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Abstract: Quantum computation is often limited by environmentally-induced decoherence. We examine
the loss of coherence for a two-branch quantum interference device in the presence of multiple witnesses,
representing an idealized environment. Interference oscillations are visible in the output as the magnetic
flux through the branches is varied. Quantum double-dot witnesses are field-coupled and symmetrically
attached to each branch. The global system—device and witnesses—undergoes unitary time evolution
with no increase in entropy. Witness states entangle with the device state, but for these blind witnesses,
which-path information is not able to be transferred to the quantum state of witnesses—they cannot “see”
or make a record of which branch is traversed. The system which-path information leaves no imprint on
the environment. Yet, the presence of a multiplicity of witnesses rapidly quenches quantum interference.

Keywords: quantum computation; quantum device; quantum information; decoherence; which-path
information; entropy

1. Introduction

Two slit quantum interference is arguably the paradigmatic quantum effect. Maxima and
minima analogous to Young’s famous double-slit optical experiment illustrate the importance of
the superposition of distinct possible dynamic paths. The vanishing of the interference if one measures
which path the particle actually takes is crucial to the mystery. As Feynman puts it, “when we look at
the electrons, the distribution of them on the screen is different than when we do not look” [1].

There is now no doubt both that this is true and that it reveals a fundamental feature of the physical
law. The recent Bell test experiments have shown that the quantum indeterminacy which resides in
a superposition state is a feature of reality and not just one’s knowledge of reality [2–5]. A measurement
does not actually reveal a pre-existing fact (local realism), but rather it forces the physical world, so to
speak, to make a choice between physically allowed but distinct possible outcomes.

Quantum computation exploits superposition states of spatially separated systems, so decoherence
due to interaction with the environment or a measurement device is important to understand in
detail. If a measurement yields unambiguous information about a system’s dynamical path—clear
which-path information—then system coherence is lost and there is no interference at all. However,
a measured result is subject to noise and finite precision, so loss of interference admits of degrees.
The interference pattern can be reduced in visibility without being eliminated entirely. Buks et al.
observed electron interference in a two-path GaAs device modulated by a perpendicular magnetic
field [6]. A which-path detector composed of a quantum dot and quantum point contact was added to
one path. Reduction in the visibility of the interference pattern was correlated with the sensitivity of the
detector. Figure 1a illustrates a simplified version of this device in which a quantum double dot acts
as an ancilla whose measured state discloses which-path information about an electron traversing the
double-branched channel.
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Diffraction of C70 matter waves in a vacuum chamber was observed by Hackermuller et al. [7].
Interference fringe visibility was gradually quenched with increasing partial pressure of argon [8].
In this case, there was no measurement of the C70 path, but rather decoherence due to a transfer
of which-path information from the C70 to argon atoms, which scatter off the molecule and act as
unmeasured witnesses. The random environment entangles with the device system and produces
decoherence [9,10].

Wootters and Zurek [11] applied the tools of information theory to analyze the double-slit
interference problem for photons, making quantitative the central argument of the Bohr–Einstein
debate at the Fifth Solvay Conference. Extending this work, Englert derived an inequality [12] that
connects the distinguishability, which characterizes a which-path detector to the interference visibility.
The complications of multi-slit interference has been examined by others [13,14]. Broader questions
about the nature of the detector, its disturbance on the observed system, and the roles of uncertainty and
complementarity have all impacted the discussion. Recently, addressing quantum measurement, Patekar
and Hofmann [15] emphasized the need to clearly distinguish the role of system-meter entanglement
from the projective measurement of distinguishable meter states.

It is clear that decoherence does not require a measurement. Decoherence is now commonly
described in terms of the movement of information, using terms such as “information deposited in
the environment” and “environment as witness” [16], “information transfer from the system to the
environment” [17], etc. Transfer of which-path information to the environment is certainly sufficient to
cause decoherence, but is it a necessary condition?

Quantum Darwinism [18] is based on the observation that certain system information survives to
become classical and objective because it leaves a great multiplicity of imprints on the environment.
Figure 1b illustrates a random environment interacting with a double-branch interference device.
Quantum double dots act as environmental witnesses which, though unmeasured, can record an
imprint of the system path information, as in the case of argon atoms scattering off the C70 molecules
mentioned above.

a)

b)

ϕ

ϕ

Figure 1. The role of measured ancilla or unmeasured environmental witnesses in a two-branch
quantum interference device. (a) In an idealized version of the device in [6], measurement of the state of
an ancillary double-dot system suppresses coherent oscillations in the output as the enclosed magnetic
flux ϕ is varied. This can be interpreted as the result of the transfer of which-path information from the
system to the ancilla when the two become entangled prior to measurement. (b) Double-dot systems
here represent the many witnesses present in the random environment. Though the witnesses are not
measured, the entanglement of the system with the witness degrees of freedom results in the extinction
of coherent oscillations in the output. The environment can be said to receive imprinted information
about the state of the system.

However, what if the witnesses cannot record the which-path information of the system?
We consider just such a case. We construct a simple model for a two-path quantum interference device.
Multiple double-dot witnesses are placed symmetrically in ordered arrays on both branches of an
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interference device; randomness plays no role. Both the device and the witnesses are symmetric with
respect to the two paths. The witnesses are further constrained so they are not actually able to sense or
record which-path information—the tunneling matrix elements between the witness quantum dots is zero.
We therefore call these blind witnesses. They are incapable of receiving an imprint of this information
from the system. In such a highly symmetric situation, one might expect that quantum interference would
endure, but we show that the presence of these blind witnesses still quenches the interference.

We solve for the unitary dynamics of a wave packet traversing the device and examine the
interference pattern at the output as a function of the strength of an applied magnetic field. The witness
states are characterized by both their quantum degrees of freedom and their entropy.

Note that this is not the regime of weak quantum measurement—the interaction between the
witnesses and the system is not weak, and there is no measurement. Because the time evolution
described here is unitary, the decoherence seen is, of course, reversible in principle. No global
information is lost and the overall entropy is always zero. Irreversible decoherence would result
if either measurement occurred or if the system interacted with a thermal bath.

We consider a model environment composed of an ordered symmetric array of blind witnesses,
not because it represents a more realistic description of actual environments, but because it allows us
to distinguish the effect of environmental randomness from the barest consequences of a multiplicity
of witnesses.

Section 2 describes the model of the quantum interference device in the absence of witnesses,
and in Section 3, we solve for the dynamics of the system alone. Section 4 adds in the witnesses and
shows the effect they have on the quantum interference. In Section 5, we examine the dynamics of the
witnesses themselves to see how their quantum degrees of freedom evolve. The final section discusses
how the quenching of quantum interference originates in the multiplicity of even symmetrically placed
blind witnesses, without the transfer of which-path information from the system.

2. Model System

We consider the basic quantum two-path interference device with the geometry shown in Figure 2.
We model the device using a tight-binding type Hamiltonian with N = 35 discrete sites. A line of
sites on the left splits into top and bottom branches and then merges again on the right. (At this point,
ignore the double-dot witnesses on the top and bottom branches shown in the figure.) We consider an
electron (with charge −e) incident from the input lead on the left and examine the output on the right.
Let |j〉 represent the state with the particle localized on the jth site at position~rj = (xj, yj). Site 1 on the
left edge of the input lead is at the origin of the coordinate system. The x-coordinates of the sites are
integer multiples of a distance a, though the magnitude of a will finally play no role. The y-coordinates
are 0 for the input and output leads, and ±a/2 for the top and bottom branches. For clarity in labeling,
the vertical and horizontal distant scales in Figure 2 are different. The index j runs from 1 to 15 for the
input lead, from 16 to 20 for the top branch, 21 to 25 for the bottom branch, and from 26 to 35 for the
output lead. The branch sites are additionally (redundantly) labeled 1 through 5 in the top branch and
1′ through 5′ in the bottom branch for convenience in discussing the witnesses below.

A uniform perpendicular magnetic field ~B, described by the vector potential ~A = −Byx̂,
produces different quantum phase shifts for the electron traversing top or bottom branches,
creating varying amounts of constructive or destructive interference at the output. The magnetic flux
through the loop formed by the top and bottom branches is ϕ. The strength of the applied field can be
specified by choosing ϕ/ϕ0, where ϕ0 = 2πh̄/e is the magnetic flux quantum.

The input lead, top and bottom branches, and output lead constitute the interference device
(as distinct from the witnesses) and we can write the device Hamiltonian:

Ĥd = ∑
i,j

ti,j |i〉 〈j|+ t∗i,j |j〉 〈i| . (1)
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The hopping matrix element ti,j, using the Peierls substitution [19] to account for the magnetic field,
is given by

ti,j = −γ e
−i e

h̄
∫~ri
~rj

~A·d~r
(2)

for those sites, i and j, which are connected as indicated by the lines in Figure 2, and zero otherwise.
At the points where the input and output leads connect to the two branches, the magnitude of the
connecting matrix element remains γ for simplicity, even though the distance between sites is a

√
2.

1 2 3 4 5

ϕ

x

y

1’ 2’ 3’ 4’ 5’

α
β

α
β

Figure 2. Model quantum interference device geometry. A tight-binding type site model with near-neighbor
tunnel coupling represents the interference device. The input lead on the left is connected through upper
and lower branches with the output on the right. A perpendicular magnetic field creates a magnetic flux
ϕ through the loop. An input wave packet is injected from the left and emerges on the right. The arrow
on the right indicates the output site jout. Each witness consists of two dots, labeled α and β, which are
field-coupled to sites on the upper and lower branches. The presence of an electron at the adjoining
device site raises the energy if the α site of the witness is occupied. The geometry illustrated is the case
of 6 witnesses at sites [1, 1′, 3, 3′, 5, 5′]. Minimal “blind” witnesses are constrained to always have equal
occupancy probabilities for the α and β sites, as illustrated here by the solid (red) circles.

3. Dynamics without Witnesses

Given an initial state, we find the state at a future time t directly using the unitary time
evolution operator.

|ψ(t)〉 = e−i Ĥd
h̄ t |ψ(0)〉 (3)

The natural time scale τ of the motion depends on the the magnitude of the hopping matrix element γ.

τ ≡ πh̄/γ. (4)

Consider a wave packet initially in the input lead and moving to the right. At time t = 0 we set
the wave function on the input lead to be

〈j |ψ(0)〉 = A e−(xj−x0)
2/(2w2) eikxj . (5)

Here, we take x0 = 5a, w = 2a, and ka = π/2, with A chosen for normalization.
Consider first the case where ϕ/ϕ0 = 0, i.e., no applied field. Figure 3a shows the probability

distribution at t = 0 for the wave packet given by (5). The input lead is long enough to assure that the
initial state has no amplitude in the two branches. A snapshot of the probability density at t = 3τ is
shown in Figure 3b. The left y-branch point that connects top and bottom leads causes some scattering
back to the input. Such branching must cause reflections as noted in [20].
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Figure 3. Snapshots of the probability distribution. The probability at each site shown in Figure 2 is
represented by the height of the solid bar at that site. Times are represented in terms of the characteristic
time τ = πh̄/γ, where γ is the tunneling matrix elements between sites. (a) The initial state with
the incoming wave packet described by Equation (5). The magnetic flux is zero. (b) The probability
distribution at t = 3τ. Some reflection from the y-branch on the left is evident. (c) At t = Tf ≡ 5.27τ,
the wave packet has emerged into the output lead. The arrow indicates the output site jout. For zero
magnetic flux, the wavefunction from top and bottom branches interfere constructively. (d) The same
situation as panel (c), but with magnetic flux ϕ/ϕ0 = 1/2. The phase accumulated traversing the top
and branches is exactly opposite, leading to completely destructive quantum interference and zero
output. (e) The zero-field case analogous to panel (c), but with six minimal witnesses. The witnesses
are coupled in the geometry shown in Figure 2 with coupling energy Eint/γ = 5. (f) The six-witness
case with ϕ/ϕ0 = 1/2 analogous to panel (d). The presence of the witnesses in panels (e,f) dramatically
reduces the coherent quantum interference evident in panels (c,d).

Figure 3c shows the probability distribution at t = Tf ≡ 5.27τ. This time is chosen so that the
peak of the wave packet is at the second site from the left in the output lead (index j = 27). We denote
the basis state for this site |jout〉, and take the signal output to be the probability for the electron to be
found at this site at Tf .

Pout =
∣∣∣〈jout

∣∣∣ψ(Tf )
〉∣∣∣2 (6)

The output site is indicated by the vertical arrow in Figures 2 and 3c–f. The remainder of the
output lead is long enough that the effects of reflection from the right end is negligible. Note that in
Figure 3c, some probability density has backscattered from the right y-branch back into both top and
bottom branches.
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When ϕ/ϕ0 is zero or any integer, the result is identical to that shown in Figure 3c—there is
constructive interference at the output. When ϕ/ϕ0 = 1/2, or any odd half integer, interference
between the two paths is completely destructive and the output is zero, as shown in Figure 3d.

The solid (black) line in Figure 4 shows the normalized output ∆Pnorm as a function of magnetic
flux through the loop ϕ/ϕ0. Let Pmax and Pmin be the maximum and minimum value of Pout(ϕ),
respectively. The midpoint value is then Pmid = (Pmax + Pmin) /2 and the normalized output is

∆Pnorm =
Pout − Pmid

Pmid
(7)

Figure 4 shows that Pnorm is periodic in ϕ/ϕ0 with maximal interference fringes that extend from
−1 to +1. The interference visibility, defined by

V =
Pmax − Pmin
Pmax + Pmin

, (8)

is half the peak-to-peak value of Pnorm and in this case is equal to 1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Figure 4. Quantum interference in the presence of blind witnesses. The values of the normalized
output probability (Equations (6) and (7)) are shown as a function of the magnetic flux for different
numbers of witnesses. The visibility V of the normalized interference pattern is half the peak-to-peak
value. The interaction energy between the device and each witness is Eint = 5γ. The solid circles are for
the case when there are no witnesses, but instead fixed scatterers at the [1, 1′, 3, 3′, 5, 5′] sites. The values
fall exactly on the curve for zero witnesses.

4. Dynamics with Witnesses

Our approach here is not to perform a measurement on either one or both paths, but to let the
particle in each path interact with Nwit witnesses that we describe quantum mechanically as part of the
same overall system. We model each witness as a quantum double dot that is Coulombically coupled
to the device system, as shown schematically in Figure 2. The two basis states of the mth witness are
|αm〉 and |βm〉, representing the states with the particle localized completely on one or the other dot.
The α state always denotes the dot that is closest to the device and which is field-coupled to the nearest
device site. The quantum state of the mth witness can be written as a superposition of these basis states:∣∣∣φ(m)

w (t)
〉
= am(t) |αm〉+ bm(t) |βm〉 . (9)



Entropy 2020, 22, 776 7 of 13

We choose the zero of energy so the onsite energy for each dot is zero, and therefore write the
Hamiltonian for each witness in isolation as simply

Ĥ(m)
w = −γw (|αm〉 〈βm|+ |βm〉 〈αm|) . (10)

In the absence of interactions between the device and the witnesses, the Hamiltonian for the combined
system can be written as

Ĥc = ∑
m

Ĥ(m)
w + Ĥd. (11)

The quantum state of the combined system is the direct product of the individual witness states and
the device state:

|Ψ〉 =
∣∣∣φ(1)

w

〉
⊗
∣∣∣φ(2)

w

〉
· · · ⊗

∣∣∣φ(Nwit)
w

〉
⊗ |ψ〉 (12)

The Hamiltonian representing the interaction between a charge on the α dot of the mth witness
and a charge on the nearest device site j is

Ĥ(m,j)
int = Eint Î(1)w ⊗ Î(2)w · · · ⊗ (|αm〉 〈αm|) · · · ⊗ Î(Nwit)

w ⊗ (|j〉 〈j|) . (13)

Here, Eint is the interaction energy and Î(m)
w is the identity operator for the mth witness state.

There is no tunneling between device sites and witnesses; the interaction is purely Coulombic.
Consider, for example, the witness shown at the left edge of the top branch in Figure 2 at the position
labeled 1. The interaction couples the first witness (m = 1) of six witnesses to the nearby device site
(in this case, the site with index j = 16).

A simple classical picture of the function of the witness as an electrometer that could receive
which-path information is as follows. Suppose an electron is moving through one branch of the device
and is momentarily resident on the jth site. If at the same time the witness charge is on the nearby αm

dot, then there is an increase of Eint in the energy of the system because of the Coulomb interaction.
The witness charge would then be pushed off the α dot onto the β dot and a measurement of the
occupancy of either would reveal which path through the device the electron had taken.

The complete Hamiltonian is composed of the combined device and witness Hamiltonian
(without interactions) and the interaction term for each pair consisting of a witness m and its associated
device site j:

Ĥ = Ĥc + ∑
pairs m,j

Ĥ(m,j)
int (14)

The time evolution of |Ψ〉 is calculated directly using the full Hamiltonian:

|Ψ(t)〉 = e−i Ĥ
h̄ t |Ψ(0)〉 . (15)

To calculate the probability density at each device site j, we embed corresponding projection
operator in the larger Hilbert space that describes the whole system.

P̂j = Î(1)w ⊗ Î(2)w · · · ⊗ Î(Nwit)
w ⊗ (|j〉 〈j|) (16)

The probability of finding the particle at device site j is then

Pj(t) =
〈
Ψ(t)

∣∣ P̂j
∣∣Ψ(t)

〉
. (17)

Now, we add the further (blind witness) restriction that the tunneling energy is γw = 0.
This means that the witnesses have no internal dynamics—all the matrix elements of Ĥw in the
{|α〉 , |β〉} basis are zero. The occupancy of the α and β sites cannot change, so |am|2 = |bm|2 = 1/2 in
Equation (9). This does not mean that the witnesses have no quantum dynamics; they entangle with
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the device system through (13) and there are quantum mechanical degrees of freedom associated with
the phases of am and bm. The entangled system, of course, cannot in general be factored into quantum
states of the witnesses and the quantum states of the device.

The Hamiltonian of the system is determined by the number of witnesses Nwit, the positions
where each witness is attached to the device, the hopping energy γ (which sets the time scale τ of
the motion), the strength of the witness–device interaction Hint/γ, and the magnetic flux through the
loop ϕ/ϕ0.

We solve for the time evolution of the quantum state with the incoming wave packet given by the
initial device state (5), as in Section 3, but now in the presence of witnesses symmetrically attached to
top and bottom branches. The initial state of each witness is taken to be the symmetric state:∣∣∣φ(m)

w (0)
〉
= (|αm〉+ |βm〉) /

√
2. (18)

Figure 3e,f shows snapshots of the probability for the same time Tf as are shown in Figure 3c,d,
but now in the presence of six witnesses in the top and bottom branches. The witnesses are at positions
[1, 1′, 3, 3′, 5, 5′], as shown in Figure 2, and Eint/γ = 5. Figure 3e shows the snapshot when ϕ/ϕ0 = 0,
and Figure 3f shows ϕ/ϕ0 = 1/2.

In contrast with Figure 3c,d, the probabilities shown in Figure 3e,f are very similar (though
not identical). The presence of minimal witnesses has quenched both constructive interference for
ϕ/ϕ0 = 0 and destructive interference for ϕ/ϕ0 = 1/2.

Each witness causes reflection of the wave packet in the device. The probability density in the
branches is the result of multiple reflections from both the y-branches on either end and from the
witnesses. For Figure 3e,f, however, the probability distribution in the top branch is identical to the
distribution in the bottom branch of the device; the symmetry is preserved.

Figure 4 shows the normalized output probability for magnetic flux ϕ/ϕ0 ∈ [−1, 1] for different
numbers of witnesses. For the case of two witnesses, they are at the [3, 3′] positions shown in Figure 2.
For the 4-witness case, the witnesses are positioned at [1, 1′, 5, 5′]; for the 6-witness case, the witnesses
are positioned at [1, 1′, 3, 3′, 5, 5′]; and for eight witnesses the positions are [1, 1′, 2, 2′, 4, 4′, 5, 5′]. As the
number of witnesses increases, the interference visibility V is quenched. It is remarkable that with
only eight witnesses, this fundamental quantum interference is so strongly reduced. Insofar as the
witnesses can be thought of as representing the effect the environment, a very minimal environment is
effective at suppressing interference. It should be emphasized that the whole system remains coherent,
though the entropy of the device and of each witness increases, as we will see in the next section.

Figure 5 shows the visibility of the interference as a function of Eint/γ, the scaled interaction
energy between the device, and the witnesses. The figure shows the result for two, four, six, and eight
witnesses, always symmetrically placed in the top and bottom branches. Increasing the strength of the
interaction decreases the visibility, though not without limit. For the six-witness case, for example,
the visibility at Eint/γ = 5 is 11.7%. For Eint/γ = 50, visibility decreases to 4.8%, and is essentially the
same for Eint/γ = 500 (not shown).

Because the witnesses necessarily cause scattering in the branches, one might wonder if the
scattering by itself is the source of the observed decoherence. The solid dots in Figure 4 show the output
when the witnesses are removed and replaced with fixed potential scatterers. We add a scattering term
Ĥs to the device Hamiltonian of Equation (1):

Ĥ = Ĥd + ∑
ks

|ks〉Vs 〈ks| , (19)

where Vs = 5γ, and the index ks runs over the [1, 1′, 3, 3′, 5, 5′] sites. The resulting interference pattern
has visibility V = 1; the interference pattern is the same as that of the no-witness case. Scattering alone
does not quench quantum interference—it takes the presence of witnesses.
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Figure 5. Visibility of quantum interference. The visibility given by Equation (8) is plotted as a function of the
interaction strength between the device and the witnesses Eint for different numbers of minimal witnesses.

5. Dynamics of Witnesses

The classical degrees of freedom of each witness are frozen because γw = 0. Dot occupancy cannot
change, but the quantum degrees of freedom are affected by the passage of the device electron. For each
witness m, we define the coherence operators λ̂

(m)
x , λ̂

(m)
y , and λ̂

(m)
z of the two-state witness system in

the full system by embedding the Pauli operators for the mth witness, σ̂
(m)
x , σ̂

(m)
y , and σ̂

(m)
z , in the larger

Hilbert space.

λ̂
(m)
x = Î(1)w ⊗ Î(2)w · · · ⊗ σ̂

(m)
x · · · ⊗ Î(Nwit)

w ⊗ ÎD

λ̂
(m)
y = Î(1)w ⊗ Î(2)w · · · ⊗ σ̂

(m)
y · · · ⊗ Î(Nwit)

w ⊗ ÎD

λ̂
(m)
z = Î(1)w ⊗ Î(2)w · · · ⊗ σ̂

(m)
z · · · ⊗ Î(Nwit)

w ⊗ ÎD (20)

We can then calculate the components of the coherence (Bloch) vector~λ for each witness m.

λ
(m)
x =

〈
Ψ
∣∣ λ̂m

x
∣∣Ψ
〉

, λ
(m)
y =

〈
Ψ
∣∣∣ λ̂m

y

∣∣∣Ψ
〉

, λ
(m)
z =

〈
Ψ
∣∣ λ̂m

z
∣∣Ψ
〉

(21)

For the initial witness states given by (18), 〈λ̂(m)
z 〉 = 0, and the lack of tunneling between witness sites

assures that it will remain zero at all subsequent times.
From λ

(m)
x and λ

(y)
y ), we can construct the 2× 2 reduced density matrix for each witness:

ρ(m) =
1
2

(
1 + λ

(m)
x σx + λ

(m)
y σy

)
. (22)

The local state of each witness can be completely characterized by the x and y components of
the coherence vector. It is helpful to recast the information contained in these two real parameters in
another form. We define the coherence angle θm as the angle the coherence vector of the mth witness
makes with the x-axis.

θm = arctan (λ
(m)
y /λ

(m)
x ). (23)

From the density matrix (22) we can also calculate the von Neumann entropy (in bits) for the
mth witness.

Sm = −Tr
(

ρ(m) log2(ρ
(m))

)
(24)
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The von Neumann entropy Sm represents the number of bits of missing local information about the
quantum state of witness m due to its entanglement with the device system, and through that, to other
witnesses [21].

Figure 6a shows the time development of the coherence angles for the device with eight witnesses,
Eint/γ = 5, and ϕ/ϕ0 = 1/2. The curves are labeled with the positions of the witnesses shown in
Figure 2. The dynamics is calculated from Equation (15), which yields the global (device plus witnesses)
system state |Ψ(t)〉 and localized to particular witnesses through (21). Figure 6b shows the entropy Sm

for each witness as a function of time. As the wave packet passes by each witness, the coherence angle
shifts slightly and the entropy increases due to entanglement with the device. Corresponding plots
for the ϕ/ϕ0 = 0 case are nearly identical to those shown in Figure 6. The entropy of the device itself
at t = Tf is approximately 2.5 bits. One could say that the information missing from the subsystems
(device and witnesses) is now in the quantum correlations between them, but that merely restates the
observation that the information is present in neither subsystem yet the global state |Ψ(t)〉maintains
zero entropy.

The time scale shown in Figure 6 goes to Tf , when the peak of the packet enters the output
lead and we consider the interference “experiment” complete. If the time is extended beyond that,
the wave packet bounces back and forth from the ends of the device (beyond the model’s primary
intent) and the entropy of each witness approaches its maximal value of 1 bit. The extended time
for interaction removes nearly all local quantum information from the witnesses, and the best local
description becomes a purely classical mixture of the two dot occupancies each with probability 1/2.
Figure 6b shows the beginning of that process. The entropy of the device itself also increases to ~3.9
bits in the long run. The maximum possible entropy for the device would be S = log2(N) ≈ 5.13 bits.

0 1 2 3 4 5
0

0.1

0.2

a)
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Figure 6. Phase angle and entropy of witnesses. The quantum state of each witness is characterized by
its phase angle θ and its von Neumann entropy S. The magnetic flux is ϕ/ϕ0 = 1/2. (a) The phase angle
as a function of time up to Tf for 8 witnesses. Each curve is labeled with the witness position shown
in Figure 2. (b) The corresponding witness von Neumann entropy as a function of time. Importantly,
the quantum state of symmetrically placed witnesses (e.g., 1 and 1′) are exactly identical and so do not
contain information about which path was taken by the device electron.

The most important feature to note in Figure 6 is that the symmetrically placed witnesses (e.g., those at
positions 1 and 1′ or 2 and 2′) are always in exactly identical states. They have the same values of Sm and
θm (or equivalently λ

(m)
x and λ

(y)
y ) at all times. This is true at for ϕ = 0 as well. The witness states bear no
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asymmetric imprint representing which-path information. The output interference pattern is destroyed
even though the witnesses are unable to record which path is taken. Merely the fact of entanglement
between witnesses and device is sufficient to destroy the coherent oscillations, as Figures 4 and 5
demonstrate, despite the complete symmetry of the device and the witness states.

6. Discussion

Entanglement with a random environment, as illustrated in Figure 1b, certainly can cause loss of
coherence. If, for example, the environment consists of multiple elements whose interaction energy
with the target system has a statistical spread, then the phase relationship of different components
may average out. This has been shown in a spin system by Cucchietti et al. [22], and we have
seen similar effects in a double-dot system with precisely the same blind witnesses as are employed
here [23]. No doubt many physical environments have exactly this character. In such cases, there is
also a transfer of information from the system to the environment, even if only to the quantum phases
of witnesses. The fingerprint of the system state may be recorded in the details of the quantum state of
the environment. However, randomness, by design, plays no role in the calculation described here.
The witnesses are geometrically regular, the interaction strengths between each witness and the device
are identical, and the initial states of the witnesses are all the same. (Varying the initial witness phase
angles θm has no effect on interference visibility.)

One might wonder if the loss of coherence seen here could be due to the interaction between
the multiple spatial wavelengths (momenta) present in the incoming wave packet and the reflections
caused by the witnesses and the y-branches. The finite spread of momenta and energies could be
thought to average out the interference. However, if that were the case, we would expect to see
interference similarly reduced when witnesses are replaced by static potential scatterers. As discussed
above and shown in Figure 4 (points on the solid Nwit = 0 line), no reduction in visibility is caused by
the presence of scatterers in the branches.

The crucial effect of the witnesses, even in this highly symmetric geometry, can be understood by
considering the evolution of the global state in the expanded Hilbert space that includes the system
and witnesses. For the 6-witness case, for example, one can visualize the possible paths through this
space as a stack of 26 = 64 layers with replicas of the device states, as shown schematically in Figure 7.
Each replica has one of the configurations of the six witnesses in different fully polarized states with
either |φ(m)

w 〉 = |αm〉 or |φ(m)
w 〉 = |βm〉. The direct product in the initial state given by Equation (12)

generates all the 2Nwit possible combinations of polarized witness states. The figure schematically
shows the initial state of the whole system with the input wave packet distributed equally among
the layers. Because the Hamiltonian does not connect different witness states (γw = 0 ), each layer
evolves independently. For most of these layers (all but 8), the witness configurations on top and
bottom branches are not the same—the symmetry is broken.

Under unitary time evolution, each layer has a different combination of reflections from the
specific configuration of witnesses in that layer, with different amplitudes and complex phases as
a result. Although the occupancy of witness dots in each layer cannot change, each witness has a phase
degree of freedom which becomes entangled as the injected wave packet moves by. The probability
at the output is obtained by summing the amplitudes from all the layers and taking the absolute
square of the result. The partial cancellations from different phase factors in each layer weakens the
constructive or destructive interference at the output. The variety of paths through the Hilbert space,
most of which have a broken symmetry between top and bottom branches, results in the degradation
of the coherent interference pattern at the output. The reason increasing the number of witnesses is
so effective at suppressing the interference visibility is that the number of paths (layers in Figure 7)
increases exponentially with the number of witnesses.

This analysis is consistent with Zurek’s decoherence and the einselection paradigm [24].
Elsewhere, we have seen the clear emergence of pointer states in an environment of randomly
positioned and oriented minimal double-dots, just as are used here, and the resultant quenching
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of Rabi oscillations, another quintessential quantum effect [23]. We have similarly seen that an
environment of random blind double-dot witnesses are sufficient to produce the loss of two-particle
entanglement in a system undergoing unitary time evolution [25]. Most environments can indeed
receive an imprint from the system sufficient to count as an information transfer from system to
environment, and the multiplicity of those records favors system pointer states.

…

64
cases 

Figure 7. Schematic of the enlarged Hilbert space. For the six-witness case shown, the relevant Hilbert
space includes the states of the interference device and all 64 = 26 possible localized states of the
witnesses. The initial state is shown here factored into a stack of replicas of the device with different
witness configurations. The Hamiltonian does not couple the two localized witness states |αm〉 and
|βm〉, so unitary time evolution of each layer in the stack is independent. The probability amplitude of
the initial incoming wave packet is equally distributed among the layers. For each layer, the particular
configuration of localized witness states produces a different pattern of reflections in the device.
Importantly, the symmetry between witness states in the top and bottom branches is broken for most
layers, so the patterns of reflection are different. The amplitudes for each site add coherently to form
the overall wavefunction. The complex cancellations of phase between these different possible paths
through the Hilbert space results in the quenching of coherence in the interference pattern seen in
Figure 4. This phase cancellation, rather than the transfer of which-path information from the device to
the witnesses, is the essential source of decoherence.

The present calculation shows that the creation of an environmental record of the system’s
which-path information is not necessary for quenching the interference pattern. The essential feature
is simply entanglement, the system becomes embedded in the dynamics of the much larger Hilbert
space that includes all the witnesses. Even in a situation with maximum overall symmetry of device
and witnesses, the individual dynamical paths through the larger space need not retain that symmetry.
The resultant phase cancellation among the paths destroys coherence.
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