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Abstract

Transtibial amputees may experience decreased quality of life due to increased risk of knee

joint osteoarthritis (OA). No prior studies have compared knee joint biomechanics for the

same group of transtibial amputees in gait, cycling, and elliptical training. Thus, the goal of

this study was to identify preferred exercises for transtibial amputees in the context of reduc-

ing risk of knee OA. The hypotheses were: 1) knee biomechanics would differ due to partici-

pant status (amputee, control), exercise, and leg type (intact, residual) and 2) gait kinematic

parameters would differ due to participant status and leg type. Ten unilateral transtibial

amputee and ten control participants performed exercises while kinematic and kinetic data

were collected. Two-factor repeated measures analysis of variance with post-hoc Tukey

tests and non-parametric equivalents were performed to determine significance. Maximum

knee compressive force, extension torque, and abduction torque were lowest in cycling and

highest in gait regardless of participant type. Amputee maximum knee extension torque was

higher in the intact vs. residual knee in gait. Amputee maximum knee flexion angle was

higher in the residual vs. intact knee in gait and elliptical. Gait midstance knee flexion angle

timing was asymmetrical for amputees and knee angle was lower in the amputee residual

vs. control non-dominant knees. The results suggest that cycling, and likely other non-

weight bearing exercises, may be preferred exercises for amputees due to significant reduc-

tions in biomechanical asymmetries and joint loads.

Introduction

Transtibial amputees may experience decreased quality of life due to increased risk of knee

joint osteoarthritis (OA) [1], a degenerative disease of bone and cartilage tissues that often

leads to debilitating joint stiffness and pain. Abnormal biomechanics during daily activities,

including gait, is well accepted to be a risk factor for knee joint OA [2–5], and is likely related

to the high prevalence of joint pain and OA among military and civilian unilateral transtibial

and transfemoral amputees [1,6–10].
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Transtibial amputees are more likely to develop OA in the intact knee joint than the residual

(i.e. amputated) joint [1,11,12], which may be caused by preferring the intact leg as evidenced by

abnormal gait biomechanics including asymmetric ground reaction forces, muscle activation

patterns, and knee joint kinetics (i.e. forces and torques) between the intact and residual limbs

[13–21]. Studies have shown that transtibial amputees, as compared to non-amputee controls,

have increased intact knee joint forces and torques [22] and increased asymmetry in internal

knee abduction torque [23,24]. Knee OA is more commonly seen in the medial compartment

and, generally, high internal abduction torque increases medial compartment loading [25].

Although there is contention about the relevance of knee extension torque in OA risk [26], an in
vivo study showed that extension torque is a significant contributor to medial contact force [27].

While prosthetic limb design has advanced in recent years, with energy storage and release

(ESAR) prostheses representing the state-of-the-art in passive-elastic devices, such prostheses

do not completely restore natural biomechanics of the lower limb during gait [28–30]. Studies

comparing powered ankle prostheses to passive devices have shown that increasing net positive

prosthetic ankle work can decrease metabolic cost of transport, increase walking speed, and

potentially reduce some gait abnormalities [31–35], but the number of studies of powered pros-

theses is relatively low and these studies are limited to gait only. This study focuses on ESAR

prostheses due to the prevalence of passive-elastic devices amongst the amputee population.

Exercise is recommended for amputees for rehabilitation and lifelong fitness sustainment

[36] but there are only a few biomechanical studies for transtibial amputees in exercises other

than gait. Although guidelines have been proposed for prosthetic use among transtibial ampu-

tees during cycling [37], only a few studies have addressed intact knee joint loading during

cycling for this population [8,38]. In a prior cycling biomechanics study, significantly higher

pedal force and work asymmetries existed between intact and residual limbs for transtibial

amputees [38] and such asymmetries depended on cycling intensity and prosthetic foot stiff-

ness [8]. Although elliptical training has been recommended during rehabilitation for this

population [39], there do not appear to be any biomechanical studies of knee joint loading

during elliptical training for transtibial amputees. Previous studies with non-amputee popula-

tions have shown that elliptical training, compared to walking, produces similar kinematic and

kinetic patterns [40,41] and reduces knee load impulses [42]. Elliptical training is recom-

mended alongside cycling and swimming as non-weightbearing exercises when other exercises

are challenging in persons with joint OA [43].

The goal of this study was to conduct motion analysis experiments and compare knee bio-

mechanics in gait, cycling, and elliptical training in order to identify appropriate exercises for

transtibial amputees whom are at high risk for knee OA. The hypotheses were: 1) knee biome-

chanics would differ due to participant status (amputee, control), exercise, and leg type (intact,

residual) and 2) gait kinematic parameters would differ due to participant status and leg type.

Methods

All protocols were approved by Cal Poly’s Institutional Review Board (IRB) and the U.S.

Army Medical Research and Materiel Command (USAMRMC) Office of Research Protections

(ORP) Human Research Protections Office (HRPO) (HRPO Log Number A-19263) and

were designed to minimize risk to human subjects. Written consent was obtained prior to all

experiments.

Participant recruitment

Ten unilateral transtibial amputees (aged 18–45, body mass index [BMI] 22.3–29.6, 1.5–12.4

years post-operation, 7 males, 3 females) and ten control participants (aged 20–26, BMI 19.1–
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27.9, 8 males, 2 females) participated. Exclusion criteria included history of cardiovascular dis-

ease, respiratory disease, or any other metabolic disease/complication; substantial weight loss or

gain over the previous six months; history of major psychiatric illness, drug abuse, or unsafe diet-

ing practices; major medical conditions that prohibit physical activity; and pregnant women or

women expecting or trying to be pregnant. After screening, eligible participants were invited to

the motion analysis lab where informed consent was obtained, information forms were filled

out, and amputee participants were fitted with an Energy Storage and Release (ESAR) prosthesis

(Vari-Flex1, ssur, Reykjavik, Iceland) by a certified prosthetist (AMR). One week of accommo-

dation time was provided to amputee participants that exhibited unfamiliarity with the Vari-

Flex1 as determined by our certified prosthetist (AMR) in qualitative alignment and gait pattern

checks. However, most (8/10) amputee participants were tested without accommodation time as

they used similar ESAR devices to the Vari-Flex1 and passed AMR’s alignment and gait pattern

checks. Amputee participants all wore similar carbon fiber sockets and static pylons with no

springs or dampers. Screening and health information forms indicated that all participants were

relatively young, healthy, non-obese, free of disease, and had no restrictions on physical activity.

Tables 1 and 2 document critical information for amputee and control participants, respec-

tively. Mass was measured with a scale and height measured with a stadiometer. The dominant

Table 1. Transtibial amputee participant characteristics.

Participant Age Mass

[kg]

Height [m] BMI Intact Leg Gender Years Since Amputation Co-

Morbidities

1 32 74.8 1.82 22.6 L M 11.9 Healed ACL tear

2 31 83.9 1.69 29.4 R M 2.8 -

3 45 80.7 1.81 24.6 R M 6.2 Charcot foot

4 32 80.6 1.78 25.4 R M 12.4 Screws in ankle

5 32 72.4 1.80 22.3 R M 8.1 -

6 34 92.2 1.77 29.6 L F 10.6 -

7 29 58.4 1.54 24.7 L F 4.2 -

8 37 82.9 1.82 25.0 L M 8.2 Hip implant, rod in femur

9 18 76.8 1.73 25.5 R F 1.5 -

10 32 75.0 1.81 22.8 R M 6.8 -

Average

(SD)

32.2 (6.7) 77.8

(8.9)

1.76 (0.09) 25.2 (2.6) - - 7.3

(3.7)

-

https://doi.org/10.1371/journal.pone.0226060.t001

Table 2. Control participant characteristics.

Participant Age Mass

[kg]

Height

[m]

BMI Dominant Leg Gender

1 26 86.6 1.79 27.0 R M

2 23 88.5 1.75 23.0 L M

3 22 61.2 1.79 19.1 R M

4 22 79.1 1.82 24.0 R M

5 20 90.4 1.80 27.9 L M

6 23 70.3 1.75 22.9 R M

7 23 56.2 1.63 21.3 R M

8 21 64.8 1.65 23.9 R M

9 20 68.1 1.61 26.1 R F

10 21 68.7 1.72 23.4 R F

Average

(SD)

22.1

(1.8)

73.4

(12.0)

1.73

(0.08)

24.4

(3.1)

- -

https://doi.org/10.1371/journal.pone.0226060.t002
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leg for amputee participants was defined as the intact leg. The dominant leg for control partici-

pants was defined as the strongest or preferred leg and was self-reported. Age, gender, years

since amputation, and co-morbidities for the intact leg were self-reported.

Experiments

Twelve near-infrared digital cameras (6 Owl, 3 Osprey, 2 Kestrel, 1 Eagle) (Motion Analysis

Corp., Santa Rosa, CA, USA) were used capture the motion of reflective markers. Participants

wore tight compression clothing that exposed as much skin as the participant was comfortable

with. A modified Helen Hayes marker set was used with 32 reflective markers placed at the fol-

lowing anatomical landmarks: crown of the head, acromion processes, 7th cervical spine, ster-

num, greater trochanters, anterior superior iliac spines, tops of the iliac crests, sacrum, halfway

along the long axis of each thigh, lateral and medial knee condyles, fibular heads, tibial tuber-

osities, halfway along the long axis of each shank, lateral and medial malleoli, Achilles tendon

insertion sites, and between the 2nd and 3rd metatarsals of both feet. When possible, markers

were placed directly on skin but pelvic markers were placed on compression clothing. Prosthe-

sis-side markers were aligned with intact-side markers as closely as possible when anatomical

landmarks were inaccessible or absent.

Participants were asked to stand stationary in a static pose with feet at shoulder width and

arms bent at the elbows. Static pose captures were used to begin the marker identification pro-

cess and defined initial joint angles for later analyses. Top head and medial knee and ankle

markers were removed after static captures. During gait experiments, four ground force plates

(Accugait, AMTI, Watertown, MA, USA) were used to capture ground reaction forces in the

anterior, lateral, and vertical directions; the free reaction torque about the vertical axis; and the

center of pressure (COP) of the reaction force vector on the surface of the force platform (Fig

1). Three gait trials were collected for each participant at self-selected speeds in each direction.

During cycling and elliptical experiments, the pedals of a stationary bicycle (Lifecycle GX,

Life Fitness, Schiller Park, IL, USA) and elliptical trainer (XE795, Spirit Fitness, Jonesboro,

AR, USA) were instrumented with 6-axis load cells (AD2.5D, AMTI) to capture pedal reaction

forces, free torque, and COP (Fig 1). Three trials for cycling and elliptical were collected at 70

Fig 1. Setup for gait, cycling, and elliptical training motion analysis experiments. Digital cameras, ground force plates, reflective markers, the

Vari-Flex prosthesis with foot cover, and instrumented exercise machine pedals are indicated.

https://doi.org/10.1371/journal.pone.0226060.g001
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revolutions per minute (RPM, range 68–72 RPM) as measured by the corresponding machine

at moderate resistance settings (level 10 of 20). Once the participant reached the target speed,

data for 30 seconds were collected to capture several machine cycles. Cortex software (Version

7.01, Motion Analysis) was used to interface all equipment, perform post-processing of marker

data, and calculate kinematics and kinetics.

Data processing

One full gait cycle was defined by consecutive heel strikes of the same leg (0% = 1st heel strike,

100% = 2nd heel strike). One cycling cycle was defined by one full crank rotation starting at top

dead center (TDC; 0% = 1st pass through TDC, 100% = 2nd pass through TDC) [8]. One ellipti-

cal cycle was defined by one full crank rotation starting at the most anterior pedal position

(APP; 0% = 1st pass through APP, 100% = 2nd pass through APP) [42].

The sacrum marker velocity in the direction of motion was stored and used to calculate

average walking speed for each participant. The time in seconds at which cycling and elliptical

pedals passed through their respective start and end of cycle were stored and used to calculate

actual RPM. Cycles with RPM greater than 72 or less than 68 were eliminated from the pool of

samples as kinetics vary with machine power [8]. Machine cycles were selected randomly with-

out replacement (to avoid selecting the same cycle again) before normalizing and averaging

data.

Static and dynamic captures were processed in Cortex to define body segments used to cal-

culate joint kinematics and kinetics. For cycling and elliptical trials, additional markers defined

pedal segments which were necessary to track load cells relative to a global coordinate system

and transform measured forces and torques to the foot coordinate system (Fig 2). For the ellip-

tical, two load cells were attached to each pedal and their data were combined into an equiva-

lent force-couple system using standard equations [44,45] in order to properly apply reaction

forces to the foot (Fig 3).

Kinematic and kinetic data were captured in Cortex at 150 Hz. Marker trajectories were fil-

tered in Cortex using a two-pass, 4th order, zero phase shift Butterworth filter with a cutoff fre-

quency of 6 Hz and reaction forces were filtered using the same filter with a 10 Hz cutoff

frequency. Cutoff frequency for reaction forces was calculated using an optimal method [46].

Missing marker data were interpolating using a cubic spline in Cortex.

Fig 2. Gait, cycling, and elliptical dynamic captures in Cortex. Force plates and load cells tracking pedal mass

segments are visible. Red vectors indicate magnitude and direction of reaction forces.

https://doi.org/10.1371/journal.pone.0226060.g002
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Kinetics were calculated in Cortex using a bottom-up approach. The Cortex package Kin-

Tools RT used lower-body kinematics, standard shank and foot segment inertial properties

[47], and measured reaction forces to calculate knee joint forces and torques via Euler’s equa-

tions [48]. The knee joint angles, resultant forces, and resultant torques for the knee were

resolved into a floating axis joint coordinate system [49] (Fig 4). Knee flexion angle; lateral,

anterior, and compressive force; and extension and abduction torque were defined to be posi-

tive. Reported torques follow the internal convention; that is, internal joint torques caused by

muscle and joint contact forces oppose external torques due to ground or pedal reaction forces

[50].

Analyses of kinematic and kinetic data results were performed using a custom script in

MATLAB (MathWorks, Natick, MA, USA). All dynamic trials were interpolated to 101 data

points from 0% to 100% cycle. Three trials for each participant in each exercise for each of the

intact/dominant and residual/non-dominant legs were averaged. Knee kinematics and kinetics

were then averaged across ten participants in each participant group.

Maximum knee flexion angles in gait, cycling, and elliptical for the intact/dominant and

residual/non-dominant legs were normalized for each participant group by subtracting calcu-

lated knee joint flexion angles of the static pose from the dynamic angles measured during

each trial [51]. Also, midstance and swing knee flexion angle maximums and corresponding

timing in percent cycle in gait for amputee and control groups were analyzed. Forces were nor-

malized by body weight and torques were normalized by body weight times height [52].

Statistics

Analyzed data were tested for normality using Shapiro-Wilks tests and for equal variance

using F-tests. Maximum knee compression force, extension torque, abduction torque, and

maximum swing knee flexion angle in gait were found to be non-normal distributions and

Fig 3. Elliptical force platforms in Cortex before (left) and after (right) combining load cell data into a resultant force-

couple system.

https://doi.org/10.1371/journal.pone.0226060.g003
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were analyzed using Kruskal-Wallis tests and post-hoc Dunn tests at 95% confidence with

Bonferroni adjustments for multiple comparisons to analyze the differences between partici-

pant-leg-exercise groupings. Two-factor repeated measures analysis of variance (ANOVA)

with post-hoc Tukey tests at 95% confidence were conducted to analyze the effects of partici-

pant and leg type (amputee intact leg, amputee residual leg, control dominant leg, control

non-dominant) and exercise (gait, cycling, elliptical) on maximum knee flexion angle and to

analyze the effects of participant and leg type (amputee intact, amputee residual, control domi-

nant, control non-dominant) on knee flexion angle peaks and peak times in gait. All statistical

analyses were performed in R [53]. A Bonferroni correction of four was applied (on account of

four dependent variables) such that p<0.0125 was considered statistically significant.

Results

The average amputee and control participant walking speeds were 1.26 ± 0.17 m/s and

1.29 ± 0.08 m/s, respectively. Average cycling RPMs were 69.45 ± 0.61 and 69.75 ± 0.61 for

amputees and controls, respectively. Average elliptical RPMs were 70.32 ± 0.59 and

70.15 ± 0.54 for amputees and controls, respectively. A two-sample t-test showed that the

Fig 4. Floating axis knee joint coordinate system. Angle and force axes are indicated in the positive direction in

black. Joint torques are defined in the positive orientation in gray. HJC is hip joint center, KJC is knee joint center, and

AJC is ankle joint center. “Z” vectors indicate the longitudinal axis of the thigh and shank. The knee internal rotation

axis is defined as the shank axis. The flexion axis is defined as the axis perpendicular to the thigh axis pointing through

the lateral knee marker (LKM). The abduction axis is the cross product of the internal rotation axis and the flexion axis

and points anteriorly.

https://doi.org/10.1371/journal.pone.0226060.g004
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walking speeds were not different (p = 0.566) between participant groups (t-tests were only

run on gait speeds since they were self-selected).

Maximum knee flexion angles were different between exercise types for all participant

groups (Fig 5). P-values for maximum knee flexion angles between exercises (gait vs. cycling,

gait vs. elliptical, cycling vs. elliptical) for all participant-leg combinations (amputee intact leg

[Amp-Intact], amputee residual leg [Amp-Residual], control dominant leg [Con-D], control

nondominant leg [Con-ND]) were all <0.001. Maximum knee flexion angles were asymmetri-

cal for amputee participants in gait (p = 0.005) and elliptical (p<0.001) but not cycling

(p = 0.014) (Fig 5).

Maximum knee compressive forces varied in gait vs. cycling for all participant types and in

cycling vs. elliptical for Amp-Intact legs (Fig 6). P-values for maximum knee compressive

force comparisons in gait vs. cycling for all participant types were<0.001. Maximum knee

compressive forces were not different between participant types or between intact/dominant

and residual/non-dominant legs of either participant group (Fig 6).

Maximum knee internal extension torque was different in gait vs. cycling for Amp-Intact

and Con-ND legs and in cycling vs. elliptical for Amp-Intact legs (Fig 7). P-values for maxi-

mum knee extension torque comparisons in gait vs. cycling were<0.001 for Amp-Intact and

Con-ND legs. Maximum knee extension torque for amputee participants was asymmetrical in

gait (p<0.001) (Fig 7). Maximum residual/non-dominant knee extension torque was different

between amputees and controls in gait (p<0.001) (Fig 7).

Maximum knee internal abduction torque was different in gait vs. cycling for all participant

types (Fig 8). P-values for maximum knee abduction torque comparisons in gait vs. cycling

were<0.001 for all participant-leg combinations. Maximum knee abduction torque was not

Fig 5. Maximum knee flexion angle [deg]. Mean ± 1 standard deviation. + = significance across leg type (intact/

dominant vs. residual/non-dominant). � = significance across participant type (amputee vs. control). ✓ = significance

across exercise type (gait vs. cycling vs. elliptical). P<0.0125 significant.

https://doi.org/10.1371/journal.pone.0226060.g005
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different between participant types or between intact/dominant and residual/non-dominant

legs of either participant group (Fig 8).

P-value for maximum midstance knee flexion angle in gait was 0.005 for Amp-Residual vs.

Con-ND legs (Fig 9). P-values for midstance knee flexion angle timing were <0.001 for both

Amp-Intact vs. Amp-Residual legs and Amp-Residual vs. Con-ND legs (Fig 9). P-value for

maximum swing knee flexion angle in gait was 0.001 for Amp-Intact vs. Amp-Residual legs

(Fig 9). No differences in swing knee flexion angle timing were found.

Discussion

The hypotheses of the current study were: 1) knee biomechanics would differ due to partici-

pant status (amputee, control), exercise, and leg type (intact, residual) and 2) gait kinematic

parameters would differ due to participant status and leg type. Kinematics and kinetics varied

with exercise (all variables), leg type (flexion angle, extension torque), and participant type

(extension torque in gait) providing support for the first hypothesis. Gait characteristics varied

with leg type (midstance flexion angle timing, swing flexion angle) and participant type (mid-

stance flexion angle, swing flexion angle) providing support for the second hypothesis. Knee

joint compressive force, torques, and flexion angles were of similar magnitude to many other

studies in both amputee and non-amputee populations in gait [16,17,21,54], cycling [55,56],

and elliptical training [41,42,57] (see below for more details).

The kinematic results of the present study have clinical implications regarding rehabilitative

and lifelong fitness sustainment exercises that may minimize OA risk in amputees. In the gen-

eral population, abnormal knee kinematics are linked to the initiation of knee OA [2,58]. Spe-

cifically, knee flexion angle and timing are particularly linked to knee OA in the general

Fig 6. Maximum knee compressive force [N/N]. Mean ± 1 standard deviation. + = significance across leg type

(intact/dominant vs. residual/non-dominant). � = significance across participant type (amputee vs. control). ✓ =

significance across exercise type (gait vs. cycling vs. elliptical). P<0.0125 significant.

https://doi.org/10.1371/journal.pone.0226060.g006
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population due to evidence that low midstance flexion angle and altered temporal characteris-

tics will cause abnormal knee kinetics [59]. In this study, the amputee intact knee flexion angle

was not different from that of control participants during the stance phase in gait. However,

maximum residual knee flexion angle was significantly lower in midstance and had signifi-

cantly delayed timing compared to the intact leg and the control non-dominant leg. Also,

swing flexion angle was higher in the residual leg compared to the intact leg. These observed

kinematic abnormalities in the residual leg may require compensation which could affect load

bearing in the intact knee. For example, the observed reduction in residual knee midstance

flexion angle could be evidence of an avoidance strategy (quadriceps-avoidance gait) also seen

in anterior cruciate ligament (ACL) deficient populations that are at increased risk for intact

knee OA [59]. Compensatory muscle activity in transtibial amputee gait, namely asymmetry in

intact vs. residual knee flexor/extensor activity, has been found in previous studies [13,60].

Also, the kinetic results of the present study have similar clinical implications. Knee kinetics

such as compressive force and muscle torques can be an indication of OA severity [60,61]; spe-

cifically, progression of cartilage degeneration is exacerbated by abnormal kinetics as increased

cartilage compressive stress has been shown to be both a symptom of OA and a cause for fur-

ther degeneration [2,58,61,62]. Abduction torque was found to have a particularly close link to

the progression of knee OA and was of higher magnitude in cases of severe medial compart-

ment OA [2,58,60,61,63] and tends to increase with increasing disease severity [26,64,65]. In

the current study, no differences of amputee vs. control intact/dominant knee compressive

force, extension torque, or abduction torque were found in any of the exercises. However,

large asymmetries were present in maximum extension torque for amputees in gait suggesting

that muscle coordination and braking/propulsion effort may be altered for the residual leg.

Fig 7. Maximum knee internal extension torque [Nm/Nm]. Mean ± 1 standard deviation. + = significance across leg

type (intact/dominant vs. residual/non-dominant). � = significance across participant type (amputee vs. control). ✓ =

significance across exercise type (gait vs. cycling vs. elliptical). P<0.0125 significant.

https://doi.org/10.1371/journal.pone.0226060.g007
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Significantly reduced residual knee extension torque may be a sign that ESAR prostheses do

not adequately replace natural biomechanics after amputation and may be causing the intact

Fig 8. Maximum knee internal abduction torque [Nm/Nm]. Mean ± 1 standard deviation. + = significance across leg

type (intact/dominant vs. residual/non-dominant). � = significance across participant type (amputee vs. control). ✓ =

significance across exercise type (gait vs. cycling vs. elliptical). P<0.0125 significant.

https://doi.org/10.1371/journal.pone.0226060.g008

Fig 9. Maximum midstance and swing knee flexion angle [deg] and corresponding times [% Cycle] in gait.

Mean ± 1 standard deviation. Midstance results are in the first row, swing results are in the second row, flexion angle

results are in the first column, and flexion angle time results are in the second column. + = significance across leg. � =

significance across participant type. P<0.0125 significant.

https://doi.org/10.1371/journal.pone.0226060.g009

Knee joint biomechanics in transtibial amputees

PLOS ONE | https://doi.org/10.1371/journal.pone.0226060 December 12, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0226060.g008
https://doi.org/10.1371/journal.pone.0226060.g009
https://doi.org/10.1371/journal.pone.0226060


leg to compensate. Also, knee kinetics were generally lowest in cycling and highest in gait, sug-

gesting that for populations at high risk for knee OA (such as amputees), cycling and other

non-weight bearing exercises may be preferred for rehabilitation and lifelong fitness sustain-

ment. However, this study did not directly link exercise type to injury or OA risk and a long-

term study to identify evidence-based exercise guidelines for limiting OA risk is needed.

The results of the current study suggest that cycling may be an appropriate exercise for

transtibial amputees whom are at high risk for knee OA. Specifically, the results suggest that

exercises that constrain kinematics, such as cycling, are more likely to maintain typical carti-

lage loading patterns due to a lack of knee flexion angle and extension torque asymmetry as

compared to gait and elliptical. The results also suggest that exercises that reduce overall knee

joint forces and torques may be preferred for reducing OA risk. Cycling had generally lower

magnitudes of resultant knee compressive force, extension torque, and abduction torque com-

pared to elliptical training and gait. Other non-weight bearing exercises such as rowing or

non-impact exercises such as stair-stepping may also be preferred over gait, while high-impact

activities such as running and sports that involve foot planting (such as soccer) may increase

the rate of OA progression due to high knee joint compression forces. Exercises for rehabilita-

tion should, in general, minimize kinematic abnormalities and joint compressive stress to pre-

vent or alleviate abnormal loading of cartilage but the present study did not relate exercise type

to injury or OA risk. There is a clear need for a long-term study to associate injury risk with

varying exercise protocols to produce specific exercise guidelines for limiting OA risk.

There are several limitations to the current study. One limitation of this work included

marker-based errors which are common in motion analysis. Markers may have moved relative

to the underlying bones due to soft tissue artifact (STA) and relative motion of compression

clothing. STA, caused by marker movement due to skin deformation and displacement, affects

the estimation of skeletal system kinematics with the exception of motion about joint flexion-

extension axes [66,67]; this limitation was mitigated by only considering knee flexion angles.

Markers defining the pelvis were placed on compression clothing; motion of these markers rel-

ative to the body would affect the calculation of the hip joint center which may impact knee

flexion angle calculations; this limitation was mitigated by proper clothing fit. Another

marker-based error, kinematic crosstalk, occurs when the calculated joint coordinate system is

misaligned with anatomical axes which significantly influences knee joint abduction and inter-

nal rotation angles [68]; hence only knee flexion angles were considered. Another source of

marker-based error was marker obstruction or loss during data collection; gaps in data were

interpolated using a cubic spline.

A second limitation was inherent issues in any prosthetic assembly for amputee partici-

pants. While the same ESAR foot was used for all amputee participants the socket was not

modified to enhance user experience and comfort with the prosthesis in exercises that amputee

participants were not familiar with (cycling and elliptical). Socket-limb interfaces (such as lin-

ers, sleeves, or vacuum-based sockets) can permit motion of the prosthesis relative to the resid-

ual limb which can affect joint biomechanics. Future studies should make efforts to measure

prosthesis motion relative to the residual limb.

In conclusion, transtibial amputees had significant asymmetry between intact and residual

knee flexion angle in gait and elliptical and significantly reduced extension torque in the resid-

ual vs. intact knee in gait, whereas no asymmetries were detected for transtibial amputees in

cycling. The results suggest that cycling, and likely other non-weight bearing exercises, may be

a preferred exercise for limiting OA risk in transtibial amputees due to reduced asymmetry in

knee kinematics and reduced knee kinetics as compared to gait values. Also, the results showed

that state-of-the-art ESAR prosthetic design may not sufficiently restore amputee biomechan-

ics to normal levels as evidenced by midstance knee flexion angle and peak extension torque
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asymmetry in gait and peak knee flexion angle asymmetry in elliptical. Muscle activation pat-

terns could be responsible for altered residual knee flexion angle and extension torque in

amputees and future work should involve EMG-driven inverse dynamics to calculate intact

knee joint contact forces and muscle contributions. Since this study did not directly relate

exercise type to injury or OA risk, there is a need for a long-term study that aims to directly

associate injury or OA risk with varying exercise protocols for transtibial amputees and other

populations at high risk for knee OA.
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