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EditoriaL

In the present issue of Virulence, an article entitled “The mater-
nal transfer of bacteria can mediate trans-generational immune 
priming in insects”1 describes an elegant study that illustrates 
the use of the lepidopteran Galleria mellonella to investigate a 
specific aspect of immunity to microbes. The authors show that 
exposure of mothers to bacteria results in enhanced immunity 
in the offspring. Furthermore, they have demonstrated that bac-
teria ingested by female larvae are found in the eggs, suggest-
ing that enhanced immunity of the offspring is a consequence 
of direct exposure of the eggs to bacteria. This is a relevant and 
novel study for several reasons. The authors provide a mecha-
nism for an important aspect of insect immunity, which is that 
direct transfer of bacterial fragments from the mother to the eggs 
primes their immune response. But in addition, this study opens 
the scope on the use of non-conventional models and illustrates 
how they can be used to investigate aspects of immunity against 
pathogenic microorganisms.

Classically, mammals have been used to study microbial 
pathogenesis (rodents such as mice and rats) and the immune 
response elicited by the host. These models have been a useful 
tool for centuries, and the development of their genetic manipu-
lation offers new alternatives to investigate the role of specific 
factors of the immune system in the defense against pathogens. 
However, animal experimentation is associated with impor-
tant bioethical problems, mainly due to the pain and suffering 
inflicted to the animals. For this reason, animal experimenta-
tion is nowadays regulated by authorities and bioethical commit-
tees. Furthermore, to reduce these bioethical problems, there is a 
strong trend to apply the “3 Rs” rule in experiments that involve 
animal use, which are: reduce the number of animals used in 
the laboratory; refine the protocols to increase animal comfort 
and reduce pain; and replace animals for other models that do 
not have bioethical problems associated. In this context, there 
has been an increasing interest in the scientific community to 
implement other systems that could be used as an alternative to 
protected animals, with special emphasis on animals with poorly 
developed neural systems in which the feeling of pain is almost 
absent. For this reason, “non-conventional” hosts are being used 

to investigate microbial pathogenesis, including both inverte-
brates and vertebrates. These organisms have been proven to be 
very useful to investigate specific virulence traits of the patho-
gen and their role in infection. But although they are not closely 
related to higher vertebrates from an evolutionary point of view, 
they share important aspects in their response to microbes, in 
particular, in their innate immunity. So these models can also 
provide information about the immune response elicited against 
microbial pathogens.

Among vertebrates, two alternative different models are being 
used as infection models: zebra fish embryos and embryonated 
chicken eggs. In both cases, and to reduce the bioethical issues 
associated with the use of adult individuals, infections are per-
formed in the embryonated stage of development. These models 
present the advantage that they have a closer immunity to mam-
mals than invertebrates. Zebra fish (Danio rerio) is used as model 
host during the first seven days after eggs deposition, and infec-
tions can be performed by microinjection in different areas.2 The 
zebra fish has both innate and acquired immunity, although this 
last one is not developed until day 30 of development, so the zebra 
fish embryo infection model is of particular interest to investigate 
virulence of pathogens controlled mainly by innate immunity. 
One advantage of this model is that the anatomy of the embryos 
is easily visible under the microscopy due to their transparency. 
Embryonated chicken eggs offer also an alternative to investi-
gate microbial pathogenesis, and as it occurs with the zebra fish, 
the immunity of the eggs is similar to that of higher mammals. 
Infections are performed by injection of the pathogen in chorioal-
lantoic membrane or directly in the embryos of eggs. The use of 
zebra fish and embryonated chicken eggs is limited in many cases 
because they require specific facilities to host and maintain the 
animals, and also due to the expertise required to handle them. 
Despite these limitations, these models have been used to inves-
tigate the virulence of fungal, bacterial, and viral pathogens.3-15

Invertebrate animals are also extensively used as models to 
study immunity and microbial virulence. There are three main 
alternative hosts that have been widely utilized: amoebas, insects, 
and nematodes. Amoebas are environmental predators, and for 
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this reason, they are considered an optimal model to investigate 
phagocytic activity.16 This is of particular interest for the study 
of facultative intracellular pathogens, since some of them can 
also survive inside amoebas and the mechanisms that result in 
intracellular pathogenesis seem to be conserved from amoebas to 
mammalian phagocytic cells. In addition, survival of microbial 
pathogens inside amoebas drives selection of microbes resistant 
to killing, which has important implications to understand the 
acquisition of virulence traits that are also used to cause disease 
in more complex organisms.16 This survival is also relevant for 
the infection cycle of some bacteria, which are phagocytosed in 
the environment by amoebas, and use them as vehicle to infect 
humans.17,18

Nematodes, in particular Caenorhabditis elegans, can be used 
as model hosts for infections.19 Immunity of C. elegans is based 
on three major responses: avoidance behavior, which relies on 
chemosensory neurons that sense pathogens and induce escape, 
physical barriers (cuticle and the pharyngeal grinder), and innate 
immunity. This last response depends on pattern recognition 
receptors (scavenger receptors, c-lectins, FSHR, and TOL1), 
which regulate different signaling pathways (mainly MAPK, 
unfolded protein response, DAF, and TGF-β). As a conse-
quence, antimicrobial responses (such as antimicrobial peptides, 
caenopores, lysozymes, and reactive oxygen species, ROS) and 
autophagy are induced. Remarkably, C. elegans does not have 
phagocytic cells.20 The main advantage of this model is the 
availability of genetic tools. KO collections are available, which 
makes this worm suitable to investigate the role of specific ele-
ments of the host in the response to pathogens. Moreover, due 
to their small size and the possibility to perform assays in micro-
dilution plates, C. elegans offers an excellent model to perform 
large screenings of antimicrobial compounds.21 However, this 
model exhibits also several limitations. Infection is performed 
by placing the worms on agar plates with a layer of the micro-
organism, so it is difficult to estimate the amount of inoculum 
used in each experiment. In addition, the worms do not tolerate 
high temperatures, so it is not an optimal model to analyze host–
pathogen interaction at 37 °C.

Among insects, there are two species largely used as model 
hosts to study microbial virulence, Drosophila melanogaster 
and Galleria mellonella.22 Drosophila melanogaster is a fly that 
has been used in research for decades. Its immunity depends 
mainly on physical barriers, and on both cellular (hemocytes), 
and humoral (Toll and Imd pathways) responses, that induce the 
production of antimicrobial peptides and ROS.23 Investigation 
with Drosophila melanogaster has elucidated some of the main 
elements of the immunity against pathogenic microorganisms, 
such as the Toll receptors, which were identified for the increased 
susceptibility of KO flies lacking this receptor to Aspergillus 
fumigatus,24 a discovery that was awarded the Nobel Prize of 
Physiology or Medicine in 2011. Pathogens can be introduced 
in the flies aerosolized, by microinjection, or administered in 
the food. The development of genetics and possibility to obtain 
knockout strains make D. melanogaster also a suitable model 
to investigate the role of host elements in the response against 
microbial pathogens.25

The other insect that is currently widely used to investigate 
microbial virulence is the lepidopteran Galleria mellonella.26-28 
The life cycle of this organism comprises a larval stage (size 
around 1–3 cm) that transform into pupae and finally into 
moth. The size of the larvae makes easy their manipulation and 
injection. Survival monitoring is also very convenient because 
when they die, they become unresponsive to physical stimuli and 
acquire a dark color due to strong melanization. In addition, it is 
possible to easily administer accurate doses of antimicrobial com-
pounds to test toxicity and in vivo efficacy. Immune response of 
this insect is mainly based on the presence of hemocytes with 
phagocytic activity, on antimicrobial peptides and on the induc-
tion of melanization. Furthermore, different routes of infection 
can be performed, such as direct injections in the hemocoele, 
or by ingestion after placing the pathogen in the food. Galleria 
mellonella is becoming a reference model to investigate microbial 
pathogenesis, such as the role of virulence factors in disease and 
efficacy of antimicrobial compounds. But this model can be used 
to investigate more complex aspects of immunity and virulence. 
Dr Vilcinskas’ group has elegantly demonstrated that this lepi-
dopteran can be used to investigate specific features of microbial 
disease, such as brain infection caused by Listeria monocytogenes29 
(comment in ref. 2). The article by Freitak on maternal transfer of 
immunity to the offspring1 illustrates another example of the ver-
satility of non-mammalian models to investigate relevant aspects 
of immunity, and applies to different fields, from entomology 
to immunity. Furthermore, this work opens new perspectives 
and research lines (such as the investigation of the susceptibility 
to infection of worms derived from mothers exposed to patho-
gens), a matter that could be address using other models, such as 
C. elegans or D. melanogaster. But furthermore, this is an excit-
ing article from an intellectual point of view, because it suggests 
a mechanism of natural selection of microbe-resistant worms 
through evolution not based on the acquisition of specific genes 
or mutations.

Finally, we would like to stress that at the moment, despite 
the bioethical issues associated with animal experimentation, full 
replacement of classical models does not seem to be an option, 
since there is still a need to validate the use of non-conventional 
hosts to fully understand how much information obtained with 
them correlates with the results observed in more complex organ-
isms. But the use of “non-conventional” models to investigate 
immunity to microbes is an emerging field, and the number of 
articles in which virulence and immunity is assessed in these 
models and not in “classical” animals, such as rodents, is increas-
ing. For this reason, we believe that this type of host should be 
designated in the future as “alternative” models as opposed to the 
term “non-conventional”.
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