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The World Health Organization (WHO) has declared the coronavirus disease

2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 a pandemic.

There is, however, no confirmed anti-COVID-19 therapeutic currently. In

order to assist structure-based discovery efforts for repurposing drugs against

this disease, we constructed knowledge-based models of SARS-CoV-2 pro-

teins and compared the ligand molecules in the template structures with

approved/experimental drugs and components of natural medicines. Our theo-

retical models suggest several drugs, such as carfilzomib, sinefungin, teca-

denoson, and trabodenoson, that could be further investigated for their

potential for treating COVID-19.
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The newly identified coronavirus (SARS-CoV-2)

causes severe pneumonia (coronavirus disease 2019—
COVID-19) and has rapidly spread across the world

from the initial outbreak point in Wuhan, China, in

late 2019 [1]. It has become a global health emergency,

and on March 11, 2020, the World Health Organiza-

tion (WHO) declared a pandemic status of this novel

coronavirus outbreak. Since no approved drug that is

specifically targeted to this virus exists at this point in

time, drug repositioning/repurposing is thought to be

the most effective and feasible approach toward this

clear and present threat, and researchers have initiated

studies by employing various means in order to find

potential therapeutics [2–11].
The SARS-CoV-2 genome is very close to that of the

severe acute respiratory syndrome coronavirus (SARS-

CoV) [1]. From the past efforts to cure RNA virus

infections, including the experiences from the SARS and

Middle East respiratory syndrome (MERS) epidemics,

several potential target proteins and drugs have been

proposed [12,13]. The 3C-like (main) proteinase, surface

glycoprotein [8], and RNA-dependent RNA polymerase

are thought to be the most promising targets for anti-

COVID-19 therapeutics. For example, the anti-HIV

drug lopinavir/ritonavir, which has been proposed to

treat SARS [14,15], is expected to be effective toward

SARS-CoV-2 3C-like proteinase [16,17]. Additionally,

the antiviral drug remdesivir is expected to target the

RNA-dependent RNA polymerase [18].

The recent studies on drug repositioning/repurposing

involve a variety of computational methods, such as net-

work analysis, text mining, machine learning, and struc-

ture-based drug repositioning (SBDR) [19–24]. Among

these methods, SBDR is the most promising to find
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specific drugs toward a defined target protein, and it

prompted the quick structure analyses of SARS-CoV-2

3C-like proteinase and surface glycoprotein [8,25].

Although structure analyses of many other SARS-

CoV-2 proteins would soon follow, predictions of

other protein structures with homology/knowledge-

based (theoretical) methods would be required until

structure analyses are completed, especially for the

proteins currently out of focus as drug targets. In the

presented study, therefore, the homology models of

SARS-CoV-2 proteins and their ligand complexes were

comprehensively constructed. Also, the structural mod-

els of the complexes between SARS-CoV-2 proteins

and potential drugs were proposed by comparing the

ligand molecules of the proteins and approved, experi-

mental, or natural drugs.

MATERIALS AND METHODS

Homology modeling of SARS-CoV-2 proteins

The amino acid sequences of SARS-CoV-2 proteins

(Table 1) were retrieved from the RefSeq database at NCBI

[26], and structural modeling templates were sought with

the SIRD system (http://sird.nagahama-i-bio.ac.jp/sird/),

which accepted multiple query sequences and sought for

similar sequences (more than 30% sequence identity to

query) with known structures in the Protein Data Bank

(PDB) [27] by using BLAST [28]. This system also sought

for the templates of protein complex structures, in which

two or more proteins in the multiple query were associated

or any ligand bound to query proteins. The coordinates of

template structures were obtained from the PDB [27] and

were rendered into the biological quaternary structures.

Initial structural models were constructed by using MOD-

ELLER [29]. In some cases, the resultant models contain resi-

dues with rare dihedral angles (Ramachandran outliers),

rare shape of side chains (rotamer outliers), and short

atom–atom distances (atomic crashes). Then, the models

were further modified by iteratively applying molecular

dynamics and geometry minimization procedures of PHENIX

[30] to eliminate aforementioned outliers, and finally, man-

ual model modifications with visual inspection on COOT

for resolving rotamer outliers or atomic crashes [31]. The

model quality was evaluated with MOLPROBITY [32]. The per-

centages of rotamer outlier, Ramachandran outlier, and

crash score were monitored for each model to achieve less

than 2%, 0.05%, and 5, respectively.

Modeling of SARS-CoV-2 protein complexes with

potential drugs

The molecular formula of 8,085 drugs in total was retrieved

from the KEGG database [33] and the DrugBank database

[34]. The molecular formula of 5,780 metabolites in total,

which have been used for natural medicines (natural drugs),

was obtained from the KNApSAcK database [35].

The structures of the ligand molecules in the known

complex structures, as sought in the template search pro-

cess, were exhaustively compared with that of the drugs by

using COMPLIG [36]. COMPLIG matches molecular

graphs and evaluates the similarity score of two molecules

A and B as min{M(A, B)/M(A), M(A, B)/M(B)}, where M

(A) and M(B) are the total numbers of atoms and bonds in

molecules A and B, respectively, and M(A, B) is the total

number of atoms and bonds matched between molecules A

and B. Both element and chirality, if applicable, should be

identical for atoms, and bond order should be identical for

bonds to be matched.

Selected drug molecules were built into the protein mod-

els by superposing drug molecules to known (original)

ligand molecules with COMPLIG. According to the graph

matching results, the dihedral angles in the drug molecules

were adjusted toward the corresponding angles in the origi-

nal ligand molecules, and corresponding atoms were super-

posed between drug and known ligand by fixing the

coordinates of the latter. The models of protein–drug com-

plexes were further modified with PHENIX and COOT.

The constraints for drug molecules were generated by using

the eLBOW application in PHENIX. Hydrogen bonds were

evaluated with canonical parameters (constraints were

relaxed by 0.4 Å and 20 degrees) [37] by using CHIMERA

[38]. The protein–ligand complexes were also assessed by

using the DSX score function [39].

RESULTS

Models of SARS-CoV-2 protein

The SARS-CoV-2 genome encodes 11 genes (open read-

ing frames), and the polyprotein from orf1ab is pro-

cessed into 16 proteins (polypeptides) through cleavages

by the papain-like proteinase and 3C-like proteinase

activities [1,12,40]. As a result of template search, the

appropriate structural templates were found for 17

SARS-CoV-2 proteins among a total of 26, and their

homology models were constructed (Table 1). The 9

unmodeled proteins included those from very short

ORFs, namely Nsp11 (13 amino acid residues), ORF7b

(43 residues), and ORF10 (38 residues) and probable

membrane proteins (nsp6, ORF3a, ORF6, M, and

ORF8), which were annotated by the SOSUI server [41].

Since a considerable amount of structural studies

have already been done for SARS-CoV and MERS-

CoV proteins, most of the available templates were

from these viruses, and they had high-sequence simi-

larity (more than 90%) to SARS-CoV-2 proteins. Two

proteins, namely papain-like proteinase (nsp3) and
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nucleocapsid phosphoprotein, could not be modeled

into a single structural model. As a result of homology

search, template structures covering the entire protein

were unavailable. Template structures were separated

into 6 and 2 fragment/domain models, respectively.

Consequently, the coverages of structural model were

56% and 69% of total residues for papain-like pro-

teinase (nsp3) and nucleocapsid phosphoprotein,

respectively (Table 1).

The third region of papain-like proteinase (nsp3),

nsp4, 3C-like proteinase, nsp9, endo-RNAse, surface

glycoprotein, envelope protein, and C-terminal region

of nucleocapsid phosphoprotein was modeled into

homo-multimer. As the hetero-multimeric models,

nsp7 and nsp8 were modeled into hetero-16mer; RNA-

dependent RNA polymerase, nsp7, and nsp8 were

modeled as hetero-tetramer (1:1:2 stoichiometry); 3’-

to-5’ exonuclease and nsp10 formed hetero-dimer; 2’-

O-ribose methyltransferase and nsp10 also formed het-

ero-dimer; and homo-trimer of surface glycoprotein

was modeled in complex with human angiotensin

I-converting enzyme 2 (ACE2) (Table 1).

Models of SARS-CoV-2 protein with drug

Although the models of SARS-CoV-2 protein would be

useful for structure-based virtual screening, potential

drugs for these proteins were sought by rather simple

knowledge-based method in the presented study. The

ligand molecules that were complexed with the homologs

of SARS-CoV-2 protein in the PDB were extracted, and

structurally similar molecules to the ligands were sought

among the approved/experimental drugs retrieved from

the KEGG database [33] and the DrugBank database

[34]. Many of the approved drugs, such as morphine,

aspirin, or penicillin, have been adapted from natural

medicines [42,43]. The molecules in the natural medicines

are expected to serve as argent therapeutics. Therefore,

the ligand structures were also compared with the com-

ponents of natural medicines (natural drugs) registered in

the KNApSAcK database [35].

The original ligand molecules and the detected drug

molecules are summarized in Table 2. A total of 11

ligand molecules were matched to 21 approved/experi-

mental and 5 natural drugs, and the complex models

of the SARS-CoV-2 proteins with several promising

drugs, those with high similarity score or placed in

higher ranking, were constructed as follows.

3C-like proteinase

3C-like proteinase is involved in the processing of viral

polyprotein [44]. This enzyme is one of the most

extensively studied drug targets and thus analyzed in

complex with various peptide mimetic inhibitors [45–
48]. Unexpectedly, these ligands did not show very

high similarity to known drug molecules (Table 2). As

a peptide mimetic drug, carfilzomib showed highest

score to the template ligand (ligand code AZP) of 3C-

like proteinase homolog (Fig. 1A). However, the simi-

larity score between the ligand and the drug was only

0.754. Carfilzomib is the irreversible proteasome inhi-

bitor targeted to the subunits with chymotrypsin-like

activity and has been approved for refractory multiple

myeloma or Waldenstr€om’s macroglobulinemia

[49,50]. A complex model of carfilzomib–SARS-CoV-2

3C-like proteinase was constructed. In the model,

carfilzomib formed a parallel b-sheet with His164–
Glu166, and side chains of His41, Cys145, Met165,

Leu167, Phe185, and Gln189 contributed major inter-

actions (Fig. 1B,C). These residues were conserved

between the template (SARS-CoV) and the model

(SARS-CoV-2) proteins. Carfilzomib covalently binds

to active site threonine through epoxy moiety, and the

epoxy moiety is also reactive with thiol group of cys-

teine. Although a possible covalent linkage between

carfilzomib and the catalytic Cys145 of SARS-CoV-2

3C-like proteinase was not explicitly modeled, the

epoxy moiety was placed close to the catalytic residue

in this model. The fitness of the ligand to SARS-CoV-

2 3C-like proteinase in the model was evaluated by the

DSX function, and the score of carfilzomib, –139.6,
was even better than that (�99.8) of inhibitor N3 in

the complex crystal structure of SARS-CoV-2 3C-like

proteinase (PDB ID 6LU7).

Surface glycoprotein–ACE2 complex

Surface glycoprotein is used for a viral entrance into

the host cell, and its cell surface receptor is human

angiotensin I-converting enzyme 2 (ACE2) [51]. ACE,

a homolog of ACE2 sharing 44% amino acid sequence

identity, is a major target of hypertension medicating

drugs, and several ACE–drug complexes have been

reported [52–54]. Lisinopril, enalaprilat, and captopril,

which show similar structures to each other (Fig. 2A),

have been targeted toward ACE and approved for

hypertension treatments [55–58]. In the structural com-

plex models, these drugs were bound to the protein

through a Zn2+ coordination with Glu384, His356, and

His360 (Fig. 2B,C). These residues were conserved

between the template (ACE) and the model (ACE2)

structures. The drug molecules also formed electro-

static interactions with Arg255 and Arg500 even

though these residues were not conserved between

ACE and ACE2 (Gln259 and Ser504 in ACE). The
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SARS-CoV-2 surface glycoprotein interacted with

ACE2 through the receptor-binding domain (RBD),

while the bound drugs had no direct interaction to the

RBD (Fig. 2C), suggesting that those drugs would not

directly interfere the host–pathogen interaction.

The DSX scores for lisinopril, enalaprilat, and cap-

topril in the models were �32.7, �43.6, and �25.0,

respectively. These scores were considerably inferior to

that (�74.6) of the specific inhibitor MLN-4760 in the

crystal structure of human ACE2 complex (PDB ID

1R4L) [59].

2’-O-Ribose methyltransferase

The complex of 2’-O-ribose methyltransferase (nsp16)

and nsp10 is involved in the modification of the viral

RNA caps [60]. The structure of 2’-O-ribose methyl-

transferase subunit was determined in complex with S-

adenosyl-L-methionine (ligand code SAM), 7-methyl-

guanosine-5’-triphosphate-5’-guanosine (GTG), and

sinefungin (SFG) [61–63]. Among these ligands, S-

adenosyl-L-methionine is used for a therapeutic against

depression, liver disorders, fibromyalgia, and

osteoarthritis [64], but also is an authentic substrate

for this enzyme. Sinefungin is a natural drug produced

by Streptomyces griseolus and experimentally used as

antibiotics [65–67] (Fig. 3A).

The residues of 2’-O-ribose methyltransferase, Ser74,

Asp99, Asn101, Asp130, and Met131, were involved in

the major interactions with sinefungin (Fig. 3B,C).

These residues were conserved among the template

proteins (SARS-CoV and betacoronavirus) and SARS-

CoV-2.

As the drugs similar to these ligands, several investi-

gational adenosine A1 receptor agonists, namely teca-

denoson, selodenoson, and trabodenoson, were found

(Fig. 3A). These molecules share adenosine moiety,

and this moiety interacts with the aforementioned 5

conserved residues in the complex models. The DSX

scores of sinefungin, tecadenoson, selodenoson, and

trabodenoson were �75.6, �54.3, �70.0, and �55.3,

respectively. The scores of sinefungin and selodenoson

were comparable to that (�74.9) of the genuine sub-

strate, S-adenosyl-L-methionine, in the complex crystal

structure with MERS-CoV 2’-O-ribose methyltrans-

ferase (PDB ID 5YNI).

DISCUSSION

In the presented study, knowledge-based models of

SARS-CoV-2 proteins were constructed by homology

modeling and comparison of the known ligands with

drugs. Since a considerable number of structureT
a
b
le
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analyses have already reported for coronavirus pro-

teins including those of SARS-CoV, 66% (17/26) of

the SARS-CoV-2 proteins could be modeled based on

highly similar (85% sequence identity and 89% cover-

age on average) templates (Table 1).

Several drugs were suggested to bind to the SARS-

CoV-2 targets (Table 2). The procedure employed in

the presented study should largely limit the extent of

search (because it depends on the presence of ligands

in known complex structures). However, it is notewor-

thy that the binding of suggested drugs to the homolo-

gous proteins of the SARS-CoV-2 targets would be

probable because of the presence of structural evi-

dences.

The complex models were constructed for several

high-scored and/or high-ranked drugs. Unexpectedly,

no drug was detected for one of the most promising

drug targets, 3C-like proteinase, with a similarity score

higher than 0.8. In the previous study, the score more

than 0.8 was suggested to be required for highly simi-

lar interactions between ligand and protein [36]. It is

implied that the inhibitors bound to the 3C-like pro-

teinase in the known structures are considerably

deviated from most of the approved protease-targeted

drugs. For example, the anti-HIV drug lopinavir/riton-

avir, which was expected to target SARS-CoV-2 3C-

like proteinase [16,17], showed only limited similarity

(score 0.513) to the known ligand (ligand code AXP)

of SARS-CoV 3C-like proteinase (Fig. 2A). One possi-

ble reason for the low similarity to drugs is that the

protease inhibitors tend to have higher molecular

weight and thus their molecular structures showed

large variety. Another reason would be that a majority

of the protease inhibitory drugs are targeted toward

serine or zinc proteases [68,69]. Also, the expected

drug lopinavir/ritonavir has been designed for HIV

protease, which is aspartic protease. These proteases

are structurally distinct from 3C-like proteinase known

to be a cysteine protease. This observation implies that

structure optimizations would likely be required for

repurposed drugs for SARS-CoV-2 3C-like proteinase.

Consequently, the presented study suggested carfil-

zomib, which has been targeted toward threonine pro-

tease and approved for multiple myeloma treatment

[49,50], as a marginally resembling drug. The model

showed, however, carfilzomib fits well (even better

AZP Carfilzomib Lopinavir/Ritonavir

A

B

Carfilzomib

3C-like proteinase

C145H41

L167

F185

C

Q189

M165
H164 E166

Fig. 1. 3C-like proteinase–carfilzomib model. (A) Formula of (5s, 8s, 14r)-ethyl 11-(3-amino-3-oxopropyl)-8-benzyl-14-hydroxy-5-isobutyl-3, 6,

9, 12-tetraoxo-1-phenyl-2-oxa-4, 7, 10, 11-tetraazapentadecan-15-oate (template ligand with ligand code AZP), carfilzomib, and lopinavir/

ritonavir. (B) Overall structure of the model. (C) Close view of the carfilzomib binding site. Hydrogen bonds are shown in yellow lines.
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than the specific inhibitor N3, according to the DSX

score) into the active site by forming considerable sta-

bilizing interactions and no severe steric hindrance

(Fig. 1C).

Another potential target is the complex of surface

glycoprotein and ACE2 to prevent virus entry into the

cell [70,71]. Many hypertension drugs are targeted to

ACE, and the presented study highlighted the

approved drugs, namely lisinopril, enalaprilat, and

captopril, as potential ligands for ACE2. An expecta-

tion in advance was to find a drug that bound to

ACE2 and also interfered the interactions between sur-

face glycoprotein and ACE2. However, as the models

revealed, the drug-binding site of ACE2 existed inside

a deep cleft in the center of ACE2 molecule, and the

ligands do not interact directly with the surface glyco-

protein (Fig. 2C).

The human ACE2 has been demonstrated to change

its conformation from open to close forms (PDB IDs

1R4L and 1R42, respectively) upon inhibitor binding

[59]. Thus, if this conformational change involves the

interface to the RBD of surface glycoprotein, a drug

bound to the drug-binding site might interfere with the

binding between ACE2 and surface glycoprotein indi-

rectly. This allosteric inhibition mechanism, however,

is not highly expected because no obvious conforma-

tional change was observed in the interface region

when comparing the open and close conformations of

ACE2. Most of the predicted drugs are targeted

toward ACE (not ACE2), and ACE and ACE2 diverge

considerably in their amino acid sequences (44% iden-

tity). The fitness of the drugs was evaluated to be

lower than the specific inhibitor to ACE2. Therefore,

effects of the predicted ACE drugs on preventing sur-

face glycoprotein–ACE2 interactions would not be

highly promising.

Another target presented results highlighted was 2’-

O-ribose methyltransferase (nsp16)–nsp10 complex,

which is less focused as a target of drug repurposing. 2’-

O-ribose methyltransferase is required to finalize the cap

structure, 7MeGpppA2’OMe, of coronavirus RNAs by

transferring a methyl group to 2’ OH group of ribonu-

cleotide from S-adenosyl-L-methionine [72,73]. The cap

structure is essential for viral mRNAs to be translated

and escape from innate immune system in the host cell.

Thus, inhibition of this enzyme might prevent virus

Lisinopril (LPR) Captopril (X8Z)Enalaprilat (EAL)

A

Surface glycoprotein

ACE2

Lisinopril
Enalaprilat
Captopril

B C

R255

R500

E384

H356 H360

Surface glycoprotein

Fig. 2. Surface glycoprotein–ACE2–lisinopril/enalaprilat/captopril model. (A) Formula of lisinopril (ligand code LPR), enalaprilat (EAL), and

captopril (X8Z). (B) Overall structure of the model. (C) Close view of the lisinopril/enalaprilat/captopril binding site. Hydrogen bonds are

shown in yellow lines. Lisinopril, enalaprilat, and captopril were superposed, and the carbon atoms were colored light blue, gray, and

magenta, respectively.
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propagation. Despite the overall sequence identities

between templates (SARS-CoV or human betacoron-

avirus) and SARS-CoV-2 enzymes were relatively low

(~66%), the residues interacting with the drugs were

conserved.

Among the suggested drugs for this enzyme, sine-

fungin is a naturally occurring and verified inhibitor of

2’-O-ribose methyltransferase. Since a toxicity was

detected [74], however, appreciation of this natural

drug should be carefully considered. Although teca-

denoson has been examined in a clinical trial for atrial

fibrillation, and passed phase II test, final results were

not formally reported at this point of time [75]. Trabo-

denoson was designed for treating ocular hypertension

and primary open-angle glaucoma [76], but had failed

in the phase III clinical trial test due to lack of superi-

ority over placebo. Selodenoson was designed to con-

trol heart rate [77], and it seems still in a

developmental stage. Since tecadenoson and trabo-

denoson appeared to have cleared the phase I tests,

these drugs would worth examining against COVID-

19. The DSX score suggested the fitness of sinefungin

or selodenoson is comparable to the genuine substrate

of the 2’-O-ribose methyltransferase.

Several structure determinations of SARS-CoV-2

proteins, for example, endo-RNase (PDB IDs 6VWW

and 6VW01), nucleocapsid phosphoprotein (6VYO),

and nsp12 (RNA-dependent RNA polymerase)-nsp7-

nsp8 complex (PDB ID 7BV2) have been reported

after the modeling of the presented study was exe-

cuted. Although many of the other proteins should be

under analyses undoubtedly, it would take consider-

able time before all structures of potential targets are

experimentally elucidated. During the period until the

structural determinations, theoretical models might be

useful. The presented structural models are freely

available from the BINDS webpage (https://www.bind

s.jp/SARS-CoV-2/) and also deposited in the BSM-

Arc repository (BSM00015) [78].
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