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The remarkable structural heterogeneity of chondroitin sulfate (CS) and

dermatan sulfate (DS) generates biological information that can be unique

to each of these glycosaminoglycans (GAGs), and changes in their compo-

sition are translated into alterations in the binding profiles of these mole-

cules. CS/DS can bind to various cytokines and growth factors, cell surface

receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the

extracellular matrix, thereby influencing both cell behavior and the biome-

chanical and biochemical properties of the matrix. In this review, we sum-

marize the current knowledge concerning CS/DS metabolism in the human

cancer stroma. The remodeling of the GAG profile in the tumor niche is

manifested as a substantial increase in the CS content and a gradual

decrease in the proportion between DS and CS. Furthermore, the composi-

tion of CS and DS is also affected, which results in a substantial increase

in the 6-O-sulfated and/or unsulfated disaccharide content, which is con-

comitant with a decrease in the 4-O-sulfation level. Here, we discuss the

possible impact of alterations in the CS/DS sulfation pattern on the bind-

ing capacity and specificity of these GAGs. Moreover, we propose poten-

tial consequences of the stromal accumulation of chondroitin-6-sulfate for

the progression and metastasis of cancer.

Introduction

The local microenvironment of living cells, referred to

as the tissue stroma or niche, consists of host cells

and an extracellular matrix (ECM) that surrounds

them. The ECM is a conglomerate of molecules that

interact with one another, and is mainly composed of

collagen, fibronectin and elastin, which form the

matrix fibrillar network, and by hyaluronan (HA),

tenascins and glycosaminoglycan (GAG)-containing

glycoproteins [1]. The latter, called proteoglycans

(PGs), can be associated with the cellular membrane

as components of its glycocalyx or they can form

matrix macrocomplexes. The variable content and
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arrangement of the ECM molecules determines the

distinctive biochemical and biomechanical properties

of the stroma of a given tissue [2]. However, the

ECM is not just a static fibro-hydrated scaffold that

is modified in response to growth or repair [3]. It is

now clear that the ECM microscopic topology is con-

tinuously being remodeled [3]. This matrix remodeling

is precisely regulated since it is the result of intracel-

lular synthesis, post-translational modifications, secre-

tion, and finally the extracellular degradation of the

ECM components [3]. This sequence of events deter-

mines a tissue-dependent turnover time for a given

molecule and/or macrocomplex under local stroma

conditions. Moreover, enzyme-dependent ECM pro-

cessing can release fragments of the matrix compo-

nents and/or sequestrated molecules, which have a

significant biological activity [2]. Thus, ECM remodel-

ing generates specific ligand patterns that can be pre-

cisely organized in a regulated manner, accessibility

and direction toward appropriate cell receptors [3–5].
These signals are capable of significantly influencing

cell behavior [6]. In this way, the ECM is capable of

modulating various cell functions that range from cell

proliferation, adhesion and migration to cell differen-

tiation and cell death [5]. Interestingly, disturbances

in ECM remodeling can promote or sometimes initi-

ate tumor growth [2,7]. Moreover, tumor cells are

able to manipulate the local stroma conditions in

order to enhance their own survival, thereby creating

a positive tumorigenic loop [3]. Once tumor-support-

ing microenvironmental conditions are created, they

play a prominent role in the growth, progression and

spread of cancer [8]. On the other hand, it has been

found that the ECM of the early stage embryonic

mesenchyme from the mouse mammary gland is suffi-

cient to suppress the growth and to induce the differ-

entiation of mammary cancer cells both in vitro and

in vivo [9]. Interestingly, the mesenchymal deposition

of biglycan, which is PG substituted with two der-

matan sulfate chains, is required to exert this biologi-

cal effect [9]. Biglycan and other commonly spread

matrix PGs that are substituted with chondroitin sul-

fate (CS) or dermatan sulfate (DS), such as decorin

or versican, affect cellular function both directly and

indirectly through an impact on the formation of the

ECM architecture as well as through binding to and

influencing the activity of various functional mole-

cules (growth factors, cytokines, cell-surface receptors

or enzymes) [10,11]. However, we should bear in

mind that these PGs, especially decorin, can exert

antagonistic effects that can either promote or inhibit

the progression of a tumor depending on its origin

[12].

CS and DS are both structurally
heterogeneous

The complex role of PGs in the biology of a tumor is

at least in part defined by tissue localization of these

molecules, their local content and their fine structure

[13–15]. The last feature is especially related to their

GAG portion. CS and DS, which are attached to the

majority of the ECM-localized PGs, contain an N-

acetylgalactosamine (GalNAc) residue in their disac-

charide monomers. In addition to this hexosamine, the

CS disaccharide unit is composed of a glucoronate

(GlcA) residue, whereas a typical DS disaccharide unit

contains IdoA residue (Fig. 1). However, DS chains

are commonly copolymers of IdoA- and GlcA-containing

disaccharides [11]. In contrast to GlcA, which assumes

only a 4C1 chair conformation, IdoA displays a greater

conformational flexibility as it can adopt one of three dif-

ferent spatial conformations (i.e. the 1C4 and 4C1 chairs

and the 2S0 skew-boat) [16] (Fig. 1). Thus, the contribu-

tion of IdoA into DS facilitates the spatial fitting of this

GAG chain to bound ligand [16,17]. The biosynthesis of

CS/DS relies on the alternating incorporation of the Gal-

NAc and GlcA residues into the non-reducing end of a

growing carbohydrate chain and is dependent on the

orchestrated action of several enzymes [18,19]. A newly

formed chondroitin chain, being a common precursor of

CS/DS, which is covalently bound to core protein via a

tetrasaccharide linkage region, is further subjected to

enzymatic modifications such as the sulfation and/or

epimerization of its monosaccharide residues. The epimer-

ization of GlcA residues at the C5 position into IdoA

residues refers exclusively to the DS chains and is cat-

alyzed by one of two glucuronosyl 50-epimerases [20]. The

final percentage contribution of IdoA to DS composition

is determined by the subsequent sulfation at the C4 of the

adjacent GalNAc residues [21]. This 4-O-sulfation pre-

vents the reversion of the epimerization and increases the

extent of this process [22]. Both the number and the local-

ization of the IdoA and GlcA residues in the DS chains

are variables that are reflected in a tissue-specific glu-

curonosyl epimerization pattern of this GAG [23,24]. The

biological relevance of the epimerization pattern can be

deduced by the results, which show a linear correlation

between the decreasing iduronate content in decorin and

biglycan and bone aging [25]. Moreover, recent findings

have suggested that even a trace level of IdoA in the DS

chains of decorin and biglycan may be responsible for a

milder phenotype of Ehlers–Danlos syndrome [26,27]. In

contrast to glucuronosyl epimerization, the sulfation of

some monosaccharide residues concerns both CS and DS,

and is catalyzed by the appropriate O-sulfotransferases

[18]. This modification most frequently affects the

1816 The FEBS Journal 286 (2019) 1815–1837 ª 2019 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

The role of chondroitin-6-sulfate in the tumor stroma A. Pudełko et al.



GalNAc residues, which are substituted by a sulfate

group at the C4 and/or C6 position (Fig. 1). The 6-O-sul-

fated GalNAc residues predominate in chondroitin-6-sul-

fate (C-6-S), whereas chondroitin-4-sulfate (C-4-S) has a

higher level of the 4-O-sulfated ones [19]. Moreover, a

huge majority of the GalNAc residues also undergo the

4-O-sulfation in DS [19,20]. The small amount of 6-O-sul-

fated GalNAc that is detected in this GAG most proba-

bly originates from the GlcA-containing disaccharides

since the presence of the IdoA-GalNAc6S units, although

suggested [28], is clearly not proved [20]. In turn, some

IdoA residues are modified by the sulfate group at the

C2, while this occurs less frequently in the GlcA residues

[18] (Fig. 1). Moreover, some of the disaccharides in CS/

DS can be modified by more than one sulfate group,

thereby creating four oversulfated analogs: UA2S-Gal-

NAc4S (where UA is a hexuronate residue) (B unit),

GlcA2S-GalNAc6S (D unit), UA-GalNAc4S6S (E unit)

and DUA2S-GalNAc4S6S (Tris) (Fig. 1). The contribu-

tion of the oversulfated disaccharides to the structure of

the CS/DS chains is believed to have an important impact

on their binding to various biological molecules (for

review: [29]). The spatiotemporally specific regulation of

the activity of sulfotransferases gives rise to the structural

diversity of CS/DS, thereby resulting in a differential

number and localization of the sulfate groups within the

carbohydrate backbone, which is reflected in the tissue-

and temporally specific sulfation pattern of these GAGs

(for review: [30]). In addition to this diversity in the

degree of modification, the CS/DS chains are also com-

posed of a variable number of disaccharide units, which

is reflected in the differential molecular mass of these

chains. CS and DS chains have an average distribution of

5–50 and 15–40 kDa, respectively [31]. Thus, all of the

above-mentioned structural characteristics of CS/DS are

responsible for the remarkable structural heterogeneity of

these GAGs [32]. As a result, CS/DS are predicted to

contain structural microdomains endowed with specific

biological information that is translated into specific bind-

ing abilities [29]. CS/DS binds to ligands such as cytokines

and growth factors including fibroblast growth factor

(FGF)-2, FGF-7, FGF-10, FGF-18, hepatocyte growth

factor (HGF), midkine (MDK), platelet-derived growth

factor (PDGF), pleiotrophin (PTN), vascular endothelial

Fig. 1. The structure of disaccharide units

in chondroitin sulfate/dermatan sulfate (CS/

DS) chains as well as conformations of

iduronate residue. GalNAc, N-

acetylgalactosamine residue; GlcA,

glucuronate residue; IdoA, iduronate

residue; R, possible position of esterification

by sulfate.
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growth factor (VEGF), transforming growth factor

(TGF) b, human b-defensin 2 and/or various cell surface

receptors such as contactin-1, receptor for advanced gly-

cation endproducts (RAGE), cMet receptor for HGF,

FGF receptors, selectin P and L, intercellular adhesion

molecule (ICAM)-1 and CD44, as well as extracellular

enzymes [33–47]. Based on these interactions CS/DS can

substantially affect the behavior of cells.

The metabolism of CS/DS is strongly
altered in the tumor stroma

Tumor-associated changes in the stroma of human

malignant lesions are reflected in an increased content

of chondroitin-originated GAGs. This accumulation is

accompanied by an enhanced expression of CHSY1,

encoding chondroitin synthase 1 [48,49]. However, it is

possible that the enzyme is also responsible for the

appearance of special structures in CS/DS that pro-

mote the progression of a tumor as hypothesized in

the case of hepatocellular carcinoma [48]. The remod-

eling of the GAG profile in the majority of, if not in

all, tumors is manifested as a substantially increased

content of CS in the tissues [50–69]. In turn, the level

of DS in a tissue depends on the type of tumor and is

mostly reduced. However, in some cancers such as

liver, lung, pancreatic, colorectal and gastric cancers as

well as in the breast fibroadenoma, the stromal content

of DS is elevated [53–56,59,61,64,70]. Nevertheless, in

light of the significant CS accumulation, the CS/DS

remodeling in the stroma of all of the human epithelial

tumors can be considered to be a DS to CS shift. This

shift in the microenvironment of tumors may partly

result from alterations in the PG profile of a tissue

[50,51,60] since an abnormal expression of the PG core

proteins can lead to changes in the type and structure

of the GAG chains that are attached [71]. However,

tumor-associated CS/DS remodeling can also be the

result of disturbances in the GAG-synthesizing and/or

modifying machinery. These disturbances are mani-

fested as a changed sulfation pattern of CS/DS that

has common features regardless of the tumor type.

First and foremost, a substantial increase in the con-

tent of the 6-O-sulfated and/or unsulfated disaccha-

rides that is observed in a huge majority of cancers is

concomitant with a reduction in the 4-O-sulfation level

[55,59,60,62,72–82] (Table 1). The observed loss of 4-

O-sulfated GalNAc may be one reason for the disap-

pearance of the IdoA residues despite the tumor-asso-

ciated upregulation of glucuronic epimerase, which has

been found to be characteristic in human cancers such

as squamous carcinoma or glioblastoma [83,84]. The

tumor-associated remodeling of the CS/DS sulfation

pattern can also affect the disulfated disaccharide con-

tent. Unfortunately, only a few studies have focused

on this aspect of CS/DS metabolism in the tumor

niche [72,74,75,78,81,85,86]. These investigations have

reported that the contribution of various disulfated

disaccharides to the composition of CS/DS is cancer

type- and cancer grade-dependent

[72,74,75,78,81,85,86] (Table 1). The accumulation of

disulfated disaccharides in the CS/DS that exist in the

tumor microenvironment can substantially modulate

the progression and metastasis of a tumor due to the

increased binding potential of these disaccharides

[87,88]. The significance of CS sulfation on growth fac-

tor-mediated signaling as well as for the progression

and metastasis of cancer is now being exhaustively

investigated (for review: [89]). In addition to the

tumor-associated remodeling of the sulfation and/or

epimerization patterns of CS/DS, alterations in the

molecular mass distribution of these GAG chains have

also been detected. This phenomenon, which is mani-

fested as a shortening or lengthening of the CS/DS

chains in comparison to their size in a normal tissue,

seems to be dependent on both the type and the grade

of a tumor [59,62,72,73,90,91]. The remodeling of the

size of CS/DS in the tumor microenvironment can

result not only from disturbances in the GAG-synthe-

sizing machinery but also from alterations in the

extracellular processing of these molecules. The last

process is primarily mediated by several members of

the hyaluronidase family such as hyaluronoglu-

cosaminidase (Hyal) 1 and 4 as well as sperm adhe-

sion molecule 1 [92]. It seems that the former enzyme

makes the greatest contribution to the catabolism of

CS/DS in the extracellular space [93]. Changes in the

Hyal1 expression in the tumor microenvironment are

dependent on the type of a tumor and correlate with

its malignancy grade [94,95]. However, it is unknown

whether this correlation results from Hyal1 impact

not only on HA hydrolysis [94,95] but also on CS/DS

degradation in the tumor niche.

For several years, the remodeling of the CS/DS pro-

file that is observed in the tumor niche has been con-

sidered to be required for the formation of more

permissive conditions for the development, progression

and metastasis of a cancer. It has been hypothesized

that the elimination of DS from the tumor stroma

may be due to its inhibitory effect on cancer growth

and invasiveness. Indeed, DS has been found to inhibit

the proliferation of some osteosarcoma and melanoma

cell lines [39,96]. Moreover, DS-bearing decorin was

20-fold more effective than CS-bearing decorin in

inhibiting the mobility of osteosarcoma cells [97].

However, DS can also stimulate the migration of
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cancer cells via promotion of HGF activity [78]. On

the other hand, numerous studies have shown a posi-

tive concentration-dependent influence of CS on the

growth and progression of tumor cells [98–100]. The

CS level also correlates positively with the more

aggressive forms of cancer that are reflected in a

higher histological grade or in a poorer patient prog-

nosis [48,49,85]. However, the final effect of CS/DS on

cancer cells may be both tumor-specific and depend on

the concentration and structure of the GAGs

[36,85,101,102]. Moreover, recent findings have sug-

gested that the tumor niche-associated CS/DS remod-

eling, especially a high deposition of C-6-S in the

microenvironment of a tumor, may have more com-

plex consequences.

Insights into the biological relevance
of 6-O-sulfation of CS/DS

The 6-O-sulfation of the GalNAc residues in the CS/

DS chains is catalyzed by two chondroitin sulfotrans-

ferases (CSTs) – C6ST-1 (encoded by the CHST3

gene) and C6ST-2 (encoded by the CHST7 gene),

which only overlap partly with respect to their expres-

sion pattern and substrate specificity [19,103]. Of these

two enzymes the former, due to its prevalence in tis-

sues, is considered to be responsible for the modifica-

tion of CS and probably DS to the highest degree

[19,103]. C6ST-1 also controls the level of the 2,6-O-

sulfated disaccharides in these GAGs since the 2-O-

sulfation of uronate is preceded by the 6-O-sulfation

of GalNAc [19,104]. The missense mutations that have

been found in the gene of human C6ST-1 are mani-

fested clinically primarily in the development and

maintenance of the skeleton, with a phenotypically

broad spectrum of disturbances [105–108]. By contrast,

a knockout of mouse C6ST-1 has limited biological

consequences that include a reduction in the number

of splenic na€ıve leukocytes and an impaired regenera-

tion of the nigrostratial TH-positive axons despite the

almost complete elimination of the 6-O-sulfation in

CS/DS [109,110]. Thus, the different biological conse-

quences of a C6ST-1 deficiency in humans and mice

suggest that differences in the biological importance of

6-O-sulfation in CS/DS may exist between species. On

the other hand, the progressive accumulation of CS

with enhanced 6-O-sulfation is not only distinctive for

the tissue remodeling that is associated with the pro-

gression of a tumor, but is also observed during sev-

eral physiological and pathological events. The

significant diversity in proportions between the 6-O-

and 4-O-sulfated CS disaccharides is associated with

the development and aging of the central nervous sys-

tem (CNS). The increased level of 6-O-sulfated CS dis-

accharides that occurs in embryonic brains compared

to that found in the postnatal, and especially, in the

adult CNS is responsible for promoting the outgrowth

and guidance of axons as well as supporting neuronal

plasticity [110–113]. Moreover, the 6-O-sulfation in CS

is upregulated after an injury to the CNS and this may

be due to the creation of a more permissive environ-

ment for axonal regeneration [110–112]. A progressive

increase in the content of 6-O-sulfated CS disaccha-

rides is also detected in cartilage as it ages and seems

Table 1. The remodeling of the sulfation pattern of chondroitin sulfate/dermatan sulfate in the human cancer stroma compared to healthy

tissue. Results are expressed as changes in the percentage content of individual disaccharides.

*Extractable pool of tissue PGs. NA, not analyzed.
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to be crucial for the maturation and maintenance of

this tissue [114]. In turn, the cartilage zones in which

the osteoarthritis changes are localized show a reduced

expression of CS/DS sulfotransferases, especially

C6ST-1 [115]. Interestingly, the mature osteoarthritis

cartilage contains CS with an especially high level of

6-O-sulfation [116], which could functionally compen-

sate for the loss of a GAG that has such a composi-

tion in the disease-affected tissue areas. An increased

content of 6-O-sulfated CS disaccharides and an ele-

vated deposition of CS/DS have also been shown to

characterize the tissue remodeling that is associated with

fibrosis [117,118]. However, in contrast to the metabolic

changes of CS/DS in the tumor microenvironment, in

the fibrosis-affected tissues there is also a proportional

elevation of the 4-O-sulfation in CS/DS so that the nor-

mal ratio between the 6-O- and 4-O-sulfated disaccha-

rides is preserved in these GAGs [117,118].

Interestingly, a recent study using an animal model of

lung fibrosis showed that substantial alterations in the

CS/DS metabolism begin in the inflammatory phase of

this process and that they are regulated by TGFb1,
which also plays a crucial role in the tumor progression

[117]. To summarize, all of the above-mentioned data

indicate that the 6-O-sulfation in CS/DS can have

important functions that influence cell behavior and/or

the ECM properties.

Monosulfated disaccharides provide
interaction surfaces for CS and DS

It is commonly accepted that the CS/DS chain

sequence determines the biological properties of these

GAGs by creating a suitable chemical surface for the

molecular interactions. However, studies that address

this issue are especially difficult and arduous, and for

these reasons, they are very scarce [119–121]. A recent

investigation was focused on the interactions between

the chondroitinase B-resistant CS/DS oligosaccharides

and PTN [28]. It showed that unbound oligosaccha-

rides were almost exclusively composed of monosul-

fated disaccharides (that is 4-O- and/or 6-O-sulfated

ones), with a minor participation of unsulfated ones

[28]. However, those species that strongly bound to

PTN had a mixed composition being clusters of disul-

fated as well as monosulfated disaccharides [28]. In

addition to their interaction with PTN, the sections of

the CS/DS chain that accumulate monosulfated and

unsulfated disaccharides may also bind poorly to other

molecules such as FGF-2, PDGF-BB, fibronectin or

collagen type III. This conclusion is based on the

recent observation that only the monosulfated and

unsulfated disaccharides that are probably unengaged

in the intermolecular interactions are accessible to

chondroitinase ABC and are liberated by the enzyme

from the high-molecular mass complexes that are com-

posed of CS/DS PG and those growth factors and

ECM proteins [122].

Further insight into the role of monosulfated disac-

charides in CS binding to the growth factors comes

from the pioneering study of Sugiura et al. [104], who

chemo-enzymatically synthesized CS species with a

defined composition and examined their affinity for

PTN and MDK. This study allowed the CS structure-

dependent hierarchy in this GAG affinity for both

growth factors to be determined. CS species that con-

tained monosulfated disaccharides of the same type

were weaker binding partners for PTN and MDK than

CS that was a copolymer of the 4-O- and 6-O-sulfated

disaccharides [104]. In turn, all CSs that contained

only monosulfated disaccharides had a significantly

lower affinity for the examined growth factors than

the GAG that had both monosulfated (4-O-sulfated)

and disulfated (2,6-O-disulfated) disaccharides [104].

Notably, the latter synthetic CS belonged to the stron-

gest binding partners for both growth factors, and had

a significantly higher affinity for them than the major-

ity of the CS species that were composed exclusively of

disulfated or even trisulfated disaccharides [104]. These

results suggest that the monosulfated disaccharides

that are assembled together with disulfated ones into

the binding sequences in CS/DS can actively con-

tribute to the intermolecular interactions of these

GAGs. Further evidence to support this suggestion

comes from a recent study of Miyachi et al. [123], who

reported that the CS tetrasaccharides that contained

both disulfated and monosulfated disaccharide were

recognized by FGF-2 as strongly as the CS tertasac-

charides that contained only disulfated disaccharides.

Moreover, the interaction with FGF-2 requires the

appropriate sequence of CS tetrasaccharides with such

a mixed composition – the location of the monosul-

fated disaccharide at the reducing end of such an oligo

leads to the binding being voided [123]. On the other

hand, both this study [123] and others [104,124,125]

revealed a low affinity or a low binding capacity of the

4-O-sulfated disaccharide and the semi-synthetic CSs

that contained this disaccharide for some ligands. This

property may result from the high conformational

rigidity of the 4-O-sulfated CS disaccharide. The CS

backbone consists of alternating GlcA and GalNAc

residues that both assume only the 4C1 conformation.

However, some flexibility of this backbone that

improves fitting the CS chain to a bound molecule can

be regulated by rotation around the glycosidic link-

ages, which is defined by the pair of dihedral angles w
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and φ. To assess the conformational flexibility of vari-

ous CS disaccharides, free energies have recently been

determined to be a function of the disaccharide back-

bone geometry using molecular dynamics simulations

with all-atom explicit-solvent force field technology

[126]. Using this method, two sequential variants of

the unsulfated CS disaccharide (i.e. GlcA-GalNAc and

GalNAc-GlcA) were found to display the greatest

backbone flexibility compared to the corresponding

sulfated analogues [126]. By contrast, all of the disul-

fated CS disaccharides revealed the greatest conforma-

tional rigidity [126]. Moreover, it has been reported

that in contrast to the 6-O-sulfation, the addition of a

sulfate moiety to the position at the 4 C of the Gal-

NAc residue in the monosulfated disaccharide signifi-

cantly reduced the rotation of the disaccharide

backbone compared to the geometry of the unsulfated

disaccharide [126]. These restrictions affected the flexi-

bility of the backbone at the reducing side, but espe-

cially at the non-reducing side of the 4-O-sulfated

GalNAc residue [126]. Thus, because the monosulfated

disaccharides are predominant elements in the CS

composition, any marked alterations in the proportion

between the 6-O-sulfated and 4-O-sulfated units can

significantly modulate the binding potential of this

GAG through an influence on the conformational flex-

ibility of the backbone of its chain and/or the proper

positioning of the disulfated disaccharides. Interest-

ingly, such a remodeling of the sulfation pattern of the

tissue CS/DS is observed during both aging [127] and

various diseases [128–130] and it may be of biological

importance. It is conceivable that changes in the ratio

of the 6-O- to 4-O-sulfation in CS can even direct this

GAG to fulfill special biological functions by strictly

determining its binding partner profile. Alternatively,

although CS variants that differ in respect to the 6-O-

to 4-O-sulfation ratio are able to bind to the same

ligand, these interactions could induce slightly different

conformational alterations in the ligand molecules.

This suggestion is supported by the observation that

the interactions of different CS/DS hexamers with

interleukin (IL)-8 caused slightly distinct alterations in

the nuclear magnetic resonance spectra of the cytokine

[131]. It is tempting to speculate that such subtle alter-

ations in the conformation of the ligand molecules

resulting from their binding to structurally different

CS/DS could, however, markedly modulate the biolog-

ical properties of the ligand. On the other hand, con-

sidering the influence of the position of a sulfate group

in the CS backbone on this GAG-binding properties,

the accessibility of these groups for binding should

also be taken into account. It is commonly accepted

that in a hydrated environment, the CS chains assume

a helical conformation with the 6-O-

sulfated groups that are localized peripherally and the

4-O-sulfated ones that lie near the midline of the poly-

mer [125,132,133]. Thus, the former groups are more

accessible to ligands compared to the latter ones. To

summarize the above-mentioned data, it can be con-

cluded that an increased level of 6-O-sulfation can

induce a high binding potential for CS. This sugges-

tion is also confirmed by the results of a recent study

that examined the interactions of semi-synthetic CSs

with several growth and neurotrophic factors [125].

Interestingly, these synthetic GAGs that shared some

of the features of the sulfation pattern such as a high

content of 6-O- and unsulfated disaccharides with the

CS from the cancer niche were also the strongest bind-

ing partners for the majority of growth and neuro-

trophic factors that were tested [125]. On the other

hand, the recognition of a CS chain sequence is the

only proper way to better understand the biological

properties of this GAG. However, only the composi-

tion of C-6-S, which accumulates in the tumor niche,

is known at this time. This limitation also refers to

almost all of the investigations that test the biological

functions of C-6-S. Thus, the results of these investiga-

tions can only be considered to be an approximation

of the biological effects that C-6-S exerts in the tumor

niche.

The role of C-6-S in the tumor niche

C-6-S can influence tumor-associated

inflammation

It is commonly accepted that the development of the

majority of, if not all, tumors is tightly linked to a

chronic low-grade inflammation, which is characterized

by tissue infiltration by innate and adaptive immune

cells (for review: [134,135]). Some of these cells, that is

macrophages and neutrophils, produce significant

amounts of the reactive oxygen species and reactive

nitrogen intermediates that trigger severe alterations in

the cell genome, including DNA damage and distur-

bances in its repair, and an increased rate of genetic

mutations and genomic instability, which lead to the

initiation of malignant transformations. Another

mechanism that is involved not only in the inflamma-

tion-dependent initiation of a tumor, but especially in

its progression is an increase in the local concentration

of various growth factors, cytokines and chemokines,

which are synthesized by both the tumor cells and the

tumor-associated non-transformed cells, especially

macrophages. The correct spatiotemporal expression

profile of these mediators in the tumor
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microenvironment can be crucial for tumorigenesis

because the final biological effect of their action

strongly depends on the developmental context of a

tumor (Fig. 2A). Typical proinflammatory cytokines

such as tumor necrosis factor a, IL-1, IL-6, IL-12 or

IL-23, which are primarily synthesized by the type M1

macrophages, manifest protumor activity when they

are expressed in the initial stages of the development

of a tumor [134]. However, the same mediators also

have a tumoricidal effect toward established tumors

[134]. In turn, the anti-inflammatory cytokines (IL-4

or IL-10) that are secreted by the macrophages

polarized to the M2 phenotype have an antitumor

activity in the initial stages of the tumor development

and tumor-promoting properties toward the estab-

lished neoplasm [134]. The biological effects of the

cytokines and growth factors result from the impact of

these molecules on the expression of the downstream

effectors such as other cytokines and growth factors as

well as angiogenic factors, adhesion molecules, ECM

components or various enzymes that are responsible

for ECM processing. This impact occurs via the modu-

lation of the activity of several transcription factors

(mainly nuclear factor (NF)-jB, activator protein 1

Fig. 2. The role of macrophages in the

development and progression of cancer (A)

and possible regulatory effects of

chondroitin-6-sulfate on functions of these

cells in the tumor microenvironment (B). C-

6-S, chondroitin-6-sulfate; ECM, extracellular

matrix; HA, hyaluronan; HARE, HA receptor

for endocytosis; HSPG, heparan sulfate

proteoglycan; Hyal, hyaluronidase; IL,

interleukin; MMP, matrix metalloproteinase;

NF-jB, nuclear factor-jB; RNI, reactive

nitrogen intermediates; ROS, reactive

oxygen species; TGFb, transforming growth

factor b; TLR, Toll-like receptor; TNFa,

tumor necrosis factor a.
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and/or signal transducer and activator of transcription

3), which affects the proliferation, survival, adhesion

and migration of malignant cells as well as the vascu-

larization of a tumor [135].

Chondroitin sulfate is known for its immunomodu-

latory activity. Several in vitro and in vivo studies have

shown that CS can reduce oxidative stress and/or

diminish the biosynthesis of various proinflammatory

molecules in proinflammatory-stimulated cells [136–
142]. For this reason, CS was introduced as a dietary

supplement for the treatment of patients suffering

from osteoarthritis [143]. However, the CS-mediated

influence on inflammation may be cell-specific and,

more importantly, it may depend on the GAG struc-

ture, especially on the sulfation pattern. Such a sugges-

tion results from recent reports that have examined the

influence of CS that differ in respect to their predomi-

nant sulfation model on the severity of experimental

autoimmune encephalomyelitis. Administration of C-4-

S in an animal model of experimental autoimmune

encephalomyelitis exacerbated the inflammation [144].

By contrast, experiments with a knockout and overex-

pression of C6ST-1 revealed that 6-O-sulfated CS can

alleviate a clinical manifestation of the disease [145]. It

has also been shown that C-6-S inhibited the in vitro

secretion of IL-6 in macrophages, which were proin-

flammatorily stimulated with CpG via Toll-like recep-

tor (TLR) 9, more effectively than C-4-S [133].

Notably, the impact of CS on macrophage activity can

be a crucial issue in the development and progression

of a tumor as these cells are responsible for creating

and maintaining the protumor–antitumor balance. It

has been reported that structurally diverse CS prepara-

tions significantly reduced the liberation of several

proinflammatory molecules from macrophages that

had been stimulated with lipopolysaccharide (LPS)

[146]. However, among those preparations, C-6-S

inhibited the broadest spectrum of inflammatory medi-

ators [146]. Thus, C-6-S, which gradually accumulates

in the tumor niche, can affect the secretory profile of

the resident macrophages there (Fig. 2B), thereby fix-

ing the M2 polarization of these cells [147] and sup-

porting an established tumor [134] (Fig. 2). However,

the CS-mediated impact on specific inflammatory con-

ditions in the tumor microenvironment may be more

complex. It has been shown that the oligosaccharides

that were generated from C-6-S by bovine Hyal

strongly stimulated in vitro human monocytes to

release proinflammatory cytokine IL-12 [148]. Impor-

tantly, Hyals are among the ECM-processing enzymes

that can be upregulated in the tumor niche [95]. Thus,

the balance between the C-6-S deposition and the C-6-

S degradation and clearance of its degradation

products in the tumor niche rather than just the accu-

mulation of this GAG could, in fact, determine its

final effect on tumor-associated inflammation

(Fig. 2B).

C-6-S-modulated receptor function can affect NF-

jB signaling and cell behavior

The mechanism(s) by which CS attenuates the inflam-

matory response in cells is poorly known. However,

several in vitro and in vivo studies have reported that

in various cells that were simultaneously exposed to

inflammatory stimuli and CS, the translocation of NF-

jB from the cytosol to the nucleus was markedly

reduced compared to that observed in the only proin-

flammatorily activated cells [137–142,146,147]. More-

over, it has been reported that CS with a high level of

6-O-sulfation can inhibit the NF-jB activation in bone

marrow macrophages more effectively than the GAG

variant with a high level of 4-O-sulfation [146,147]. In

addition to native CS, unsaturated 6-O-sulfated CS

disaccharides are also able to exert this inhibitory

effect on NF-jB [149]. However, the intracellular sig-

naling that implicates NF-jB as a downstream effector

not only plays a crucial role in triggering an inflamma-

tion but also in the development and progression of a

tumor [135]. Unfortunately, almost all of the published

reports have addressed the CS-dependent impact on

NF-jB activation on non-malignant cells. However, it

has recently been reported that CS chains of serglycin

can unexpectedly trigger the NF-jB activation in non-

small cell lung cancer (NSCLC) cells, thereby promot-

ing their invasiveness [150]. Interestingly, serglycin,

which is overexpressed in some tumors such as breast

cancer, NSCLC or multiple myeloma and secreted by

them [150–153], is modified by C-4-S chains [151,152].

The CS-dependent influence on the NF-jB signaling

pathway is most probably transduced via this GAG

binding to the cellular receptors. Among the receptors

that simultaneously trigger an NF-jB cascade and that

can interact with GAGs there are TLRs, the HA

receptor for endocytosis (HARE) and CD44. TLRs,

which represent the major class of pattern-recognition

receptors, not only participate in the induction and

regulation of inflammatory and tissue repair responses

to injury but also play a dual role in the development

and progression of a tumor [154]. On one hand, TLR

activation is responsible for clearly antitumor effects

such as the recruitment of tumor cytotoxic cells (natu-

ral killer cells and cytotoxic T cells), the conversion of

the macrophage phenotype from M2 to M1 as well as

the interruption of the tolerance to tumor-self antigens

[154,155]. On the other hand, various in vitro and
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in vivo studies have shown that the stimulation of

TLRs (mainly TLR2 and TLR4, which are localized

on both tumor cells and tumor-associated host cells)

leads to an increase in the survival, proliferation and

metastatic potential of tumor cells [156–158]. In con-

trast to HA or heparan sulfate, CS is not a typical

ligand for TLR2 and TLR4 [159,160]. However, there

is some evidence that CS can interact with and affect

TLR function. For instance, the anti-inflammatory

effect of C-6-S (or C-4-S) on chondrocytes that had

been stimulated with LPS via TLR4 was lessened when

these cells were treated with anti-TLR4–M2 complex

antibody prior to the administration of the GAG

[141]. Moreover, chondrocytes that were first treated

with C-6-S (or C-4-S) and then with LPS displayed a

significant reduction in the inflammatory response

compared to the cells that had only been stimulated

with LPS [141]. Additionally, both native CS (espe-

cially C-6-S) and the CS-degradation products can

effectively inhibit the biological effects that are

induced by TLR1/2 and -9 [133]. Thus, it is possible

that C-6-S could directly interact with TLRs in the

tumor microenvironment, thereby interfering in the

ligand–receptor binding and/or attenuating the signal

transduction and downstream signaling. A similar

mechanism may be associated with the effect of C-6-S

on HARE and CD44, which are also upstream ele-

ments in the NF-jB cascade. HARE, which is mainly

located on the surface of the liver sinusoidal cells and

macrophages, is a primary scavenger receptor for the

systemic clearance of modified low-density lipoproteins

and apoptotic cells as well as GAG degradation prod-

ucts [161,162]. It was shown [162] that the binding of

C-6-S to HARE inhibited the interaction of this recep-

tor with HA and blocked the NF-jB activation in

macrophages. In turn, CD44 is a major HA-binding

cell surface receptor that is ubiquitously expressed on

cells such as leukocytes, fibroblasts and cancer cells

[163]. Moreover, this receptor is involved in promoting

the survival and invasiveness of cancer cells [163]. In

macrophages that had been exposed to IL-4, the so-

called standard variant of CD44 (sCD44) is modified

by the CS chain that interacts with this receptor and

inhibits its binding to HA [164]. It is hypothesized that

CS binding may lead to conformational alterations in

the receptor, which reduce its affinity to HA [164].

Interestingly, the specific immunoreactivity of the CS

attached to sCD44 and an increased expression of

C6ST-1 in cells that had been exposed to IL-4 suggest

that these inhibitory properties of the GAG are associ-

ated with an enhanced level of its 6-O-sulfation [164].

This possibility is further supported by the observation

that C-6-S is a good binding partner for sCD44 [165].

Thus, C-6-S could play a role as a specific modulator

of the activity of cell-surface receptors through the

interaction with them and the induction of conforma-

tional alterations in their molecules, which could affect

downstream signaling. Interestingly, the stimulation of

FGF receptor-1 with a combination of FGF-2 and

heparin triggers a different tyrosine phosphorylation in

the receptor molecule compared with the one that is

induced by the growth factor alone [166].

Evidence supporting the suggestion that the 6-O-

sulfation of CS can strongly influence the behavior of

a tumor cells (Fig. 3) has come from the observation

that xyloside-primed CS/DS that was produced by a

breast carcinoma cell line demonstrated a strong cyto-

toxic activity toward both normal and tumor cells

[167,168]. This effect, which involved the induction of

apoptosis, was neutralized by cancer-cell-synthesized

heparan sulfate [167]. Interestingly, CS/DS with these

cytotoxic properties had a very high proportion of the

6-O-sulfated disaccharides in relation to the 4-O-sul-

fated ones (82–63% versus 15–30%) compared to the

cytotoxically inactive GAG from normal breast fibrob-

lasts, which contained ~60% of the 4-O-sulfated disac-

charides and ~34% of the 6-O-sulfated ones [167,168].

Moreover, the cytotoxic CS/DS also differed from the

GAG that was produced by normal cells in respect to

a significantly lower content of the IdoA residues

(~10% versus ~40%, respectively) and to the occur-

rence of 4,6-O-disulfated disaccharides (E units)

[167,168]. However, despite their known biological

potential, the presence of E units cannot be the only

structural determinant that is responsible for the cyto-

toxic effect of the xyloside-primed CS/DS because

another CS/DS that was used in the research and that

had a similar level of these disaccharides did not

demonstrate any cytotoxic activity [167]. Thus, the

sequential context in which E units are presented such,

as the 6-O- or 4-O-sulfation of adjacent disaccharides,

may be crucial for the biological properties of CS/DS.

This hypothesis is further supported by the observa-

tion that the CS chains of cancer cell-derived serglycin,

which are composed of a small number of 4,6-

disulfated disaccharides in addition to the predominant

4-O-sulfated ones (from 87 to 93% of the total disac-

charides versus maximally 10% of 6-O-sulfated and

5% of unsulfated ones) [151,152], strongly promote

the anchorage-independent growth of these cells [151].

Serglycin, which is secreted by NSCLC, mediates this

effect via the interaction of its CS with CD44 and the

induction of Nanog signaling, thereby stimulating can-

cer cells’ stemness and enhancing their chemoresistance

[150] (Fig. 3). The secretion of serglycin is also posi-

tively correlated with the aggressiveness of breast
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cancer cells [151]. Moreover, this PG stimulates the

in vivo progression of multiple myeloma most proba-

bly through the influence of its CS on the delivery of

proangiogenic factors such as HGF [153].

C-6-S as a regulator of cytokine/chemokine

activity

The immunomodulatory properties of CS also result

from the direct binding of this GAG to various cytoki-

nes, followed by a modulation of the cytokine activity.

IL-10 is one of the cytokines that interact with CS.

This cytokine, which is a key regulator of the innate

and adaptive immune systems, controls the inflamma-

tory response by downregulation of the proinflamma-

tory cytokines and cell-surface molecules involved in

antigen recognition [169]. Interestingly, bone marrow

macrophages that had been exposed to C-6-S had an

overexpression of IL-10 [147]. However, C-6-S not

only influences the level of IL-10 synthesis but also

affects other aspects of cytokine biology. An examina-

tion of the GAG interactions with IL-10 using nuclear

magnetic resonance spectroscopy showed that the 6-O-

sulfated CS disaccharide demonstrated the lowest

affinity for the cytokine among all of the CS and hep-

arin disaccharides [170]. These data suggest that ECM

that is abundant in C-6-S could ensure the high bio-

availability of IL-10 for cells due to a reduced level of

its sequestration. Furthermore, compared to other sul-

fated GAGs, C-6-S interferes with the biological

effects of IL-10 the least [171]. Thus, all of these find-

ings suggest that C-6-S can be a significant promoter

of the anti-inflammatory activity of IL-10 in the tumor

microenvironment, thereby preventing the initiation of

a tumor or supporting the progression of an estab-

lished tumor. GAGs are also crucial regulators of the

chemoattractive cytokines, called chemokines. The

interactions of chemokines with the ECM-localized

GAGs protect these cytokines from proteolysis and

enable them to form the established gradient that is

Fig. 3. Comparison of chondroitin-6-sulfate-

and chondroitin-4-sulfate-mediated effects

on cancer cell behavior and/or extracellular

matrix properties in the cancer niche.

Dashed lines indicate unproven but possible

mechanisms. CS, chondroitin sulfate; ECM,

extracellular matrix; MMP, matrix

metalloproteinase; MT-MMP, membrane-

type matrix metalloproteinase; NF-jB,

nuclear factor-jB; TLR, Toll-like receptor.
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responsible for the directional migration of leukocytes,

which supports the recruitment of these cells to areas

with tissue injury [172]. Moreover, GAG chains create

a surface for chemokine oligomerization or for the sta-

bilization of the existing chemokine oligomers, which

can affect the activation of receptors for these cytoki-

nes [173]. Recently it was shown that intracellular CS

contributes to the mechanism that regulates intracellu-

lar trafficking and the secretion of monocyte chemoat-

tractant protein 1 in breast cancer cells [174]. Despite

numerous studies that examine the role of GAGs in

chemokine biology, investigations that focus on the

impact of C-6-S on these mediators are scarce. How-

ever, it has been shown that C-6-S hexasaccharide is a

better binding partner for IL-8 than these oligos that

are derived from C-4-S, DS or HA [131]. Moreover,

CS can also affect the activity of this chemokine as a

result of the observation that this GAG strongly

amplifies the IL-8-mediated generation of reactive oxy-

gen species in neutrophils [175]. Thus, all of these find-

ings suggest that the progressive accumulation of C-6-

S in the tumor microenvironment together with an

enhanced local secretion of IL-8 by cancer-associated

cells creates the conditions that support the recruit-

ment of neutrophils and their activation. A high neu-

trophil infiltration of tumor tissues strongly correlates

with a poor outcome in patients since these cells are

the source of the ECM-remodeling enzymes and

proangiogenic factors such as IL-8 [176]. Thus, C-6-S

binding to IL-8 can protect a chemokine from proteol-

ysis, thereby also stimulating its proangiogenic effect.

The effect of C-6-S on the invasive properties of

cancer cells

Metastasis is a crucial process in the progression of

cancer that is responsible for cancer mortality to the

greatest extent [135]. This process includes four major

steps: (a) the mesenchymal transformation of the pri-

mary epithelial cancer cells (epithelial–mesenchymal

transition); (b) the migration of tumor cells across tis-

sues into the blood or lymphatic vessels (intravasa-

tion); (c) the travel of cancer cells throughout the

circulation, and finally, (d) the extravasation as well as

colonization of new tissues [135]. For all of these

events features of cancer cells such as their ability to

adhere to various ECM and cell surface molecules

(collagen, fibronectin, selectins, CD44, ICAM and vas-

cular cell adhesion molecule) as well as increased

mobility throughout the actively remodeled ECM are

of special importance. Growing evidence suggests that

CS that is localized in the tumor ECM and on the

tumor cell surface can play a dual role in cancer

metastasis. Recently it was shown in an animal model

of breast cancer that the enzymatic degradation of CS/

DS within a primary orthotopic tumor did not affect

the growth of the primary tumor; instead it induced

lung metastasis [177]. On the other hand, a high CS

expression in malignant cells but not in the tumor

stroma strongly correlates with a brief recurrence-free

survival and an overall survival in breast cancer

patients [63]. The significant influence of the CS that is

present in the cancer cell glycocalyx on various aspects

of the invasiveness of cancer cells has been shown in

several in vitro investigations. The so-called oncofetal

type of CS that is attached to several osteosarcoma

cell-surface PGs seems to stimulate the migration and

invasion of these cells as it was observed that the func-

tional inhibition of this GAG via its binding to a Plas-

modium falciparum-derived VAR2CSA protein

significantly reduced both integrin signaling and cancer

cell motility [178]. Furthermore, the CS, which is

attached to CSPG4 on the melanoma cell surface, pro-

motes the a4b1-dependent adhesion of these cells to

fibronectin and the associated signaling via an interac-

tion with the a4 integrin subunit [179]. In turn, the CS

moiety of CD44 mediates the migration of melanoma

cells on type IV collagen but not the adhesion to this

substratum that engages a2b1 integrin [180]. More-

over, the interaction between the CD44 from the sur-

face of multiple myeloma cells and the C-4-S chains of

serglycin that they secrete is responsible for the adhe-

sion of these cancer cells to collagen type I and to

bone marrow stromal cells, which then enables bone

marrow colonization [153] (Fig. 3). Additionally, the

adhesion of multiple myeloma cells to collagen type I

via an interaction that involves serglycin CS stimulates

these cells to synthesize and secrete matrix metallopro-

teinase (MMP)-9 and MMP-2, which promotes the

invasiveness of cancer cells via ECM remodeling [181]

(Fig. 3). The CS moiety of serglycin also potentiates

the invasiveness of breast cancer and NSCLC

[150,151]. The mechanism that underlies this effect in

the NSCLC cells implicates the activation of the

CD44–NF-jB–claudin-1 axis [150] (Fig. 3). CD44,

which is modified by CS, via this GAG binds to fibro-

nectin, thereby supporting cell adhesion [182]. In addi-

tion, the CD44-spliced variant that contains the

sequence encoded by the v10 exon can interact with

the CS that is localized extracellularly or on the cell

surface using the B[X7]B motif (where B is a basic

amino acid and X is an any amino acid) that is present

within this sequence [183]. Since such a binding can

influence cell–ECM and cell–cell adhesion, the expres-

sion of the v10 CD44 isoform on cancer cells can

enhance their metastatic potential [183]. Similarly, as
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in the case of its impact on the development of a

tumor, the influence of CS on metastasis also seems to

be determined by the sulfation pattern of this GAG.

Notably, several studies have demonstrated a complex

effect of the E disaccharides on the dissemination of

cancer. CS-E (i.e. CS that contains an increased level

of the 4,6-O-disulfated disaccharides) has been shown

to substantially reduce the invasiveness of breast can-

cer cells in vitro inhibiting Wnt/b-catenin signaling,

which results in the downregulation of the prometa-

static Col1a1 gene [184]. Moreover, CS-E can impede

the ECM processing, which favors cancer cell mobility,

by both enhancing retention of tissue inhibitor of met-

alloproteinases (TIMP)-3 in the extracellular space and

by stimulating its inhibitory effect toward adamalysin-

like metalloproteinase with thrombospondin motifs-5

[185]. By contrast, the metastatic potential of Lewis

lung carcinoma cells or murine osteosarcoma cells pos-

itively correlates with the proportion of the E units in

the CS that are localized on the cell surface

[87,88,186]. Likewise, the overexpression of CS-E in

ovarian cancer cells correlates with a poor prognosis

[187] most probably due to an increase in the cell–
ECM and cell–cell adhesiveness [188] that can facilitate

the tissue colonization. It seems that the mechanisms

that underlie the prometastatic activity of CS-E may

involve effects on the cell motility stimulators such as

VEGF and HGF [189,190], the promotion of circulat-

ing cancer cell survival and extravasation via the inter-

action with P selectin [191], support of tissue

colonization by binding to local receptors such as

RAGE [46], and the stimulation of activation and/or

activity of enzymes responsible for ECM degradation

such as MMP-7 [192], which is implicated in the dis-

ruption of cell-ECM contacts [193]. Moreover, the CS-

E degradation products strongly stimulate CD44 pro-

teolysis, thereby increasing the CD44-dependent migra-

tion of cancer cells [194]. On the other hand, the fact

that CS-E can demonstrate both a prometastatic and

an antimetastatic activity indicates the complexity of

the intermolecular connection network in which this

GAG participates. However, it cannot be excluded

that the final biological effects that are promoted by

the E units can also be controlled by molecular con-

text (i.e. the CS-E sequence) rather than being solely

dependent on the presence of these disaccharides. In

contrast to CS-E, the role of CS with a high level of 6-

O-sulfation in the dissemination of cancer is still

poorly known. In contrast to the expression of C4ST-

1, the in vitro expression of C6ST-1 is not correlated

with the aggressiveness of breast cancer cells [195]. C-

6-S also did not influence the invasive phenotype of

mouse breast cancer cells that had been grown in 3D

cultures [184]. Moreover, C-6-S had a low affinity for

P selectin [191]. Taken together, these results suggest

that this GAG has at least a neutral effect on the

metastasis. On the other hand, C-6-S avidly binds to

sCD44 and this interaction can promote both cell

adhesion and cell migration [165]. Thus, a gradual

accumulation of C-6-S in the tumor stroma can not

only facilitate the settlement of the tumor environment

by cells that display a high level of sCD44 expression

such as leukocytes and fibroblasts [163], but also sup-

port the invasive potential of cancer cells. However,

the impact of C-6-S on the invasiveness of cancer is

more complex. It was shown that C-6-S significantly

decreased both the migration and the invasion of mel-

anoma cells that were co-cultured with normal fibrob-

lasts [196] (Fig. 3). The underlying mechanism may

involve an increase in the integrin-mediated adhesion

of cancer cells to the ECM as a consequence of a C-6-

S-dependent acidification of the pericellular space

[196]. Furthermore, the migration of cancer cells

across tissue involves the focal proteolysis of the ECM

components at the invasive edge of the migrating cells,

which is mediated by cell surface-associated enzymes

such as MMP-2. The activation of pro-MMP-2 by

membrane-type 3 MMP is facilitated by CS and this

effect depends on the GAG sulfation [197]. C-4-S is

markedly more effective in this process than C-6-S

[197]. Therefore, by this mechanism, the C-6-S that is

deposited in the cancer microenvironment could retard

both the ECM remodeling and the mobility of cancer

cells compared to the C-4-S action (Fig. 3). In addi-

tion, C-6-S does not stimulate MMP-7 activity [192].

However, this GAG also does not improve the extra-

cellular retention of TIMP-3 [185]. On the other hand,

C-6-S inhibits the proteolytic activity of cathepsin S

less effectively than C-4-S [198]. This enzyme is

engaged in a broad spectrum of events that support

the invasiveness of cancer such as angiogenesis or the

disruption of cell–cell and cell–ECM contacts [199].

However, C-6-S may also affect the metastasis by

influencing the collagen network in the tumor niche. It

has been reported that the biomechanical properties of

ECM, in particular the enhanced stiffness of the colla-

gen network due to the excessive deposition of this

protein as well as its increased cross-linking by lysyl

oxidase, strongly affect the invasiveness of many types

of cancer [3,200]. In addition, the presence of long col-

lagen fibers in the tumor stroma is correlated with a

poor survival outcome in multiple types of cancer

[201]. Though the detailed mechanism that underlies

the formation of such fibers in the tumor stroma is

unknown, it is well evidenced that collagen fibrogene-

sis is regulated by CS/DS PG [202]. Moreover, it has
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been reported using high-resolution scanning micro-

scopy that the morphology of the collagen network is

substantially affected by the sulfation of CS [203]. In

contrast to C-4-S, C-6-S was entirely bound to the fib-

ril surface and influenced the fibril parameters such as

their diameter and spatial layout [203]. Recently, it has

been shown that C-6-S binds to and preserves collagen

fibrils from acidic pH-dependent denaturation/solubi-

lization [204] (Fig. 3). Interestingly, C-6-S can be more

effective in this protective effect than DS [204]. More-

over, interactions between C-6-S and collagen lead to

an increased resistance of collagen fibrils to cathepsin

K-mediated degradation [204]. It is possible that simi-

lar C-6-S-dependent effects occur on the collagen in

the acidic tumor environment and are responsible for

the remodeling of the collagen network that can affect

cancer cell motility [196,200,201].

In the light of the above-mediated data, it can be

concluded that the C-6-S that is accumulated in the

tumor niche can indirectly influence the invasiveness

of cancer cells by supporting the adhesion of various

host cells such as fibroblasts or leukocytes. These cells

are significant sources of growth factors and ECM-

degrading enzymes, which stimulate the migration of

cancer cells. Furthermore, C-6-S can modulate the

ECM architecture of the tumor niche and its process-

ing, thus directly affecting the dissemination of cancer

cells.

Future perspectives

The presented data suggest that C-6-S plays a dual

role in the microenvironment of a tumor. However, in

order to take advantage of these data in anticancer

therapy, a deep insight into the C-6-S sequence as well

as its relation to the GAG function is required [89].

Although there are new promising techniques for sul-

fated GAG sequencing [205], only laboratory practice

can verify their effectiveness. Nevertheless, in light of

the current knowledge about the contribution of C-6-S

in the development, progression and spread of cancer,

several therapeutic strategies that target this GAG can

be proposed. First and foremost, due to its anti-

inflammatory properties, C-6-S can be applied as a

slow-acting anti-inflammatory drug for the prevention

of cancer. Moreover, taking into account its ability to

interact with CD44 [165], C-6-S can be a target for

therapy to diminish the infiltration of the cancer niche

by host cells such as fibroblasts, which are hypothe-

sized to be the primary mediators of drug resistance in

cancer cells [206]. On the other hand, due to its nega-

tive electrical charge and binding to several cell-surface

receptors such as HARE [162] or the above-mentioned

CD44 [165], C-6-S or its chain fragments could also be

applied as drug delivery carriers in order to enhance

the specificity and efficiency of anticancer therapy

[207].
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