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Forward genetic screens have elucidated molecular pathways required for innumerable aspects of life; however, identi-
fying the causal mutations from such screens has long been the bottleneck in the process, particularly in vertebrates. We
have developed an RNA-seq–based approach that identifies both the region of the genome linked to a mutation and
candidate lesions that may be causal for the phenotype of interest. We show that our method successfully identifies
zebrafish mutations that cause nonsense or missense changes to codons, alter transcript splicing, or alter gene expression
levels. Furthermore, we develop an easily accessible bioinformatics pipeline allowing for implementation of all steps of the
method. Overall, we show that RNA-seq is a fast, reliable, and cost-effective method to map and identify mutations that
will greatly facilitate the power of forward genetics in vertebrate models.

[Supplemental material is available for this article.]

Forward genetic screens have illuminated how genes encode the

information necessary for life (Crick et al. 1961; Brenner 1974;

Nüsslein-Volhard and Wieschaus 1980; Meyerowitz and Pruitt

1985; Haffter et al. 1996; Nolan et al. 2000). However, the sub-

sequent identification of the causal mutation has been the bot-

tleneck in the forward genetics process. Indeed, only one-third of

the mutants identified in the first large-scale forward screens un-

dertaken in a vertebrate model (Haffter et al. 1996) have been

cloned. This problem has been solved in invertebrate systems

through the use of whole-genome sequencing (WGS) of mutant

animals to identify candidate genes; the main advantage of both

Caenorhabditis elegans and Drosophila is that the genomes are small,

animals are isogenic, and chemically induced mutations are rare

enough that the changes can be identified and quickly confirmed

to be causative (Sarin et al. 2008; Blumenstiel et al. 2009). In the

zebrafish, the genome is large (greater than 10 times larger than

worm or fly), making it relatively expensive to use WGS. Addi-

tionally, the zebrafish genome is highly polymorphic, with each

strain, and even each individual, carrying numerous polymor-

phisms. Thus sequencing a single animal is not sufficient to dis-

tinguish potential causative mutations from other polymorphisms.

Here we describe an RNA-seq–based bulk segregant analysis (BSA)

approach that allows for the inexpensive mapping and identifi-

cation of candidate mutations from forward genetic screens. While

we have used zebrafish as a model, this methodology is applicable

to any model system with a sequenced genome.

BSA identifies regions of the genome that are linked to a

causative mutation in a group of phenotypically mutant animals.

This is accomplished by identifying regions of homozygosity

within mutants at genetic markers found throughout the genome

(Supplemental Fig. 1). BSA using PCR-based testing of infrequent

microsatellite markers has been the standard for the initial map-

ping of zebrafish mutations (Geisler et al. 2007; Zhou and Zon

2011). The approach is both laborious and low-resolution and re-

quires subsequent fine mapping using several hundreds to thou-

sands of individual animals, each requiring multiple rounds of

testing (Zhou and Zon 2011). This process is costly in terms of

reagents and time. Next-generation sequencing (NGS) provides

a means to identify the most abundant class of marker in the ge-

nome, single nucleotide polymorphisms (SNPs), in order to map

mutations; additionally, in the same experiment, the data identify

candidate mutations within the region of linkage that may be

causal for the phenotype. Several WGS approaches have been

successfully applied to the mapping and identification of candi-

date zebrafish mutations (Bowen et al. 2012; Leshchiner et al.

2012; Obholzer et al. 2012; Voz et al. 2012); however, because of

the size of the zebrafish genome and the cost of WGS, these ap-

proaches have relied on relatively low coverage sequencing

(two- to sevenfold). RNA-seq offers an alternative method to

perform NGS mapping and presents several advantages over

WGS: (1) It effectively reduces the representation of the genome,

thereby decreasing the amount of sequencing needed to obtain

high coverage and thus high-quality information; (2) the effect

of candidate mutations on transcript splicing can be directly

assessed in mutants; and (3) the effect of mutations on the ex-

pression levels of genes can be directly identified. Overall, the

RNA-seq approach offers a number of advantages at reduced cost.

Here we have developed and validated in vivo methodology

and an in silico bioinformatics pipeline using RNA-seq to map

and identify mutations. The in vivo preparation is simple and

straightforward, and the bioinformatics pipeline is constructed

from existing open-source programs and custom scripts. We have

validated our approach on several independent mutations, dem-

onstrating the ability to map and identify mutations that are del-

eterious due to amino acid changes, altered splicing, or altered

expression levels. Importantly, we developed a simple computa-

tional platform that allows data processing within one integrated

application. Our methodology greatly increases the power of for-

ward genetics approaches in model systems with large, polymorphic

genomes.
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Results

RNA-seq sample preparation and sequencing for BSA

RNA-seq–based and WGS-based BSA mapping and candidate

identification are similar except that with RNA-seq the sample

being sequenced is limited to the genes expressed at the time of

RNA extraction. To test the applicability of RNA-seq to BSA map-

ping, we performed analysis on a number of known, independent,

N-ethyl-N-nitrosourea (ENU)-induced mutations in the zebrafish:

two nonsense mutations, hoxb1bb1219 (data not shown) and

nhsl1b f h131 (Walsh et al. 2011); a mutation that causes splicing

defects, vangl2m209 ( Jessen et al. 2002); and a nonsense mutation

causing nonsense-mediated decay, egr2bf h227 (Monk et al. 2009).

For each mutation, individual pairs of heterozygous mutants were

crossed, and mutant progeny were selected based on their known

phenotypes, just as would be done in the case of an unknown

mutant. Separate pools with equal numbers (from eight to 80)

(Table 1) of mutant (�/�) and wild-type (+/� or +/+) siblings were

made (Supplemental Fig. 1). We reasoned that RNA extracted from

embryos soon after the first appearance of the mutant phenotype

would have the best chance of including transcripts carrying the

causal mutation. We therefore performed RNA extractions on

mutant and sibling pools directly after scoring for each pheno-

type of interest (stages ranging from 2 to 5 days post-fertilization,

depending on the phenotype; see Methods). Sequencing libraries

were prepared using standard procedures. Briefly, total RNA was

extracted, mRNAs were polyA selected and chemically fragmented,

cDNA was prepared, and sequencing libraries were created for

mutant and wild-type pools. Each pool was uniquely barcoded,

allowing for multiplexing samples from several different mutants

during sequencing. Sequencing was performed on an Illumina

HiSeq 2000 machine with six libraries (three sibling/mutant

pairs) per lane, resulting in an average of 43 million 50-bp paired-

end reads per sample (Table1).

RNA-seq data processing and linkage mapping

Reads from each sibling/mutant pair were independently aligned

to the zebrafish genome (Zv9.63) using TopHat/Bowtie, an intron

and splice aware aligner (Supplemental Fig. 2; Trapnell et al. 2009).

From the aligned data sets, we first identified SNPs within the wild-

type sequence (using SAMtools mpileup and bcftools) (Li et al.

2009) that would serve as useful markers to test linkage within the

mutant data (Supplemental Figs. 1C, 2). Within any genome, SNPs

Table 1. Characteristics of RNA-seq–based mapping experiments

hoxb1b nhsl1b vangl2 egr2b

Mutation type/effect Nonsense Nonsense Nonsense Nonsense Splicing Nonsense/NMD

No. of embryos in each pool 20 40 80 8 37 30
No. of 50-bp wild-type reads greater than

Q30 (million)
48.5 41.5 35.4 47.9 56.9 38.6

No. of wild-type bases (Gb) 2.4 2.1 1.8 2.4 2.9 1.9
No. of 50-bp mutant reads greater than Q30 (million) 46.7 36.0 38.1 24.1 65.3 40.1
No. of mutant bases (Gb) 2.3 1.8 1.9 1.2 3.3 2.0
No. of SNPs wild-type greater than two readsa 630,994 564,915 506,331 508,872 483,282 374,887
No. of SNPs mutant greater than two readsa 636,480 523,281 545,295 333,315 553,698 398,334

Mapping
No. of markers (greater than 25-fold/25%)b 40,203 33,987 27,945 53,993 50,301 24,852
Linked region (Mb)c 11.6 7.9 6.5 40.8 2.3 6.6

Candidate identification
No. of 50-bp mutant reads greater than Q30 (thousand)d 424 245 205 4,989 120 106
Average coverage of genesd,e 32 33 40 29 12 26
Mode coverage of genesd,e 2 3 4 1 2 1
% Genes covered at greater than fourfoldd 71 79 84 52 41 44
% Genes covered two- to fourfoldd 26 19 14 34 58 27
% Genes covered less than twofoldd 3 2 2 14 1 29
No. of homozygous SNPs greater than

two readsa,d
3,851 2,175 1,922 6,167 839 1,637

No. of SNPs left after filteringd,f 662 317 283 719 126 232
No. of SNPs affecting codingd,g 46 18 19 129 29 58
No. of Nonsensea,d,g 1i 1i 1i 2i 0 0
No. of Missensea,d,g 6 1 1 20 2 4
No. of Isoforms altered d,h 1 0 0 nd 1i 0
No. of expression levels altered d,j 0 0 0 3 0 1i

(NMD) Nonsense mediated decay; (SNP) single nucleotide polymorphisms; (nd) not determined; (Q30) quality score with an accuracy of 99.9%.
aAt least one forward alternative and one reverse alternative read.
bGreater than 25-fold coverage at SNP with >25% heterozygosity.
cRegion defined as having an average marker frequency within 1% of peak marker frequency.
dValues from mutant RNA-seq data within the linked region.
eEach gene’s coverage is the average depth of reads found across all exons.
fKnown wild-type SNPs removed from further consideration.
gPredicted by Variant Effect Predictor from SNPs.
hAssessed manually using Integrative Genomics Viewer.
iKnown lesion included.
jPredicted by Cuffdiff from aligned reads, greater than twofold change.
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are most likely to be present in intergenic/intronic regions that are

not represented in RNA-seq data. However, we find an average of

;500,000 SNPs within each of our transcriptome pools (Table1),

most of these residing within UTRs. In contrast to the relatively

low coverage of WGS, the highly expressed genes within the

transcriptome allow for the identification of high-quality SNP

markers directly in the parental background under investigation;

these markers provide highly reliable mapping information.

We therefore identified SNPs within each wild-type sibling pool

covered by at least 25 reads, of which at least 25% of the calls

represented an alternative allele (using the custom R script

RNAmappe.R) (Supplemental Fig. 2). This resulted in an average

of 40,000 high-confidence markers per experiment (Table1) that

were then used to interrogate the mutant RNA-seq data for regions

of the genome linked to the mutation of interest (Supplemental

Fig. 1).

In bulk RNA extracted from a pool of many animals with the

same mutant phenotype, the mutation underlying the phenotype

of interest, as well as linked regions of the genome, will be ho-

mozygous. In contrast, due to recombination during meiosis and

independent chromosome assortment, regions unlinked to the

mutation (both on the same and independent chromosomes)

will be heterozygous (light and dark gray bars in Supplemental

Fig. 1B). Thus the SNP marker frequency at and near the muta-

tion will be 1 (all alleles are the same), and this frequency will

gradually decline with increasing genetic distance from the muta-

tion (Supplemental Fig. 1B–D). We therefore calculated the allele

frequency within the mutant RNA-seq data at the positions identi-

fied as high-quality markers and then used a sliding window of

50 neighboring SNPs (average window size of 1.9 Mb, average step

size of 37.5 kb; see Methods) to average this frequency and plot it

against chromosome position. This allowed for the identification of

regions of linkage (Supplemental Fig. 1D; Fig. 1).

Validation of RNA-seq–based mutation mapping

We tested our RNA-seq–based mapping strategy on four known,

independent mutations (hoxb1bb1219, nhsl1b f h131, vangl2m209,

egr2b f h227). We found that in each case the peak of highest allele

frequency was centered on the known mutation (Fig. 1). For each

experiment, the average allele frequency on the linked chromo-

some steadily rose until reaching its highest frequency surround-

ing the known locus (Fig. 1B). In most experiments, the average

allele frequency reached greater than 0.98 (homozygous = 1) sur-

rounding the known locus (Fig. 1). In contrast, the highest fre-

quency on unlinked chromosomes never exceeded 0.89, and the

average was ;0.65 (the average frequency of unlinked SNPs is

higher than 0.5 because some SNPs are heterozygous in both par-

ents, giving an allele frequency of 0.5, while others are homozy-

gous in one of the two parents, giving an allele frequency of 0.75)

(Fig. 1A). In one case, egr2bf h227, the highest peak frequency in the

genome was 0.93, yet this peak surrounded the egr2b locus (Fig.

1B). This lower peak allele frequency is likely due to the missorting

of wild-type animals into the mutant pool. We examined this

missorting idea directly by computationally adding reads from the

wild-type pool into the mutant data and then performing the

mapping experiment. We used the hoxb1bb1219 experiment be-

cause it contained a clear region of homozygosity. The method still

provided a single mapping peak even after being ‘‘contaminated’’

with up to 30% of wild-type reads within the mutant pool (Sup-

plemental Fig. 3). Thus even some limited missorting of wild-type

individuals into the mutant pool can be tolerated.

The size of the linked region from a mapping experiment is

expected to decrease with an increase in the number of mutant

animals pooled due to an increased likelihood of recombination

between the causative mutation and nearby SNP markers. We

tested this prediction by sequencing pools of 20, 40, and 80

Figure 1. RNA-seq–based mapping identifies single peaks of linkage centered on the known mutations in all experiments. (A,B) Rows represent
individual experiments and are labeled by genotype and the number of mutant embryos used for mapping. (A) Genome-wide mapping data. The average
frequency of mutant markers (black marks) is plotted against genomic position. In each case, a single region emerges with an allele frequency near one (red
arrow). Each chromosome is separated by vertical lines and labeled at the bottom. (B) Detail of the chromosome containing the linked interval for a given
experiment (row). The average frequency of mutant markers (green discs) is plotted against chromosomal position. A red box marks each region of
linkage, and a red line marks the position of the known mutation. Each tick mark on the x-axis represents 10 Mb. Each y-axis is the same as in A, first row.
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hoxb1bb1219 mutant embryos and found that, as expected, in-

creasing the number of embryos decreased the size of linkage: 11.6,

7.9, and 6.5 Mb, respectively (linkage was defined by the ‘‘left-

most’’ and ‘‘rightmost’’ position with an average mutant allele

frequency within 1% of the peak frequency). For hoxb1bb1219, in-

creasing from 20 to 40 embryos decreased the linked region by

32%, while from 40 to 80, there was an 18% decrease (Fig. 2;

Table1). At the vangl2m209 and egr2b f h227 loci, given the number of

input embryos, we observed smaller homozygous intervals than

would be predicted by the hoxb1bb1219 experiments (37 and 30

embryos, 2.3 and 6.6 Mb, respectively) (Fig. 2); this likely reflects

the nonhomogeneous rate of recombination across the zebrafish

genome (Bowen et al. 2012). Since in some cases it is difficult to

acquire high numbers of mutant embryos, we also tested whether

mutations could be mapped using a small number of mutant

embryos. For nhsl1b f h131, we used pools of eight mutant and eight

wild-type embryos with the mapping experiment resulting in

a single, large region of linkage (;40 Mb) surrounding the known

locus (Fig. 1). So while very few embryos can be used to accurately

map mutations, pooling more mutants is advisable to minimize

the size of the linked region. However, we found that increasing

the number of embryos beyond 40 led to diminishing returns in

reducing the mapped region size (Fig. 2B).

While each mapping experiment identified a single region of

linkage that was centered on the known mutation, as previously

described (Leshchiner et al. 2012), we found unexpected de-

flections from homozygosity within several linked regions; these

are likely due to misplaced contigs in the current assembly of the

zebrafish genome, which place unlinked SNPs that have an allele

frequency less than 1.0 into the region of homozygosity. Addi-

tionally, while our mapping produced single mapping peaks, it is

possible to identify regions of homozygosity due to shared lineage

instead of due to linkage to the mutation, particularly in inbred

backgrounds (Bowen et al. 2012); thus mutations are often out-

crossed to mapping strains. Our mutants were maintained in a

variety of backgrounds (see Methods), but we note that the

hoxb1bb1219 and egr2b f h227 alleles were generated in a *AB back-

ground, were maintained through outcrosses to the *AB back-

ground, and were in the F3 generation post-mutagenesis; in species

with high intrastrain polymorphism like the zebrafish, it is there-

fore possible to use RNA-seq to map mutations from forward

screens without outcrossing to mapping strains, although out-

crossing does provide a higher frequency of high-quality markers

(Supplemental Fig. 4). Overall, the RNA-seq mapping strategy

provided robust mapping of mutations to correct regions of the

genome.

Identification of candidate deleterious SNP mutations

The most powerful aspect of WGS-based mapping is that it has the

potential to directly identify causal mutations within the homo-

zygous interval. After identifying a region of linkage, we revisited

the mutant RNA-seq data and extracted all SNPs within the region

(using the custom R script RNAidentifie.R) (Supplemental Fig. 2). A

concern in using RNA-seq data is that it may not sequence the

mutant transcript of interest given that only genes expressed at the

time of RNA extraction are captured. We found that, on average,

62% of genes within our homozygous intervals are covered by

greater than four sequencing reads, 32% are covered by two to

four reads at each nucleotide (average mode = 2.17), while the

remaining 8% of genes are covered at levels below twofold (Ta-

ble1). Thus most genes are sequenced at levels that allow for the

identification of candidate mutations. Furthermore, since we iso-

late RNA at the time the mutant phenotype first emerges, it is

likely that the transcript carrying the lesion of interest will be

detected. In support of this idea, we found either the altered

transcript or the effect of the mutation on transcript levels directly

in the RNA-seq data for each of the known mutations (Fig. 3, see

below).

Within the linked region of each mapping experiment, we

used the RNA-seq data to analyze the number of SNP changes that

could represent mutations of interest if mapping unknown mu-

tants. We found that, on average, 275 alternative SNPs became

homozygous per Mb of linkage (Table1). We first removed from

further analysis SNPs that are known to exist in wild-type zebrafish

strains. These wild-type SNPs were compiled (using the custom

R script VCFmerge.R) from independent RNA-seq analysis of wild-

type strains from our own facility, WGS projects (Bowen et al.

2012; Obholzer et al. 2012), and from the standard public data-

bases (dbSNP, Ensembl). This filtering removed 86% of SNPs,

leaving, on average, 40 SNPs per Mb of linkage (Table1). We then

assessed whether these remaining SNPs caused nonsynonymous

Figure 2. Increasing the number of embryos in an RNA-seq–based
mapping experiment decreases the linkage size of the mapped region.
(A) Detail of chromosome 12 containing the linked interval for each
hoxb1b1219 mapping experiment. Each row is labeled with the number of
embryos used in the experiment. The average frequency of mutant
markers (green discs) is plotted against chromosomal position. A red box
marks each region of linkage, and a red line marks the position of the
hoxb1b gene; linkage was defined as the region between the ‘‘leftmost’’
and ‘‘rightmost’’ positions within 1% of homozygosity. Each y-axis is the
same as in the first row. (B) Comparison of linked regions to the number
of embryos used in each RNA-seq–based mapping experiment. The
hoxb1b1219 experiments are labeled in red; nhsl1bfh131, in green;
vanglm209, in magenta; and egr2bfh227, in blue; and unknown mutations
mapped using this method, in cyan. Increasing the number of embryos
decreases the linked region with diminishing returns.
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changes using the Ensembl tool Variant Effect Predictor (McLaren

et al. 2010) and visually confirmed each of these using the Inte-

grative Genomics Viewer (IGV) (Thorvaldsdóttir et al. 2012). Each

hoxb1bb1219 mapping experiment (80 , 40, and 20 embryos) con-

tained exactly one nonsense change in the linked interval, which

was the known lesion (Fig. 3A; Table1). There was one missense

change in each 80- and 40-embryo hoxb1bb1123 linked region. The

larger linkage region in the hoxb1bb1219 20-embryo pool included

five additional missense mutations (Table1). In the case of

nhsl1bf h131, which mapped to an interval of ;40 Mb due to the

small mutant pool size of eight mutant embryos, there were only

two nonsense mutations detected, one of which was the known

lesion, and 20 missense mutations (Fig. 3B, Table1); thus even

when using a limited number of embryos, the RNA-seq approach

provides a manageable number of SNP candidates that might

be causative. In the vanglm209 and egr2bf h227 intervals, there were

zero nonsense mutations and two and four missense mutations

detected, respectively. This methodology allows for the identifi-

cation of a very small number of high priority nonsense and mis-

sense candidates underlying a phenotype of interest (Table1).

Identification of candidate mutations that affect splicing

Many mutations from forward genetic screens alter the splicing of

transcripts either by abolishing endogenous splice donor or ac-

ceptor sites or by creating new ones, as is the case of vanglm209.

While WGS approaches could detect such mutations as homozy-

gous SNPs within the linked interval, the effect of such changes

can be difficult to predict, particularly in the case of the creation of

a new splice acceptor or donor or in the case of unannotated exons.

We analyzed how many splicing variants were identified within

the mapped regions by using IGV to visually assess the transcripts

with defects in splicing. Within the linked intervals, we identified

very few alterations to splicing patterns: In the 80- and 40-embryo

hoxb1bb1123 and egr2b f h227 experiments, there were zero splicing

alterations. In the 20-embryo hoxb1bb1123 and vanglm209 pools,

there was one alteration to the splicing of a transcript, with the

vanglm209 change being the known lesion (the splice alteration

identified in the hoxb1bb1123 20-embryo pool is outside the region

of linkage obtained from the 80- and 40-embryo experiments) (Fig.

3C; Table1). The ability to directly identify and assess the conse-

quences of splice-altering mutations is thus a benefit of the RNA-

seq–based approach.

Identification of candidate mutations affecting gene
expression levels

A mutation can alter the level of expression of genes by (1) creating

a nonsense change that results in the elimination of mutant

transcripts by nonsense-mediated decay (NMD), as is the case of

egr2bf h227; (2) affecting transcription by disrupting regulatory ele-

ments; or (3) secondarily altering the expression of downstream

target genes that could be in the homozygous interval. Although

WGS data can detect mutations that disrupt gene expression, it

does not include information about the effects of these mutations,

making them hard to recognize as causal. We used Cufflinks

(Trapnell et al. 2012) and the custom R script RNAeffecto.R (Sup-

plemental Fig. 1) to identify the genes within linked regions whose

expression levels are different in the wild-type and mutant pools.

We found that only two of the linked regions contained significant

expression level changes of greater than twofold: In the large, ;40

Mb, nhsl1b f h131 region of linkage, there were three genes affected,

and in the egr2b f h227 mutant pool, there was one gene affected,

egr2b itself (Fig. 3D; Table1). Differentiating between the different

possible causes of down-regulation is challenging; however, in the

case of NMD the nonsense transcript might be captured and se-

quenced at low frequency. Indeed, in the egr2b f h227 case, there was

one read in the wild-type pool carrying the nonsense change (data

not shown). In the case of regulatory mutations, sequencing of

Figure 3. RNA-seq–based mapping identifies candidate mutations
creating nonsense and missense changes, affecting splicing, and affecting
gene expression. Reads are shown aligned to each known lesion site.
Aligned reads are shown as gray boxes; differences from reference (ref )
are highlighted by colored letters. (aa) Amino acid; (cov) coverage; (aln)
aligned. (A–C ) RNA-seq data from the mutant pool identified the
known A-to-T transversion in hoxb1bb1219 (A), the G-to-T transversion in
nhsl1bfh131 (B), both creating stop codons, and the creation of a splice
acceptor introducing 15 bp of intronic sequence in the vangl2m209 mu-
tation (C ). (D) The down-regulation of egr2b (via NMD of the egr2bfh227

nonsense mutation) is evident in a comparison of the wild-type and mu-
tant aligned reads (identified as significantly down-regulated by 25-fold
via Cufflinks, q = 0.00011423).
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genomic DNA surrounding the candidate gene would allow for

the identification of mutations in conserved enhancer regions

that could be responsible for down-regulation. The direct identi-

fication of genes with altered expression levels is another powerful

benefit of the RNA-seq–based approach.

Overall our bioinformatics pipeline identified a limited

number of high priority candidate mutations within the linked

region of each experiment (Table1) and, in each case, identified

the known lesion. To facilitate the usefulness of the technique,

we have developed an integrated, bioinformatics pipeline called

RNAmapper running on the Galaxy platform (Giardine et al. 2005;

Blankenberg et al. 2010; Goecks et al. 2010). This package in-

tegrates all of the tools used in the pipeline and can be downloaded

and used locally or run in the cloud by creating an Amazon Ma-

chine Image. RNAmapper and its documentation can be found at

www.RNAmapper.org and make the RNA-seq–based mapping ap-

proach accessible.

Discussion
Together our results show that RNA-seq–based mapping and can-

didate gene identification is a powerful approach allowing for the

rapid and inexpensive identification of mutations from forward

genetic screens. Within this article, for validation purposes, we

applied the technology to only known mutations. We have also

used this approach to map several unknown mutants to unique

regions of the genome (Supplemental Fig. 4) and to identify a

limited number of candidate lesions for each (including nonsense,

missense, and splice altering lesions) (data not shown). After

mapping of unknown mutations and candidate identification,

regardless of linkage size and candidate number, further experi-

ments are necessary to link a potential lesion to the phenotype

definitively (e.g., demonstrating linkage of the candidate lesion

to the phenotype in a large number of individuals, phenocopy

via candidate knockdown/removal, and/or rescue via exogenous

candidate expression). However, the short list of candidates gen-

erated using RNA-seq is likely to yield results quickly. While we

have focused on zebrafish, the use of RNA-seq–based mapping is

applicable to other systems. A similar approach was recently used

to map a mutation in maize (Liu et al. 2012); thus the technique is

applicable broadly to many genetic systems with a sequenced ge-

nome. There are several other vertebrate model systems that are

commonly used to perform forward genetic screens, and their ge-

nomes are of a similar size to that of the zebrafish (zebrafish, ;1.5

Gb; Xenopus tropicalis, ;1.4 Gb; Mus musculus and Rattus norvegi-

cus, ;2.7 Gb), suggesting the RNA-seq–based mapping described

here can be used to identify candidate mutations in these organ-

isms. For the larger, less polymorphic genome of the mouse,

a map cross will be essential to ensure sufficient markers are

identified for mapping the mutation. Additionally, because both

mouse and rat have larger genomes, but have ;3000 fewer genes

than zebrafish, the mapping resolution will be reduced; however,

such a reduction would still provide a relatively small linked re-

gion of mapping and a small number of candidate mutations. Our

RNA-seq–based approach is simple, using common laboratory

procedures and free bioinformatics programs packaged into the

RNAmapper program (http://www.RNAmapper.org).

While it is encouraging that we found the known lesion in

each of our test cases, a consideration when using RNA-seq for

positional cloning is that the mutant transcript of interest could be

missed due to low or zero expression. We found that within our

mapped intervals, from 16% to 56% of genes had low levels of

expression (less than fourfold) that would make it difficult to

identify candidate mutations (these numbers were highly variable

in the different linkage regions) (Table 1). To mitigate this concern

in the case of an unknown mutation, we suggest extracting RNA at

a timepoint as close to the first emergence of the mutant pheno-

type as possible, as this increases the likelihood that the transcript

carrying the causal lesion will be expressed. While such early se-

lection of the phenotype might lead to increased misphenotyping

and thereby inclusion of wild-type embryos in the mutant pool, we

have found our method to be surprisingly robust against such

contamination (Supplemental Fig. 3). Alternatively, RNA could be

extracted from a number of different developmental stages or, in

the case of mapping an adult phenotype, a number of different

tissues. This will increase the breadth of transcripts captured and

the likelihood of sequencing the mutant transcript itself. In the

worst-case scenario—where the transcript is missed—our RNA-seq

approach will still provide a mapping interval due to linked SNPs

from neighboring transcripts becoming homozygous. Addition-

ally, the sequencing of transcribed genes within the interval will

allow many (44%–84% of genes have greater than fourfold cov-

erage) (Table1) to be ruled out as candidates, narrowing the search

to a limited number of genes. While the possibility of missing the

causal mutation using an RNA-seq–based approach remains, care

in experimental setup is likely to make this concern minimal, and

the mapping will identify a region of linkage with a small list of

candidates to validate in subsequent experiments.

Recently developed WGS-based BSA approaches effectively

map mutation, and identify 10-fold greater SNPs in each experi-

ment than our RNA-seq–based approach (Bowen et al. 2012;

Obholzer et al. 2012). However, we find that our RNA-seq meth-

odology maps mutations to intervals of similar size compared with

WGS methods (Supplemental Fig. 5), and both approaches are able

to identify nonsense and missense mutations. The RNA-seq–based

approach offers three main advantages: First, sequencing the

transcriptome allows for the visualization of annotated and un-

annotated intron/exon boundaries, allowing for the direct iden-

tification of mutations affecting splicing. WGS approaches may

identify changes that alter known splice acceptor/donors but

would fail to directly detect mutations affecting nonannotated

isoforms or creating new splice acceptor/donors. Second, se-

quencing of the mutant and wild-type transcriptomes allows for

the identification of candidate genes whose expression is affected

by regulatory mutations. While WGS would detect the muta-

tions themselves, other cosegregating, noncoding polymorphisms

could mask the identity of the causal lesion. By providing a direct

comparison of expression levels, RNA-seq identifies the effects of

such mutations, but in the case of noncoding regulatory muta-

tions, it will not detect the mutation itself. In this case, further

targeted genomic sequencing would be necessary to identify the

causative mutation (Gupta et al. 2010); however, the expression

data would focus the search for causal noncoding mutations to

those surrounding the candidate whose expression was affected.

Here we compared only a single mutant to a single wild-type

transcriptome; additional biological replicates would increase the

significance of any expression differences between mutant and

wild-type pools. Finally, RNA-seq comes at a significantly reduced

cost compared with WGS approaches. Currently, WGS approaches

require one to two lanes on an Illumina HiSeq 2000 for each mu-

tant (Bowen et al. 2012; Leshchiner et al. 2012; Voz et al. 2012). In

contrast, we have multiplexed six samples (three mutant/wild-

type pairs) in a single lane. The RNA-seq approach thus incurs one/

third to one/sixth the expense of equivalent WGS approaches.
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Additionally, we found that computationally decreasing the

number of reads by half (to ;20 million 50-bp reads per sample)

still allowed for mapping to a small region but came at the cost of

reducing the number of reads at the lesion site (Supplemental

Fig. 6; Supplemental Table 1). Thus doubling the number of

samples multiplexed would further decrease the cost of RNA-

seq–based mapping, but these savings would come at the ex-

pense of identifying candidate mutations. As sequencing costs

fall, it will become feasible to use both WGS and RNA-seq ap-

proaches, which would confirm and complement one another

powerfully. Currently, RNA-seq offers many advantages at re-

duced cost.

Methods
The hoxb1b1219, nhsl1b f h131, and egr2b f h227 mutations were gen-
erated in the *AB strain and maintained in either a *AB (hoxb1b1219,
egr2bf h227) or a *AB/Tu background (nhsl1bf h131). The vanglm209 was
generated in the Tu strain and maintained in a *AB background.
hoxb1b1219 and egr2b f h227 embryos were collected in the F3 gen-
eration, while nhsl1bf h131 and vanglm209 were outcrossed for greater
than five generations. A single-pair of heterozygous carriers were
crossed for each mutation, and embryos were collected and sorted,
based on morphological phenotypes, into mutant and wild-type
pools: hoxb1b1219 mutants were identified based on reduced otic
vesicle size and lack of hindbrain segmentation (data not shown),
egr2bf h227 mutants based on lack of hindbrain segmentation (data
not shown), vanglm209 for shortened anterior/posterior axis ( Jessen
et al. 2002), and nhsl1bfh131 for defective motor neuron migration
using the Tg(isl1:GFP)rw0 line (Walsh et al. 2011). Some pheno-
types can only be detected after fixation and subsequent process-
ing that destroys RNA; in such cases, the portion of the animal
necessary for phenotype identification can be fixed and screened,
while the rest of the animal can be saved for RNA extraction (this
was successful in our hands in the case of mutants 3–5 in Supple-
mental Fig. 4).

Total RNA was extracted from each pool separately using
a standard acid guanidinium thiocyanate and phenol chloroform
extraction (TRIzol, Invitrogen). RNA was tested for quality using
a spectrophotometer and an Agilent 2100 Bioanalzyer; RNA was
only accepted if it was uncontaminated with phenol or guanidi-
nium thiocyanate and the RNA Integrity Number (RIN) was greater
than 9.0. Approximately 1.0 mg of total RNA was then polyA se-
lected and chemically fragmented to ;200 bp, and cDNA was
created using random hexamer primers. Library preparation fol-
lowed the TruSeq Illumina protocol with each individual library
receiving a unique Illumina barcode, allowing for their identifi-
cation after multiplexed sequencing. RNA-seq was performed on
an Illumina HiSeq 2000 machine with six libraries multiplexed per
lane using 50-bp paired-end reads. This resulted in an average of
250 million reads per lane, with an average of 43 million reads
per sample.

Raw reads were aligned to the zebrafish genome (Zv9.63)
using TopHat/Bowtie, an intron and splice aware aligner (Trapnell
et al. 2009). SNPs were identified using the SAMtools mpileup
and bcftools variant caller (Li et al. 2009), requiring the map and
nucleotide quality to be greater than 30 (i.e., the probability of
a read being mismapped is one in 1000 effectively removing
any repetitive sequence) and, importantly, allowing for anom-
alous pairs to be mapped—these ‘‘anomalous’’ pairs being reads
spanning large introns. For the purposes of mapping, SNPs were
further filtered for quality based on expression level (at least 25-
fold) and for high alternative allele frequency (at least 25%)
using the custom R script RNAmappe.R. RNAmappe.R then

assessed the mutant allele frequency at the positions of the high-
quality wild-type SNP markers and averaged these frequencies
using a sliding window of 50 neighboring markers with a step
size of one SNP. Markers are spaced, on average, every 37.5 kb,
but because SNPs identified are within coding regions, the dis-
tance between markers is variable based on the locations of
genes within the genome. The average allele frequency was then
plotted across the genome, and linkage was identified by ana-
lyzing the genome-wide mapping data for the region of highest
average frequency.

Once a region of linkage was identified, the custom R script,
RNAidentifie.R, was used to extract all SNPs within this region.
These include any SNPs that are detected regardless of coverage
level, providing the broadest list possible of potentially causal
mutations but requiring the user to determine the quality and
coverage level required for further characterization. RNAidentifie.R
then filtered the mutant SNPs against independently identified
wild-type SNPs to remove SNPs that existed in the background
before the mutagenesis. A custom R script, VCFmerge.R, was writ-
ten to combine VCF formatted SNPs from multiple sources, in-
cluding RNA-seq data from our in-house wild-type strains, recent
WGS projects (Bowen et al. 2012; Obholzer et al. 2012), and
standard community sites (dbSNP, Ensembl). Linked SNPs re-
maining after filtering were then assessed for consequences to
proteins using Ensembl’s Variant Effect Predictor (VEP) (McLaren
et al. 2010) or snpEff (Cingolani et al. 2012). The custom R script
VEPsorte.R was used to sort and prioritize SNP candidates from
VEP. The Cufflinks package was used to assess differences in ex-
pression between the wild-type and mutant pools (Trapnell et al.
2012). The custom R script RNAeffecto.R was used to extract and
identify genes with significant expression level changes within the
linked region. IGV (Thorvaldsdóttir et al. 2012) was used to assess
splice changes at intron/exon boundaries and also to visually
assess each potential candidate mutation. All custom scripts
were written in R and are available for download (http://www.
RNAmapper.org) with an open-source BSD license.

To generate a user-friendly mapping platform, we developed
RNAmapper based on Galaxy (http://galaxy.psu.edu) and created
a downloadable package that can be run on a powerful desktop
workstation. We also created an Amazon Machine Image to allow
users to instantiate their own RNAmapper server on the Amazon
Elastic Compute Cloud. We packaged RNAmapper and all associ-
ated required programs and reference data into a single bundle
using VirtualBox (https://www.virtualbox.org/). Alternatively, all
programs and custom scripts listed in Supplemental Figure 2 can be
run from the unix/linux command line. The source code and vir-
tual machines are free to download at www.RNAmapper.org.

Data access
All RNA-seq data have been submitted to the NCBI Sequence
Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under the
BioProject accession PRJNA172016, and each sequencing file can
be found under the accession numbers SRS352960, SRS352996,
SRS352997, SRS352998, SRS353000, SRS353001, SRS353003,
SRS353004, SRS353006, SRS353007, SRS353008, SRS353009. All
scripts, source code, and programs developed here can be found at
www.RNAmapper.org.
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