
fgene-11-632901 January 12, 2021 Time: 16:26 # 1

METHODS
published: 18 January 2021

doi: 10.3389/fgene.2020.632901

Edited by:
Wei Lan,

Guangxi University, China

Reviewed by:
Ergude Bao,

Beijing Jiaotong University, China
Zhenhua Yu,

Ningxia University, China

*Correspondence:
Junying Zhang

jyzhang@mail.xidian.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 24 November 2020
Accepted: 30 December 2020

Published: 18 January 2021

Citation:
He Z, Zhang J, Yuan X and

Zhang Y (2021) Integrating Somatic
Mutations for Breast Cancer Survival

Prediction Using Machine Learning
Methods. Front. Genet. 11:632901.

doi: 10.3389/fgene.2020.632901

Integrating Somatic Mutations for
Breast Cancer Survival Prediction
Using Machine Learning Methods
Zongzhen He1, Junying Zhang1* , Xiguo Yuan1 and Yuanyuan Zhang2

1 School of Computer Science and Technology, Xidian University, Xi’an, China, 2 School of Information and Control
Engineering, Qingdao University of Technology, Qingdao, China

Breast cancer is the most common malignancy in women, and because it has a high
mortality rate, it is urgent to develop computational methods to increase the accuracy
of breast cancer survival predictive models. Although multi-omics data such as gene
expression have been extensively used in recent studies, the accurate prognosis of
breast cancer remains a challenge. Somatic mutations are another important and
promising data source for studying cancer development, and its effect on the prognosis
of breast cancer remains to be further explored. Meanwhile, these omics datasets
are high-dimensional and redundant. Therefore, we adopted multiple kernel learning
(MKL) to efficiently integrate somatic mutation to currently molecular data including
gene expression, copy number variation (CNV), methylation, and protein expression data
for the prediction of breast cancer survival. Before integration, the maximum relevance
minimum redundancy (mRMR) feature selection method was utilized to select features
that present high relevance to survival and low redundancy among themselves for
each type of data. The experimental results demonstrated that the proposed method
achieved the most optimal performance and there was a remarkable improvement
in the prediction performance when somatic mutations were included, indicating that
somatic mutations are critical for improving breast cancer survival predictions. Moreover,
mRMR was superior to other feature selection methods used in previous studies.
Furthermore, MKL outperformed the other traditional classifiers in multi-omics data
integration. Our analysis indicated that through employing promising omics data such as
somatic mutations and harnessing the power of proper feature selection methods and
effective integration frameworks, the breast cancer survival predictive accuracy can be
further increased, thereby providing a more optimal clinical diagnosis and more effective
treatment for breast cancer patients.

Keywords: breast cancer, multi-omics, survival prediction, somatic mutation, mRMR, MKL

INTRODUCTION

Breast cancer is the most common malignant tumor in women. Although there are millions of
breast cancer survivors in the United States, breast cancer is the main cause of cancer-related deaths
worldwide because of its high mortality rate (Ferlay et al., 2010). Thus, it is urgent to design highly
accurate methods to predict the survival of breast cancer patients. Accordingly, effective survival
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predictors could finally contribute to the reduction of the overall
mortality of breast cancer and could further improve the life
quality and increase the lifespan of breast cancer patients.

Recently, the Cox regression model (Yuan et al., 2014; Xu et al.,
2016) and traditional machine learning classification methods,
such as support vector machine (SVM) (Xu et al., 2013), Bayes
classifier (Gevaert et al., 2006), and random forest (RF) (Nguyen
et al., 2013), have been widely deployed to identify breast
cancer prognostic biomarkers. Multiple survival prediction
models have been mainly developed based on gene expression
data. The Cancer Genome Atlas (TCGA) (Cancer Genome
Atlas Research Network, 2013; Brennan et al., 2014) provides
multiple types of molecular data such as gene expression (Exp),
copy number variation (CNV), methylation (Methy), protein
expression (Protein), and somatic mutation (SM) data for various
cancers, including breast cancer. Moreover, the advancement of
machine learning technologies enables various data types to be
combined within a model (Chen et al., 2019; Lan et al., 2020),
which may increase the accuracy of predictive models.

One of the biggest challenges in breast cancer research
involves the effective combination of heterogeneous data sources
into survival prediction models, making the selection of a proper
integration method essential. In previous studies (Seoane et al.,
2014; Zhang et al., 2016; Sun et al., 2018; Zhang A. et al.,
2019; Zhang Y. et al., 2019), multiple kernel learning (MKL)
(Lanckriet et al., 2004; Rakotomamonjy et al., 2008; Kloft et al.,
2011) was successfully used to integrate different types of data
into a universal model to distinguish short-term and long-term
cancers survivors. MKL uses different kernels for different types
of data, and then trains the weight of each kernel to select the
best combination of kernel functions for classification. These
studies have demonstrated that models that were obtained using
integrated data improved the performance of survival prediction
compared to models that used only one single data type.

A previous study (Sun et al., 2018) showed that MKL
outperformed Cox-based regression models for breast cancer
survival prediction. However, omics data, such as Exp, CNV,
and methylation data, are usually extremely high-dimensional
and redundant (Dey et al., 1990). In the previous study (Sun
et al., 2018), information gain ratio (IGR) was utilized to
select survival relevant features from multi-omics data, but the
redundancy of dataset features was not considered. Despite the
promising performance of the above MKL-based studies for
breast cancer prognosis, somatic mutations are rarely considered
for breast cancer survival prediction due to their complexity and
heterogeneity in serious disease. Therefore, there is still much
room to increase the accuracy of breast cancer survival models
by incorporating somatic mutations into the MKL model.

Currently, somatic mutations are strongly correlated with
the clinical symptoms of breast cancer (Griffith et al., 2018),
and they have been successfully adopted for the classification
of primary cancer sites (Chen et al., 2015) and identification
of survival-related cancer subtypes (Hofree et al., 2013; He
et al., 2017; Ronen et al., 2018; Arslanturk et al., 2020). Somatic
mutations are sparse but common mutations of that offer less
accuracy in the prediction of cancer survival (Zhang et al.,
2018; Ye et al., 2019). Previous studies (Haricharan et al., 2014;

Griffith et al., 2018; Zhang et al., 2018; Ye et al., 2019) have
reported that mutations enriched in specific pathways have
shown potential for breast cancer survival prediction. The
authors of a previous study (Griffith et al., 2018) stated that
uncommon recurrent somatic mutations should be further
explored to explain breast cancer survival outcomes. In the
present study, the effect of somatic mutations on the integrated
prognosis of breast cancer is explored.

In the present study, we applied the state-of-the-art MKL
method in the integration of somatic mutation datasets with
previously used omics data, including Exp, CNV, Methy,
and Protein, to train and test an integrated breast cancer
survival prediction model. The maximum relevance minimum
redundancy (mRMR) algorithm (Ding and Peng, 2005; Radovic
et al., 2017) was used to alleviate the redundancy of the
data, by simultaneously selecting highly predictive but non-
redundant features from each type of molecular data. Then,
selected features from multiple data type were integrated into the
MKL classification.

In order to gauge the performance of our method,
first, the newly introduced method was compared with
different single data types and integrated datasets to verify
the effectiveness of somatic mutations, and the results
indicated that there was a remarkable improvement in
the prediction performance when somatic mutations were
included. Different feature selection algorithms were then
studied, and the experimental results demonstrated that
mRMR was the most optional among them. Furthermore,
the MKL classification method was compared with other
traditional classifiers, and the experimental results proved
the superiority of MKL in data integration. Finally, the
newly introduced model was validated in an independent
validation dataset and achieved a promising high accuracy in
survival prediction. According to the results, the most optimal
performance was achieved by our method, which demonstrated
the feasibility of integrating somatic mutations in the prognostic
models and the usefulness of mRMR and MKL in breast
cancer prognosis.

The reminder of this article is organized as follows.
A workflow of our proposed method and related methods are
described. Next, comparative studies were carried out to evaluate
the performance of the proposed methods and their comparison
methods, as well as to analyze the most informative features
discovered by our model. Then, we applied our model on the
validation dataset. Finally, the proposed method is discussed, and
it is expected to undergo the improvement in future studies.

MATERIALS AND METHODS

Workflow of the Proposed Method
The workflow chart of the proposed method is shown in Figure 1.
Preprocessing of the input dataset initially occurred, during
which entire datasets were randomly divided into a learning
dataset (80% of the entire dataset) and validation dataset (20%).
Then, three main steps were carried out to realize the prediction
of breast cancer prognosis.
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FIGURE 1 | Workflow of the hybrid combination of the MKL model with the mRMR feature selection method to integrate five types of molecular data for the
prognosis of breast cancer. (1) The most N-informative features were separately selected using the mRMR method for each type of data in the learning dataset; (2)
SimpleMKL with 10-fold cross-validation was deployed on the learning dataset for breast cancer prognosis to train an optimal model; and (3) the prediction model
on learning dataset and the validation dataset were evaluated.

The three main steps include: (1) The most N-informative
features were separately selected using the mRMR method for
each type of data in the learning dataset; (2) SimpleMKL with
10-fold cross-validation was deployed on the learning dataset
for breast cancer prognosis to train an optimal model; and (3)
the prediction model on learning dataset and the validation
dataset were evaluated for their ability to learn data. A detailed
description of each of the steps is listed below.

Data Input and Preprocessing
The Cancer Genome Atlas provides multiple types of
biomolecular data. High-level molecular data for breast
cancer were retrieved from TCGA, including gene expression,
gene CNV, gene methylation, protein expression, and somatic
mutation along with clinical features from the University of
California Santa Cruz (UCSC) cancer browser website1 (Mary
et al., 2014). The downloaded dataset consisted of five types of
data, including different numbers of samples, and the original
data matrixes were structured with rows denoting patient
samples and columns denoting features. A total of 139 true
normal, seven metastatic, and 13 male patients’ samples were
removed, and regarding somatic mutations, samples with
less than 10 mutations were removed (Hofree et al., 2013;
He et al., 2017). We finally obtained 488 primary breast tumors

1https://xenabrowser.net/datapages/

together with survival time, and all samples of them included all
of the five aforementioned genomic data types. The details of our
dataset are illustrated in Table 1. The median age at diagnosis was
57.37, and the median survival time was 42.43 months, which is
in agreement with the previous research (Sun et al., 2018).

We followed the protocol from our previously published
studies (He et al., 2017, 2019), and we first removed the genes
with missing values in more than 10% of samples for gene
expression, CNV, gene methylation, protein expression, and
somatic mutations. After that, flat variables that had the same
values in more than 80% of the samples (non-informative) were
discarded except in the case of somatic mutations (Yuan et al.,
2014; He et al., 2019). According to the previous study (He et al.,
2019), the RNA-Seq gene expression level 3 transcription was
log2 transformed and RSEM-normalized (Li and Dewey, 2011).
Regarding the CNV features, we directly utilized the gene-level

TABLE 1 | The detailed information in our breast cancer dataset.

Properties Number

Total population of primary cancer 488

Long-term survivors 119

Short-term survivors 369

Mean age at diagnosis (years old) 57.37

Median survival (months) 42.43
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copy number values that were estimated using the GISTIC2
method (Mermel et al., 2011; Yuan et al., 2017; Yuan et al.,
2019, 2020a,b). For gene methylation and protein expression, we
directly used the original data with z-score normalization. For
somatic mutation, we also directly utilized the original binary
data, and in addition, genes that were mutated in more than one
sample were reserved for further analysis. The gene expression,
CNV, gene methylation, and somatic mutations contained 18,000,
25,000, 22,000, and 14,000 features, respectively, after data
filtering, and the properties of these datasets are shown in Table 2.

In the present study, the survival prediction for breast cancer
was defined as a binary classification problem with a threshold
of 5 years as conducted in previous studies (Seoane et al., 2014;
Zhang et al., 2016; Sun et al., 2018; Zhang A. et al., 2019). Of the
total, 369 out of the final 488 patients with survival shorter than
5 years were considered as short-term survivors, and 119 patients
with survival longer than 5 years were considered as long-term
survivors. Moreover, the long-term patients were labeled as 1,
while short-term patients were labeled as 0. After the initial data
preprocessing, the entire dataset was randomly divided into the
learning dataset (80%) and validation dataset (20%). For each
type of data, we initially conducted the following feature selection
on the learning dataset containing 390 breast cancer patients, and
trained and tested the integrated MKL model on it to obtain the
optimal parameters. Then, we applied the optimal model on the
validation dataset that included 98 patients.

mRMR Feature Selection
Five different types of genomic data were used in the present
study, as described above, and the number of variables for
most types of genomic data exceeded 10,000 after feature
preprocessing. However, this large number of features may cause
poor performance due to dimensionality and high redundancy
(Jain and Zongker, 1997; Jie et al., 2015). Therefore, according
to our previous study (He et al., 2019), mRMR was adopted
in the present study to select the most useful features for the
prognostic model.

The mRMR is a feature selection method that aims to select
a subset of features that are highly related to the output classes
and have low redundancy between them (Radovic et al., 2017).
In the present work, mRMR was deployed to select features from
five types of molecular data that are the most highly relevant with
respect to survival and the least correlated among themselves.
Then, the most relevant features for each molecular dataset
were combined to form a candidate feature set to be used for
classification. A feature of one type of genomic dataset for the ith

TABLE 2 | The properties of five types of genomic data for our breast cancer
prediction.

Data types Feature number

Gene expression 18624

CNV 24774

Gene methylation 21136

Protein expression 170

Somatic mutations 13602

variable with N individuals is denoted as vi ∈ RM, i = 1, ..., M,
and the survival prediction labels with N individuals as l ∈ R. For
label l, mRMR aims to search a feature subset S with k features{vi},
which collectively have the maximal relevance (Max-Relevance)
Rel(S, l)on the target label l and the minimal redundancy (Min-
Redundancy) Red(S).

The F-statistic (F) was used to calculate the relevance
between feature variables with binary survival terms and the
Pearson correlation coefficient (PCC) was used to measure the
redundancy for the continuous feature variables of the gene
expression, CNV, gene methylation, and protein datasets. Max-
Relevance is defined in Eq. 1, where relevance Rel(S, l) is
calculated using the mean value of all F-statistic values F of
the individual variables vi with the label l. In parallel, the Min-
RedundancyRed(S) constraint was adopted to select irrelevant
features, and is shown as Eq. 2.

max Rel(S, l), Rel =
1
|S|

∑
vi∈S

F(vi; l), (1)

min Red(S), Red =
1
|S|2

∑
vi,vj∈S

PCC(vi; vj) (2)

For binary discrete feature variables of somatic mutation data,
the mutual information (MI) was used to calculate both the
relevance between feature variables and survival terms, and the
redundancy between mutations. Max-Relevance is used to select
features satisfying Eq. 3, where relevance Rel(S, l) is obtained by
the mean value of all MI values of individual variable vi with
label l. The Min-Redundancy constraint Red(S) is used to select
irrelevant features, and is shown as Eq. 4.

max Rel(S, l), Rel =
1
|S|

∑
vi∈S

MI(vi; l), (3)

min Red(S), Red =
1
|S|2

∑
vi,vj∈S

MI(vi; vj) (4)

Finally, as shown in Eq. 5, the operator φ(Rel, Red) was
deployed to simultaneously optimize the two constraints “Max-
Relevance” and “Min-Redundancy” based on the MI quotient
(MIQ) criterion (Radovic et al., 2017; He et al., 2019) to obtain
the best feature subsets, as shown in Eq. 5:

max
vk

φ(Rel, Red), φ = Rel/Red (5)

The area under the curve (AUC) value is used as a metric to
evaluate the performance and the most optimal number of the
most relevant and non-redundant features k for each data type
was determined by comparing the AUC valued for the models.
After the mRMR features were selected for each type of genomic
data, the most informative features were combined and used as
the input feature set for the classification problems.

Multiple Kernel Learning
In our study, we aimed to integrate multiple types of genomics
data, with a focus on somatic mutations. Although the fusion
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of multiple types of data into one model is one of the most
widely used methods for classification, this is not feasible due to
the fact that different types of molecular data present different
feature representations (Khademi and Nedialkov, 2016). MKL
has become a natural method to enhance the interpretability of
models and to address the data integration problem. The optimal
function can be obtained by constructing a linear weighted
combination of predefined M kernels. The optimal combination
of kernels is given as Eqs 6 and 7:

K(xi, xj) =

M∑
m=1

dmKm(xi, xj), (6)

s.t. dm ≥ 0, and
M∑

m=1

dm = 1, (7)

where dm denotes the weight of the mth different kernel
Km (xi, xj).

Some methods based on MKL have been proposed and many
of them outperformed uni-MKL (Rakotomamonjy et al., 2008;
Gönen and Alpaydin, 2011; Kloft et al., 2011). However, most of
the weights dm of the kernels were 0 and thus non-contributory
to the MKL model (Ikonomov et al., 2013). In the present work,
SimpleMKL (Zhang et al., 2016), which is based on a weighted L2-
norm regularization and is more powerful than other methods
(Yan et al., 2009), was adopted as our classification model.
It employs dual kernels in the of classic kernel optimization
problem, which can be presented as Eq. 8:

f (x) =

l∑
i=1

α∗i K(xj, xi)+ b∗ (8)

The decision function is given as:

min
f ,b,ε

1
2 f 2

H + C
∑

i εi

s.t. yi(f (xi)+ b) ≥ 1− εi ∀i
εi ≥ 0 ∀i

, (9)

where
∣∣∣∣f∣∣∣∣H denotes a kernel in Hilbert space related to

a kernel Km. The overall kernel can be divided into different
kernels, and we replace

∣∣∣∣f∣∣∣∣H with
∑

m
∣∣∣∣ fm

∣∣∣∣HM to obtain:

min
fm,b,ε,d

1
2
∑
m

∣∣∣∣fm∣∣∣∣2HM + C
∑

i εi

s.t. yi
∑
m

fm(xi)+ yib ≥ 1− εi ∀i

εi ≥ 0 ∀i∑
m

dm = 1, dm ≥ 0 ∀m

, (10)

Optimization matter is performed using the convex optimization
mathematical algorithm (Rakotomamonjy et al., 2008). Using
multiple kernels increases the decision the power of the
decision function and also increases the prediction performance
compared to using one single kernel. In the present study,
SimpleMKL was deployed to integrate five different types
of molecular data including gene expression, CNV, gene
methylation, protein expression, and somatic mutation.

Considering the number of data types used in our study,
five different kernels were independently built and further
integrated into a generic model. Each kernel corresponds to each
individual data type (gene expression, CNV, gene methylation,
protein expression, and somatic mutation). The “Poly” (Eq. 11)
polynomial base kernel with a search range of degrees of freedom
d{1 2 3} (Seoane et al., 2014) and the “Gaussian” (Eq. 12) kernel
with a search range of the parameter δ {0.25 0.5 1 2 5 7 10 12 15
17 20} (Zhang et al., 2016; Sun et al., 2018) were used as kernel
types.

K(xi, xj) = (xT
i xj + 1)d, (11)

K(xi, xj) = exp(−

∣∣∣∣xi − xj
∣∣∣∣2

2δ2 ) (12)

In summary, the SimpleMKL directly addressed a multiple kernel
SVM optimization problem and greatly reduced computation
costs when compared to the use of learning kernel combinations
from individual kernels.

Evaluation
The dataset used in our study was randomly divided into learning
and validating sets in order to assess the performance of the
proposed method. For the learning set, we used mRMR to select
the most optimal features and to determine the model through
10-fold cross-validation experiments. Then, the pre-trained MKL
model and its optimal parameters were used to predict the
validation set. Because the validation dataset was not used in
the cross-validation process, the model derived from the learning
dataset was tested on an independent validation dataset.

To assess the performance of our model, AUC, the most
widespread evaluation metric for classification problems, was
used to assess the performance of the proposed model. AUC is
defined as the area under the receiver operating characteristic
(ROC) curve, and it is used to quantify the overall performance
of a classification model. Specifically, AUC = 1 denotes perfect
performance, and 0.5 denotes random guessing. Pre (precision,
Eq. 13), Sn (sensitivity, Eq. 14), Sp (Specificity, Eq. 15), and Acc
(Accuracy, Eq. 16) were also employed in addition to AUC as
classification performance metrics for breast cancer prognosis.
The definitions of those metrics are provided below:

Pre =
TP

TP + FP
, (13)

Sn =
TP

TP + FN
, (14)

Sp =
TN

TN + FP
, (15)

Acc =
TP + TN

TP + TN + FN + FP
(16)

where TP, FP, TN, and FN denote true positive, false positive, true
negative, and false negative, respectively.
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FIGURE 2 | Performance of classifying long-term and short-term survivors from a breast cancer dataset using different types of data based on the proposed hybrid
combination of mRMR feature selection and MKL classification methods.

RESULTS

Comparison Studies on Learning
Datasets
The proposed method was compared with other methods in
three different applications: (1) comparison of the results of
the models with different datasets based on the same method;
(2) comparison of the results of different feature selection
methods under the same datasets; and (3) comparison of the
integration results of classification methods, under the same
integrated datasets. AUC was used as an evaluation metric when
comparing different methods and 10-fold cross-validation was
applied for all methods.

Comparison of ECMPS and Other Data Types
Seven different MKL-based models were built using five single
types of molecular data [gene expression (Exp), CNV, gene
methylation (Methy), protein expression (Protein), and somatic
mutations (SM)] and two integrated datasets with and without
somatic mutation data in order to evaluate the role of somatic
mutations in breast cancer survival prediction. The dataset
integrating gene expression, CNV, gene methylation, and protein
expression is abbreviated as “ECMP,” and the dataset integrating
all five molecular datasets including somatic mutations is denoted
as “ECMPS.”

The corresponding mean of the AUC value of 10-fold cross-
validation (CVmean_AUC) for each of the seven models, using
the mRMR feature selection and the MKL classification method,
was calculated to compare the predictive performance of breast
cancer survival models. The results are displayed in Figure 2, with
the mean values of the boxplots corresponding to the red line in
Figure 3. As shown in Figure 3, the ECMPS model consistently
exhibited significantly more optimal performances than all the
other models for all three feature selection methods. The two

integrated models present obvious improvements compared to
the single data type model results, suggesting that integrated
models are more optimal than single data type ones, which is
consistent with previous studies (Zhang et al., 2016; Sun et al.,
2018).

In Figure 2, the mean value of the AUC for the multi-
data ECMP model without somatic data is 0.8854, and the
corresponding value for the ECMPS model increased to 0.9421
when incorporating somatic mutation. In addition, among the
single data type models, the AUC of the somatic mutation model
was higher than that of the model using the other four single data
types and ECMP. Thus, our experimental results indicated that
the somatic mutation data is able to increase the accuracy of the
survival prediction for breast cancer patients.

The Pre, Sn, Sp, and Acc values for each dataset model were
calculated in addition to the AUC based on the proposed method,
and the results are presented in Figure 4A. Figure 4A shows
that the integrative models combining different types of data,
including somatic mutations, overcome the models using single
data types for classification. The experimental results indicated
that the proposed integrated model can successfully predict the
survival time for breast cancer patients and somatic mutations
can improve predictive accuracy.

Comparison of mRMR With Different Feature
Selection Methods
We used mRMR to select the variables for each of the five types
of molecular data. Then, the features with the largest relevance
to the survival and lowest redundancy among themselves were
selected, and they were combined as integrated features using
the MKL classification model. The most optimal number of
selected non-redundant features k for each molecular data type
was determined by comparing the AUC values in the prediction
results. According to the number of features reported in the
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FIGURE 3 | Performance comparison of mRMR and the two k-best methods based on MKL under different data types. The numbers in different colors on the lines
indicate the number of optimal features selected by the corresponding method.

FIGURE 4 | Comparison of performances of the models using different evaluation metrics: Pre, Sn, Sp, and Acc. (A) Performance of the proposed method in seven
datasets. (B) Performance of various feature selection methods based on MKL under the same data type “ECMPS.”
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previous study (Sun et al., 2018), we set k = [10, 20,. . .,300] in our
work and chose the optimal parameter k as the final parameter
for each data type in our study based on the prediction result.

The classification outcomes of the five data types under
different parameters are presented in Supplementary File S1.
The optimal feature number was selected based on the position
of the maximum AUC value as the final parameter for a model of
further integration. Take gene expression for example, as shown
in Figure 5, the optimal number of features in the gene expression
model using the proposed method is 60, which achieves the
largest mean value of AUC with 10-fold cross-validation. Finally,
we chose k = [60, 50, 50, 20, 110] as the optimal parameters for
the five types of molecular data (Exp, CNV, Methy, Protein, and
SM), respectively, for further integration analysis, and the total
290 features were obtained for our integrated ECMPS model.

The F-statistic (F) and PCC were used for the mRMR feature
selection method to calculate the relevance and redundancy
(Radovic et al., 2017), respectively, for four continuous data
types, including Exp, CNV, Methy, and Protein, in order to
maintain the original information for different types of data.
MI was used to calculate both the relevance and redundancy
of somatic mutation features, and is short for “mRMR_F_MI.”
In all cases, the selected features were integrated using MKL
classification. To assess the performance of the mRMR feature
selection method in the selection of features for our breast cancer
survival prediction model, the proposed mRMR feature selection
was compared with two commonly used k-best methods, which
only consider relevance with the output, based on the same
datasets and classification method MKL: (1) F-MI. Compared to
the proposed method, it only uses the F-statistic and MI to select

the most optimal k-best features for four continuous molecular
datasets and discrete somatic mutation. (2) IGR-MI. It adopts
a recently used feature selection method, the IGR (Sun et al.,
2018), for four continuous molecular datasets and MI for discrete
somatic mutation.

The proposed mRMR method outperformed both k-best
feature selection methods F-statistics and IGR for four
continuous molecular data types and their integration ECMP
model according to the results shown in Figure 3. For instance,
260 features were selected by IGR based on the ECMP model
and the AUC value was 0.7791, which was consistent with
previous studies (Sun et al., 2018). Next, 180 features were
selected using mRMR and AUC was 0.8578 showing that mRMR
can achieve higher predictive accuracy using fewer features.
The mRMR method also outperformed MI for discrete somatic
mutation returning a smaller number of features. The most
optimal result was obtained by mRMR and the total integration
model ECMPS. The metrics Pre, Sn, Sp, and Acc were calculated
in addition to the AUC for each dataset model, with a more
optimal performance by mRMR as compared to the other the
two k-best methods (Figure 4B). Our findings indicated that
the use of proper feature selection methods is crucial to the
classification process.

As the red line shows in Figure 3, for the integrated
ECMPS model, 290 features were selected as more relevant
to survival and non-redundant features in the integrated
ECMPS mode consisting of 60 Exp, 50 CNV, 50 Methy, 20
Protein, and 110 SM using mRMR, and the most optimal
AUC (0.9421) in the present study was achieved. Next, mRMR
was applied again for the set of 290 features, which is

FIGURE 5 | The mean value of the AUC for 10-fold cross-validation (CVmean_AUC) under the feature numbers ranging from 10 to 300 for the model based on gene
expression.
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TABLE 3 | Comparison of mRMR and 2-mRMR on survival prediction power and
feature numbers.

AUC(ECMPS) Number of features

ECMPS Exp CNV Methy Protein SM

mRMR 0.9421 ± 0.0281 290 60 50 50 20 110

2-mRMR 0.9439 ± 0.0264 220 49 22 29 10 110

TABLE 4 | Comparative results of the proposed MKL method and existing
traditional classifiers using AUC values under two mRMR selected integrated data
models.

ECMP ECMPS

RF 0.7135 ± 0.054 0.7916 ± 0.027

SVM 0.8325 ± 0.037 0.9086 ± 0.058

MKL 0.8578 ± 0.049 0.9421 ± 0.028

termed as “2-mRMR,” to resolve the redundancy that exists
in the selected features of different data types. However,
as shown in Table 3, the number of SM remained at 110
among the new 220 features, and the AUC value was only
marginally improved. These results showed that there is a
large internal redundancy within one type of data, while
the redundancy between different types of data is small. It
further indicated that the importance of somatic mutations
to the prognosis is relatively stable. Finally, we retained the
integrated 290 features originally selected by mRMR and used
them for further classification, considering the stable high
performance and simpler simple computational complexity
of mRMR. We observed that mRMR outperformed k-best
methods, and integrating somatic mutations achieved the most
accurate prognosis.

Comparison of MKL With Traditional Classification
Methods
The proposed method achieves a stronger performance by
integrating somatic mutations compared with those methods
incorporating single data types and integrated datasets
without somatic mutations. The MKL classification method
was compared with two widely used classifiers, SVM and
RF, to further verify its ability to combine different types
of data. Experiments were conducted in two integrated
datasets: ECMP and ECMPS, which were selected by
mRMR. The AUC value (mean value and standard error)
was used to assess the performance of different methods
and the results are provided in Table 4. Table 4 shows
that a more optimal performance was obtained from MKL
for both integrated datasets compared to other classifiers,
and this finding indicated the superiority of MKL in
data integration.

In addition, the performances of all the classifiers were
improved when employing ECMPS compared with ECMP,
which further suggested that somatic mutations can provide
adequate supplementary information for survival prediction of
breast cancer. Finally, our method achieves the most optimal
performance due to its ability to integrate multiple molecular data
types, including somatic mutations, and MKL was quite efficient
in integrating the data from distinct sources in breast cancer
survival prediction.

Analysis of the Most Desirable Features
From Somatic Mutation and Gene
Expression Data
The top 10 features ranked by mRMR for each molecular
data type were further analyzed by conducting a
simple analysis on their association with breast cancer.

TABLE 5 | Genes previously associated with breast cancer.

Genes Reports References

HCN4 HCN4 was highly correlated with lower survival rates of breast cancer. Phan et al., 2017

RGPD3 30 most enriched new HOXB7 binding sites on breast cancer cell chromatin for which an
annotated nearest gene exists: RGPD3, PIK3R1, etc.

Heinonen et al., 2015

EFCAB13 Variants that induce premature stop codons were identified in the DENND2D, EFCAB13, and
TICRR genes.

Määttä et al., 2016

NFATC1 NFATC1 overexpression results in oncogenic BMI1transcriptional upregulation. Co-expression
of FUNDC1 and BMI1 in BC patients predicted worse prognosis.

Wu et al., 2019

VAC14 VAC14 selectively prevents rapid degradation of Sac3. Ikonomov et al., 2013

PRB2 A novel six-gene (TMEM252, PRB2, SMCO1, IVL, SMR3B, and COL9A3) signature was
significantly associated with prognosis as an independent prognostic signature.

Lv et al., 2019

HIPK1 The deletion of the miR-200c/141 cluster resulted in increased tumor metastasis and inhibited
tumor growth by directly upregulating the target gene HIPK1.

Liu et al., 2018

IRF2 Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. Connett et al., 2005

HMGB2 Promotion of breast cancer progression by HMGB2. Fu et al., 2018

FRMPD1 Rat Mcs5a is associated with breast cancer risk. Mcs5a1 is located within the ubiquitin ligase
Fbxo10, whereas Mcs5a2 includes the 5′ portion of FRMPD1.

Samuelson et al., 2007

RPS27 The best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, and
CLPSL2.

López-Cortés et al., 2020

PTPRR PTPRR and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical
MAPK and p38 MAPK pathways.

Motaghed et al., 2014
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Only features from somatic mutations and gene expression
datasets were explored to further assess the effectiveness of our
method. The results of this analysis showed that it was previously
reported that some of the genes are associated with breast cancer
survival. These genes and their references are listed in Table 5. It
has previously been reported in the literature that seven of the top
10 ranked gene names from the somatic mutation features play
critical roles in breast cancer prognosis. For example, the HCN4
gene is highly correlated with lower survival rates of breast cancer
(Phan et al., 2017), and the gene PRB2 is significantly related to
prognosis as an independent prognostic marker (Lv et al., 2019).
On the other hand, five of the top 10 genes selected from gene
expression datasets have also been found to be associated with
breast cancer. For instance, the expression of IRF2 has been found
to be related to breast cancer (Connett et al., 2005), and it has been
reported that HMGB2 directly and significantly promotes breast
cancer progression (Fu et al., 2018). Thus, the top ranked features
were shown to be important for breast cancer prognosis.

Validation
Optimization techniques have been previously applied (Zhang
et al., 2016; Zhang A. et al., 2019) to select the most
optimal feature subsets in a wrapper feature selection framework.
Therefore, experiments were performed on an independent
validation dataset to further evaluate our proposed method. Our
model was initially trained and tested on a learning dataset
containing 390 breast cancer patients, and then, to predict
patient survival, it was applied to a 98-patient validation dataset
that was not involved in training or testing. The survival of
most of the 98 breast cancer patients was correctly classified,
and the accuracy of the proposed method on the validation
dataset was 0.9808.

DISCUSSION

We integrated somatic mutations and previously used data types,
including Exp, CNV, Methy, and protein, using MKL to predict
breast cancer patient survival. Applying mRMR-selected features
and MKL classification, we found that the integration of somatic
mutations enriched the diversity of features and was conducive
to the improvement of the prediction model. In all, integrating
promising data sources such as somatic mutations and harnessing
the powerful feature selection method mRMR and the effective
data fusion method MKL can increase the prediction accuracy of
breast cancer patient survival.

Although our method is effective and can accurately predict
the survival of breast cancer patients, some limitations remain
in the prognosis of breast cancer. For instance, there may be
more effective methods that can be used to construct kernels
for an improved multi-kernel learning method in the future
that will further improve the performance in multi-omics data
fusing. In addition, our available sample size was limited by
the intersection of multiple types of molecular data samples.
Thus, the performance of our method could be promoted
when a larger population of samples becomes available in the
future. Furthermore, somatic mutations are highly heterogeneous
among patients, and therefore, further understanding of the
mechanism of somatic mutation in cancer may lead to a more
accurate prognostic model for breast cancer.
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