mice respectively.

These results indicate that Pin1 may protect mice from serious

inflammation by regulating expression of IL-6 after LPS-injection.

Pin1 selectively attenuated LPS-induced IL-6
transcription

Macrophages produce inflammatory cytokines, TNFa and IL-6

in response to LPS stimulation, which causes serious damage in

mice [11]. The TNFa mRNA levels of the macrophages in the

WT and Pin12/2 mice after LPS-injection were similar. On the

other hands, the IL-6 mRNA level of the macrophages in the

Pin12/2 mice was higher than that of WT mice after LPS-

injection. The difference was the most significant at 4 h after LPS

stimulation (Figure 3A). The TNFa mRNA levels were increased

similarly in WT and Pin12/2 mice at any doses of LPS-injection,

although the IL-6 mRNA level was always higher in the Pin12/2

mice than in the WT mice (Figure 3B). The transcription level of

TLR4 of Pin12/2 macrophages was similar to that of WT

(Figure 3C) and the expression level of Pin1 protein in WT

macrophages was not changed by LPS stimulation (Figure 3D).

From these results, we hypothesized that Pin1 constantly acts at

downstream of TLR4 and inhibits the LPS-induced IL-6

transcription.

Affect of Pin1 on LPS-induced IL-6 transcription in
RAW264.7

We next analyzed the effect of Pin1 in LPS-signal in mouse

macrophage cell line RAW264.7. It has been reported previously

that phoshorylation of Ser16 of Pin1 impairs the function of Pin1

[12]. We thought if Pin1 is activated at the downstream of TLR4

Figure 1. LPS induced more serious damage in Pin12/2 mice. 15–20-week-old Pin1 WT (n = 5) and Pin12/2 (n = 5) mice were intraperitoneally
injected with LPS at 10 mg/g body weight or PBS and their survival rates was monitored.
doi:10.1371/journal.pone.0014656.g001

Figure 2. Histopathology of the lungs of WT and Pin12/2 mice after LPS injection. Representative histological sections with hematoxylin
and eosin staining of lungs from surviving mice that were sacrificed 100 h after LPS injection intrapenetoreally. The left panels show the control lungs
of WT (A) and Pin12/2 mice (C), and the right panels show the lungs of WT (B) and Pin12/2 mice (D) that were injected with LPS for 100 h. Scale bars,
30 mm. control; n = 5 per genotype, LPS-injected; n = 5 per genotype.
doi:10.1371/journal.pone.0014656.g002
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by LPS treatment, the amount of pSer16-Pin1 would be

decreased. The pSer16-Pin1 level in RAW264.7- treated with

LPS was lower than the control between 4 h–10 h after the

treatment (Figure 4A). These results suggest that active type of

Pin1 is increased by LPS stimulation. We next examined whether

LPS induces the mRNA level of IL-6 in the RAW264.7-

pretreated with Pin1-specific inhibitor PiB [13]. Although the

TNFa mRNA level was not affected by the PiB treatment, the

transcription level of IL-6 was significantly elevated in the cells-

pretreated with PiB (Figure 4B). Additionally, over-expression of

Pin1 in RAW264.7 results in decrease of LPS-induced IL-6

transcription, but not TNFa (Figure 4C). These results indicate

that Pin1 is activated by LPS stimulation and selectively suppresses

LPS-induced IL-6 transcription.

Figure 3. Comparison of TNFa, IL-6 and TLR4 mRNA and Pin1 protein in the macrophages of WT and Pin12/2 mice after LPS
injection. (A) Peritoneal macrophages from WT and Pin12/2 mice were stimulated with 100ng/ml LPS for the indicated periods. Total RNA was
extracted and then subjected to quantitative real-time PCR analysis using primers specific for TNFa and IL-6. (B) Peritoneal macrophages from WT and
Pin12/2 mice were stimulated with various concentrations of LPS for 4 h.Total RNA was extracted and then subjected to quantitative real-time PCR
analysis using primers specific for TNFa and IL-6. (C) Peritoneal macrophages from WT and Pin12/2 mice were stimulated with various concentrations
of LPS for 4 h.Total RNA was extracted and then subjected to PCR analysis using primers specific for TLR4. (D) Peritoneal macrophages from WT mice
were stimulated with 100ng/ml LPS for the indicated periods. At indicated time points, cell lysates were prepared and subjected to Western blotting
analysis using anti-Pin1 and anti-tubulin as a control. mRNA levels were normalized to that of b-actin and then normalized to the relative mRNA level
of WT at time 0 h or mRNA level of WT stimulated with PBS. Results are shown as means6SEM for 3 independent sets of experiments. Asterisk*
denotes significant difference (p,0.05).
doi:10.1371/journal.pone.0014656.g003
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Interaction of Pin1 with PU.1
Stimulation of a human acute monocytic leukemia cell line,

THP-1 with PMA increased the PU.1 that bound Pin1-beads, but

phosphatase treatment decreased the amount of PU.1 (Figure 5a).

The sites where Pin1 binds were mutated and examined if Pin1

bound the sites or not. As shown in Figure 5b, Pin1 did not bind

S119A but bound T92A and S132A. These results showed that

PU.1 bound S119-Pro site specifically. Although whole Pin1 and

PPIase domain mutant, Pin1R68/69A bound PU.1, WW domain

mutant, Pin1W34A did not bind PU.1.

Colocalization of Pin1 and PU.1
Transfection of COS7 cells with either Pin1 or PU.1 showed that

Pin1 and PU.1 localized in cytosol and nucleus respectively (Figure 6a).

But transfection of the same cell with both cDNAs together made both

proteins localize in a nucleus (Figure 6b). The results suggest that Pin1

binds PU.1 in a cell and moves into a nucleus together.

Discussion

In this report, we have shown that Pin1 selectively inhibits

LPS-induced IL-6 transcription at the downstream of TLR4 in

Figure 4. Function of Pin1 in RAW264.7 stimulated with LPS. (A) RAW264.7 was stimulated with 100ng/ml LPS for the indicated periods. At
indicated time points, cell lysates were prepared and subjected to Western blotting analysis using anti-pSer16 Pin1 and anti-tublin as a control. (B)
RAW264.7 was pretreated with Pin1-specific inhibitor, PiB and stimulated with 100ng/ml LPS for 4 h.Total RNA was extracted and then subjected to
quantitative real-time PCR analysis using primers specific for TNFa and IL-6. (C) Pin1 overexpressed RAW264.7 was stimulated with 100ng/ml LPS for
4 h.Total RNA was extracted and then subjected to quantitative real-time PCR analysis using primers specific for TNFa and IL-6. mRNA levels were
standarized by b-actin. Results were shown as means6SEM for 3 independent sets of experiments. Asterisk* denotes significant difference (p,0.05).
doi:10.1371/journal.pone.0014656.g004
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macrophages. However, it is still unknown how Pin1 specifically

suppresses IL-6 transcription after the LPS-stimulation. It has

been reported that IkBNS that inhibits IL-6 production

selectively in macrophages is induced by IL-10 and LPS [14].

Pin1 enhances the activity of transcription factors, CREB and

STAT3 in several cell types, which increase IL-10 production in

macrophages [15,16]. Taken together, we assume that Pin1 may

up-regulate the production of IL-10 by accelerating the

transcription activity of CREB/STAT3 and elevates the level of

IL-6 specific IkBNS inhibitor in macrophages in response to LPS

stimulation.

We have also found that monocyte chemotactic protein-1

(MCP-1) was upregulated in Pin12/2 mice and inhibition of

Pin1 by PiB or juglone results in upregulation of chemotactic

activity of macrophages (data no shown). These results indicate

that Pin1 may play a role in regulating chemotactic activity of

macrophages and prevents the expansion of inflammation to the

entire body.

These results suggest that Pin1 controls macrophage matura-

tion. We found that Pin1 binds phosphorylated Ser119 –Pro in

PU.1 at the WW domain and the complex localizes in a nucleus.

Taken together, we speculate that Pin1 regulates the transcrip-

tional activity of PU.1 in a nucleus and suppress the excessive

activation of macrophage.

In this report, we have shown the Pin1’s new function in

innate immune system. We do not think IL-6 up-regulation is

only the cause of serious inflammation and immediate death

of Pin12/2 mice. Further study that discloses the precise

molecule mechanisms by which Pin1 selectively inhibits TLR-

dependent genes will provide basis for the development

of new therapeutic strategies to a variety of inflammatory

diseases.

Materials and Methods

Animal study
Our study was approved by Tohoku University animal use and

care committee. All investigations were conducted according to

the principles of the Declaration of Helsinki. LPS (10–25 mg/g

body weight) (Escherichia coli 0111:B4; Sigma, St Louis, MO,

USA) was injected intraperitoneally into 15–20 week old WT and

Pin12/2 mice [10], and they were observed for the next 5 days.

Kaplan–Meier survival analysis was performed using Stats direct

(http://www.statsdirect.com/, StatsDirect, Cheshire, UK).

Cell Culture
The mouse macrophage cell line RAW264.7 was kindly gifted

from K. Nakata (Niigata University, Japan). RAW264.7 was

cultured at a concentration of 1.06106 cells/ml in DMEM

supplemented with 10% (vol/vol) FBS, penicillin (100 units/ml),

and streptomycin (100 mg/g /ml). RAW264.7 was pretreated

with various concentration of Pin1 specific inhibitor PiB prior to

LPS stimulation.

Mouse peritoneal macrophages were prepared from the mice

injected intraperitoneally with 2 ml of 5% thioglycollate broth

(Becton, Dickinson and Company, Franklin Lakes, NJ, USA).

Macrophages were separated according to the method described

by Freundlich et al [17]. Macrophages were cultured at a

concentration of 0.56106cells/ml in DMEM supplemented with

Figure 5. Pull down assay of PU.1 by Pin1. (A) The human
macrophage cell line THP-1 treated with or without 10 ng/ml PMA were
lysed with Lysis buffer. GST-Pin1and GST beads were incubated with the
cell lysates treated with phosphatase previously or not. (B) Wild-type Pin1,
Pin1 mutants in which Trp34 at the WW domain was mutated to Ala34
(Pin1W34A), and Pin1 in which Arg68 and Arg69 at the PPIase domain
mutated to Ala68 and Ala69 (Pin1R68/69A) produced as GST-fusion proteins
were bound to the glutathione-beads. PU.1 in which Thr92 or Ser119 were
mutated to Ala were prepared and used instead of wild type of Pin1.
doi:10.1371/journal.pone.0014656.g005 Figure 6. Immunofluorescent Cell Staining. COS7 cells were

transfected with (A) HA-Pin1 or Flag-PU.1 and (B) HA-Pin1 and Flag-PU.1
together. After 48 h, cells were fixed with 4% paraformaldehyde,
treated with HA probe and FLAG M2 antibodies and Alexa Fluor 488-
and 595- conjugated secondary antibodies, and DAPI staining for
nucleus. These cells were observed under fluorescence microscope
(Biozero 8000, KEYENCE, Japan).
doi:10.1371/journal.pone.0014656.g006
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10% (vol/vol) FBS, penicillin (100 units/ml), and streptomycin

(100 mg/g /ml). Macrophages were treated with 1–100 ng/ml

LPS.

Construction of expression plasmids and transient
transfection

Full-length of Pin1 was generated by PCR from murine

macrophage cDNA synthesized using PrimeScript 1st strand

cDNA Synthesis Kit (Takara, Otsu, Japan). Full-length of murine

Pin1 was sequenced and cloned into pCMS-EGFP expression

vector. The expression vector was transiently transfected into

RAW264.7 using Lipofectamine 2000 (Invitrogen, Carlsbad,

California 92008, USA) as described previously [18].

Western blot analysis
Macrophages were lysed in SDS sample buffer (pH 6.8, 50 mM

Tris-HCl, 2% SDS, 10% glycerol, 5% b-mercaptoethanol, and

1% bromophenol blue). Pin1 and pSer16 Pin1 were detected using

rabbit anti-Pin1 antibody (Calbiochem, San Diego, CA, USA) and

rabbit anti-pSer16 Pin1 antibody (Calbiochem, San Diego, CA,

USA) respectively, followed by anti-rabbit IgG HRP-linked

antibody (Cell Signaling Technology, Beverly, MA, USA).

Tubulin, used as a control, was detected with mouse anti-a-

tubulin antibody (Sigma, St Louis, MO, USA), followed by goat

anti-mouse IgG HRP-linked antibody (Santa Cruz Biotechnology,

Santa Cruz, CA, USA). Detection was performed by chemilumi-

nescence (Amersham, Arlington Heights, IL, USA). Bands were

visualized using a LAS-3000 Image Analyzer (Fuji Film, Tokyo,

Japan). Each experiment was performed independently at least

three times, and the results of one representative experiment are

shown.

RT-PCR analysis
Total RNA was extracted from macrophages and purified using

an RNA Isolation Kit (GE Healthcare, Little Chalfont, Buck-

inghamshire, UK), and cDNA was synthesized using PrimeScript

1st strand cDNA Synthesis Kit (Takara, Otsu, Japan). RT-PCR

analysis of TNFa, IL-6, and TLR4, using b-actin as a control, was

performed using the primers shown in Table S2. Quantitative

real-time PCR analysis was performed using SYBR Premix Ex

Taq (Takara, Otsu, Japan), and the mRNA level was measured

using an Applied Biosystems 7300 Real-time PCR system (Applied

Biosystems, Foster City, CA, USA). The mRNA levels were

normalized to those of b-actin and then normalized to the relative

mRNA levels of control samples in each experiment. Results are

shown as means6SEM for 3 independent sets of experiments.

Hematoxylin and eosin staining
After 50–100 h of LPS injection, mice were sacrificed and their

tissues were embedded in paraffin. For histological analysis,

paraffin-embedded sections were stained with hematoxylin and

eosin (Wako, Osaka, Japan).

Statistical analysis
Values are reported as means 6 SEM. The statistical

significance of differences between mean values was determined

by Student’s t test. A value of p,0.05 was considered statistically

significant.

Pull down assay of PU.1 by Pin1
The pull down assay was performed as written in the previous

paper (18). The human macrophage cell line THP-1 and COS-7

cells were cultured at a concentration of 1.06106 cells/ml. THP-1

cells that were treated with or without 10 ng/ml PMA (12-O-

Tetradecanoylphorbol 13-acetate) were lysed with Lysis buffer

(50 mM Tris-HCl(pH7.5), 150 mM NaCl, 1% NP40, 5 mM

EDTA, 1 mM PMSF, 2 mg/ml Aprotinin, 50 mM NaF, 25 mM

b-glycerophosphate, 1mM Na3VO4) . Wild-type Pin1, Pin1 in

which Trp34 at the WW domain was mutated to Ala34

(Pin1W34A), and Pin1 in which Arg68 and Arg69 at the PPIase

domain mutated to Ala68 and Ala69 (Pin1R68/69A) were produced

as N-terminal glutathione-S-transferase (GST) fusion proteins and

bound to the glutathione-Sepharose. These beads were incubated

with the cell lysates treated with phosphatase previously or not. In

order to determine the Pin1 binding sites of PU.1 in which Thr92

or Ser119 were mutated to Ala were used instead of wild type

Pin1. COS-7 cells were used for this assay.

Immunofluorescent Cell Staining
COS7 cells were transfected with HA-Pin1 and/or Flag-PU.1

expression vectors. After 48 h, cells were fixed with 4%

paraformaldehyde, treated with HA probe and FLAG M2

antibodies and Alexa Fluor 488- and 595- conjugated secondary

antibodies, and observed under fluorescence microscope (Biozero

8000, KEYENCE, Japan).
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