
A cataract is the manifestation of ocular lens opacifica-
tion [1-3]. The principal function of the lens is to transmit 
light and focus it on the retina. Then the retina transforms 
the light into visual signals [4,5]. The transparency of the 
lens stems from the complete loss of organelles during the 
differentiation of lens fiber cells [6]. Cataracts are classified 
according to their morphology and the location of the opacity 
in the lens [7]. Congenital cataract (CC) is the primary cause 
of visual impairment in children worldwide [8]. The preva-
lence of isolated CC in industrialized countries is estimated 
at 1–6/10,000 live births [9-11], whereas these numbers are 
estimated to be 5–15/10,000 in developing countries [12]. 
Cataracts contribute nearly 39.1% of total blindness globally; 
however, the proportion is considerably higher (51.5%) in 
Pakistan. Congenital cataracts account for 23.0% of the total 
54.7% visually handicapped children in Pakistan [13,14].

To date, 32 genes and loci have been implicated in 
non-syndromic autosomal recessive CC (arCC). Causative 
mutations in EPHA2 (Gene ID 1969, OMIM 176946), GJA8 
(Gene ID 2703, OMIM 600897), FOXE3 (Gene ID 2301, 
OMIM 601094), FYCO1 (Gene ID 79443, OMIM 607182), 
GCNT2 (Gene ID 2651, OMIM 600429), AGK (Gene ID 
55750, OMIM 610345), AKR1E2 (Gene ID 83592, OMIM 
617451), RNLS (Gene ID 55328, OMIM 609360), DNMBP 
(Gene ID 23268, OMIM 611282), CRYAB (Gene ID 1410, 
OMIM 123590), MIP (Gene ID 4284, OMIM 154050), GJA3 
(Gene ID 2700, OMIM 121015), HSF4 (Gene ID 3299, OMIM 
602438), LONP1 (Gene ID 9361, OMIM 605490), WDR87 
(Gene ID 83889), SIPA1L3 (Gene ID 23094, OMIM 616655), 
LIM2 (Gene ID 3982, OMIM, 154045), BFSP1 (Gene ID 631, 
OMIM 603307), BFSP2 (Gene ID 8419, OMIM 603212), 
CRYAA (Gene ID 1409, OMIM 123580), CRYBA1 (Gene ID 
1411, OMIM 123610), LSS (Gene ID 4047, OMIM 600909), 
CRYBB3 (Gene ID 1417, OMIM 123630), CRYBB1 (Gene 
ID 1414, OMIM 600929), CRYBA4 (Gene ID 1413, OMIM 
123631), TDRD7 (Gene ID 23424, OMIM 611258), and 
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ous families. Taken together, mutations in FYCO1 contribute nearly 15% to the total genetic load of autosomal recessive 
congenital cataracts in this cohort.
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Figure 1. Genetic analysis of chromosome 3p21-linked pedigrees harboring mutations in FYCO1. A: Pedigree illustrating the segregation of 
a single base substitution (c.4270C>T; p.Arg1424Ter) in all available affected and unaffected members of PKCC193. B: Pedigree illustrating 
the segregation of a single base deletion (c.3196delC; p.His1066IlefsTer10) in all available affected and unaffected members of PKCC202. C: 
Illustration of a pedigree showing the segregation of a single base change (c.4127T>C; p.Leu1376Pro) in all available affected and unaffected 
members of PKCC220. The haplotypes of six 3p21 microsatellite markers are shown. The alleles forming the risk haplotype are in black, and 
the alleles not cosegregating with cataract are shown in white. Note: Squares: males; circles: females; filled symbols: affected individuals; 
double line between individuals: consanguinity; diagonal line through a symbol: deceased family member.
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GALK1 (Gene ID 2584, OMIM 604313) have been implicated 
in CC [15-35]. In addition to genes, five loci (3q, 7q, 8p, 9q, 
and 19q) have been reported for CC [36-40]. Genetic muta-
tions leading to impaired protein folding and solubility in lens 
fiber cells account for one-third of the total isolated CC cases 
[41-43]. Approximately 50% and 25% of the total mutations 
causing isolated CC have been reported in genes encoding 
crystallin and connexin proteins, respectively [44].

FYVE and coiled-coil domain containing 1 (FYCO1), 
an autophagy adaptor protein, interacts with microtubule-
associated protein 1 light chain 3B (MAP1LC3B), phos-
phatidylinositol-3-phosphate (PI3P), and RAB7. We have 
previously shown that multiple loss-of-function mutations in 
FYCO1 result in arCC [17], and contribute to nearly 14% of 
the total genetic load of arCC in Pakistani families (16/116) 
[18]. In this study, we screened 13 other families and identi-
fied two novel and a previously reported mutation in FYCO1 
bringing the total genetic contribution of mutations in FYCO1 
responsible for arCC in this cohort to 15% (19/129).

METHODS

Ascertainment of families and clinical evaluation: A large 
cohort of consanguineous Pakistani families (>200) with 
two or more affected individuals with congenital cataracts 
without any environmental or systemic involvement was 
recruited in a collaborative study to identify new disease-
causing loci for congenital visual disorders. Institutional 
review boards (IRBs) of the National Centre of Excellence 
in Molecular Biology (Lahore, Pakistan), the National Eye 
Institute (Bethesda, MD), and the Johns Hopkins University 
(Baltimore, MD) granted approval for this study. Informed 
written consent adhering to the tenets of the Declaration of 
Helsinki was signed by each participating subject.

Thirteen families with non-syndromic arCC were 
selected for the present study. Detailed family and medical 
histories were compiled by reviewing available medical 
records and interviewing family members. Ophthalmic 
examination of all the participating subjects was conducted 
with slit-lamp microscopy at the Layton Rahmatulla Benevo-
lent Trust Hospital (Lahore, Pakistan). Affected and unaf-
fected members of each family donated about 10 ml of a 
blood sample which was collected in 50 ml Sterilin® Falcon 
tubes (BD Biosciences, San Jose, CA) that had 400 µl of 0.5 
M EDTA. For long-term storage, blood samples were placed 
at -20 °C. Genomic DNAs were extracted from white blood 
cells using a organic method as described previously [23]. 
The concentration of the extracted DNA was estimated using 
a SmartSpec plus BIO-Rad Spectrophotometer (Bio-Rad, 
Hercules, CA).

Exclusion analysis: Short tandem repeat (STR) marker-based 
exclusion analysis was performed for 19 reported genes 
and loci previously associated with arCC. They included 
D1S402, D1S436, D1S2697, D1S1592, D1S2826, and D1S2864 
for EPHA2; D1S496, D1S186, D1S432, D1S3721, D1S197, 
D1S2652, and D1S2890 for FOXE3; D1S2726, D1S252, 
D1S498, and D1S2635 for GJA8; D3S3527, D3S3685, 
D3S3582, D3S1767, D3S1581, and D3S1289 for FYCO1; 
D6S1034, D6S1653, and D6S429 for GCNT2; D7S2513, 
D7S661, and D7S636 for AJK; D11S2017, D11S1986, and 
D11S4111 for CRYAB; D16S3043, D16S3086, and D16S421 
for HSF4; D17S1301 and D17S1839 for GALK1; D19S246, 
D19S589, and D19S254 for LIM2; D20S852, D20S112, 
D20S860, and D20S912 for BFSP1; D21S1411 and D21S1259 
for CRYAA; D22S419, D22S1167, and D22S1144 for CRYBB1; 
D22S427, D22S686, D22S1167, D22S1144, and D22S689 for 
CRYBB3; D3S1565, D3S3715, and D3S3609 for chromosome 

Table 1. Clinical characteristics of families PKCC193, PKCC202, and PKCC220 harboring mutations in FYCO1.

Family ID
Individual 
ID Sex

Age at first 
symptoms *

Age at 
enrollment

Visual Acuity 
(OD/OS) Clinical Findings

PKCC193 11 F 2.5 months 7 years PL/PL B/L cataracts, B/L nystagmus
 12 F 4 months 1 year PL/PL B/L cataracts, squint
 16 M 11 months 32 years CF/CF B/L cataracts
 17 M 1.5 years 36 years CF/CF B/L cataracts, B/L nystagmus
PKCC202 10 M 4 months 10 months CF/CF B/L cataracts
 11 F 3 months 6.5 years No PL/CF B/L cataracts
PKCC220 7 F 5 months 4 years CF/CF B/L cataracts
 8 F 3 months 9 months CF/CF B/L cataracts

Abbreviations: CF, counting fingers; PL, light perception; B/L, bilateral; OD, oculus dextrus; OS, oculus sinister. * The age at first 
symptoms of cataracts (cloudiness) in affected individuals is according to the family medical records and/or information provided by the 
family elders.
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3q; D7S492, D7S657, D7S2430, D7S2482, D7S515, D7S692, 

and D7S2554 chromosome 7q; D8S550, D8S552, D8S1827, 

D8S549, and D8S1734 for chromosome 8p; D9S933, D9S167, 

D9S776, and D9S1790 for chromosome 9q; and D19S433, 

D19S416, and D19S220 for chromosome 19q loci.

PCRs with f luorescently labeled primer pairs were 
performed in a GeneAmp PCR System 2700 thermocycler 
(Applied Biosystems, Waltham, MA). Concisely, each reac-
tion was completed in 5 μl reaction volume containing 50 
ng genomic DNA as template, 0.15 μl of 10 mM dye-labeled 
primer pair, 0.5 μl of 10X PCR Buffer [100 mM Tris HCl 

Figure 2. Bidirectional Sanger sequencing identified mutations in FYCO1 in chromosome 3p21-linked pedigrees. A, B: Forward and reverse 
sequence chromatograms of individual 18 (unaffected) harboring the wild-type allele and individual 11 (affected) homozygous for a single 
base change: c.4270C>T (p.Arg1424Ter) in PKCC193. C, D: Forward and reverse sequence chromatograms of individual 7 (unaffected) 
harboring the wild-type allele and individual 10 (affected) homozygous for a single base deletion: c.3196delC (p.His1066IlefsTer10) in 
PKCC202. E, F: Forward and reverse sequence chromatograms of individual 6 (unaffected) heterozygous for a single base change and 
individual 7 (affected) homozygous for a single base substitution: c.4127T>C (p.Leu1376Pro) in PKCC220. Note: The arrows point to the 
base-pair substitution or deletion identified in each pedigree.

http://www.molvis.org/molvis/v26/334
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(pH 8.5), 500 mM KCl, 15 mM MgCl2], 0.5 μl of 10 mM 
dNTP mix, and 0.2 μl of 5 U/μl Taq DNA polymerase. Initial 
denaturation was performed for 5 min at 95 °C, followed by 
35 cycles of 30 s at 94 °C for denaturation, 45 s at 54 °C for 
annealing, 2 min at 65 °C for extension, and then 10 min at 
72 °C for a final extension step. Amplified products from 
each DNA sample were pooled (up to 20) and mixed with 
an HD-400 size standards (Applied Biosystems) loading 
cocktail. The resulting amplicons were resolved in a 3730 
DNA Analyzer (Applied Biosystems), and genotypes were 

assigned with ABI PRISM GeneMapper Software v4.0 
(Applied Biosystems).

Linkage analysis: The FASTLINK version of MLINK from 
the LINKAGE Program Package (provided in the public 
domain by the Human Genome Mapping Project Resources 
Centre, Cambridge, UK) was used to perform two-point 
linkage analyses and to calculate the maximum logarithm of 
odds (LOD) scores (Zmax) [45,46]. Autosomal recessive CC 
was analyzed as a fully penetrant trait with 0.001 affected 
allele frequency. The order of the markers and the distances 

Figure 3. Sequence alignment of 
FYCO1 orthologs illustrating the 
conservation of amino acid leucine 
at position 1376. The boxed amino 
acids illustrate the conservation 
of Leu1376 among other FYCO1 
orthologs. Red: primates; green: 
Euarchontoglires; blue: Laura-
siatheria; black: Afrotheria.

http://www.molvis.org/molvis/v26/334
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between them were obtained from the Marshfield database 
and the National Center for Biotechnology Information 
(NCBI, Bethesda, MD) chromosomes sequence maps. Allele 
frequencies were estimated from 96 unrelated and unaffected 
individuals from the Punjab province of Pakistan.

Sanger sequencing: Primer pairs (forward and reverse) for 
FYCO1 were designed using the Primer3 (Ver. 0.4.0). Ampli-
fications were performed in a 25 µl mixture containing 50 
ng of genomic DNA, 0.5 µl of each primer (4 µM), 2.5 μl of 
10X PCR Buffer [100 mM Tris HCl (pH 8.5), 500 mM KCl, 
15 mM MgCl2], 1.25 μl of 10 mM dNTP mix, and 1 μl of 5 U/
μl Taq DNA polymerase. PCR amplification of exons covered 
an initial denaturation step for 5 min at 95 °C followed by 
a two-step procedure. The first touchdown step of ten 
cycles consisted of 30 s denaturation at 95 °C, followed by 

annealing at 68 °C for 30 s (annealing temperature decreased 
by 1 °C/cycle), and 1-min extension at 72 °C. The second 
step of 30 cycles consisted of 30 s denaturation at 95 °C, 
followed by annealing at 58 °C for 30 s (10 °C below the 
annealing temperature of the first step), 1-min extension at 
72 °C, and then a final extension step of 10 min at 72 °C. 
Amplicons were analyzed on 1.5% agarose gel and purified 
with 95% ethanol precipitation. The PCR primers for each 
exon were used for bidirectional Sanger sequencing using 
BigDye Terminator ready reaction mix (Applied Biosystems) 
according to the manufacturer’s instructions. Sequencing 
products were precipitated (sodium acetate, EDTA, and 
ethanol), resuspended in 10 µl of formamide (Applied Biosys-
tems), denatured for 5 min at 95 °C, and resolved on a 3730 
DNA Analyzer (Applied Biosystems). Forward and reverse 
sequencing results were assembled with ABI PRISM® 

Table 3. Summary of cataract-causing mutations identified in FYCO1.

Exon/ 
Intron DNA Change Protein Change Type Population Reference
Ex6 c.449T>C p.I150T Missense KSA 34

Ex8 c.808C>T and IVS12; c.3587+1G>T p.Q270X/ splice 
variant

Compound 
heterozygous China 53

Ex8 c.1045C>T p.Q349X Nonsense Pakistan 17
Ex8 c.l056_1071delGGCCACACGGGACTCA p.E352DfsX9 Frameshift Iran 56
Ex8 c.1546C>T p.Q516X Nonsense Israel 17
Ex8 c.1621C>T p.Q541X Nonsense Russia 55
Ex8 c.2206C>T p.Q736X Nonsense Pakistan 17
Ex8 c.2206C>T p.Q736X Nonsense Egypt 50
Ex8 c.2206C>T p.Q736X Nonsense Pakistan 18
Ex8 c.2345delA p.Q782RfsX32 Frameshift Pakistan 18

Ex8 c.2345delA/ c.2714_2715delCA p.Q782RfsX32/ 
p.T905SfsX2

Compound 
heterozygous KSA/ UAE 54

Ex8 c.2506delG p.A836PfsX80 Frameshift KSA 51
Ex8 c.2761C>T p.R921X Nonsense Pakistan 17
Ex8 c.2830C>T p.R944X Nonsense Pakistan 17
IVS9 c.3150+1G>T Splice variant Splice variant Pakistan 17
IVS9 c.3151–2A>C p.A1051DfsX27 Frameshift Pakistan 18
Ex10 c.3196delC p.H1066IfsX10 Frameshift Pakistan This Study
Ex13 c.3670C>T p.R1224X Nonsense UK 52
Ex13 c.3755delC p.A1252DfsX71 Frameshift Pakistan 17
Ex14 c.3858_3862dupGGAAT p.L1288WfsX37 Frameshift Pakistan 17
IVS14 c.3945–1G>C Splice variant Splice variant UK 52
Ex16 c.4127T>C p.L1376P Missense Pakistan 17
Ex16 c.4127T>C p.L1376P Missense Pakistan This Study
Ex17 c.4270C>T p.R1424X Nonsense Pakistan This Study

Note: KSA: Kingdom of Saudi Arabia; UAE: United Arab Emirates; UK: United Kingdom.
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sequencing analysis software (Ver. 3.7) and analyzed with 
Sequencher software (Gene Codes Corporation, MI).

Prediction analysis: Evolutionary conservation of the mutated 
amino acid in FYCO1 orthologs was examined using the 
UCSC Genome Browser. The possible impact of amino acid 
substitution on the structure of the FYCO1 protein at the loca-
tion of the missense mutation was examined with PolyPhen-2, 
Mutation Assessor, Mutation Taster, and SIFT.

RESULTS

Three consanguineous families (PKCC193, PKCC202, and 
PKCC220) were recruited from the Punjab province of 
Pakistan. Pedigree drawings demonstrated an autosomal 
recessive mode of inheritance (Figure 1). Detailed medical 
history obtained after interviews with family members, and 
the patient’s available medical records confirmed that cata-
racts were observed in the first or second year after birth and 
segregated in an isolated fashion without any other ocular and 
non-ocular anomalies in affected individuals of three families 
(Table 1).

Linkage analysis localized the disease interval to 
chromosome 3p harboring FYCO1 (Figure 1). Interestingly, 
FYCO1, a gene previously implicated in non-syndromic arCC 
in multiple Pakistani families [17], resides in the linkage 
interval. A maximum two-point LOD score of 3.06 (θ=0) 
was obtained with marker D3S3685 in PKCC193 (Table 2). A 
maximum two-point LOD score of 1.68 (θ=0) was obtained 
with marker D3S3582 in PKCC202 (Table 2). A maximum 
two-point LOD score of 1.34 (θ=0) was obtained with markers 
D3S3582 and D3S1289 in PKCC220 (Table 2).

Next, we sequenced all coding exons and the exon–intron 
junctions of FYCO1 in all three families. We identified a novel 
homozygous substitution (c.4270C>T) in PKCC193 (Figure 
2A,B). This homozygous substitution results in premature 
termination of the FYCO1 protein by changing arginine at 
position 1424 into a stop codon (p.Arg1424Ter; Figure 2A,B). 
All affected individuals of PKCC193 are homozygous for this 
variation, whereas unaffected individuals are either hetero-
zygous or homozygous for the wild-type allele (Figure 1A). 
This variant (c.4270C>T; p.Arg1424Ter) was identified in the 
heterozygous state in three different population databases 
with a global minor allele frequency (MAF) of 0.000008 
(gnomAD), 0.000008 (ExAC), and 0.00002 (TOPMed) in 
two individuals of non-Finnish European descent, a single 
African individual, and three individuals of a study-wide 
group, respectively. We did not find the c.4270C>T mutation 
in the Asian population and in 96 ethnically matched control 
individuals.

In PKCC202, we identified a novel homozygous 
single-base deletion (c.3196delC) in FYCO1 resulting in a 
frameshift mutation and premature truncation of the protein 
(p.His1066IlefsTer10; Figure 2C,D). The p.His1066IlefsTer10 
variant showed segregation with the disease phenotype in all 
affected and unaffected individuals of PKCC202 (Figure 1B) 
and was not identified in the 1000 Genomes, ExAC browser, 
Exome Variant Server, and dbSNP databases. Moreover, the 
variant was also absent in 96 ethnically matched control indi-
viduals. In addition to novel variants, we identified a reported 
missense variant (c.4127T>C, p.Leu1376Pro) in PKCC220 
(Figure 2E,F). The variant revealed complete segregation 
with the disease phenotype in all available affected and 
unaffected individuals of PKCC220 (Figure 1C) and was not 
present in 96 ethnically matched control individuals.

In contrast to the two novel mutations, i.e., the frameshift 
(c.3196delC; p.His1066IlefsTer10) and nonsense (c.4270C>T; 
p.Arg1424Ter) that are predicted to result in truncated FYCO1 
proteins, the transcript harboring the previously reported 
missense (c.4127T>C, p.Leu1376Pro) allele is expected to 
produce a full-length FYCO1 protein. Importantly, amino 
acid leucine 1376 (in FYCO1) and the amino acids in the 
immediate neighborhood are well conserved in FYCO1 
orthologs (Figure 3). We next examined the effect of leucine 
substitution on the FYCO1 protein with in silico analysis. 
PolyPhen-2, Mutation Assessor, MutationTaster, and SIFT 
algorithms were suggestive of probably damaging, low 
impact, disease-causing, and deleterious, respectively. Taken 
together, evolutionary conservation and in silico analysis 
suggest that the proline substitution would be detrimental to 
the native structure, and most likely, the physiological func-
tion of the FYCO1 protein.

DISCUSSION

We report two novel and a previously reported mutation in 
FYCO1 associated with non-syndromic autosomal recessive 
cataracts in three unrelated consanguineous familial cases. 
The ophthalmic examination confirmed cataracts in all three 
families. The STR marker-based linkage analysis localized 
the critical interval to chromosome 3p with maximum two-
point LOD scores of 3.06, 1.68, and 1.34 at θ=0 for PKCC193, 
PKCC202, and PKCC220, respectively (Table 2). Sequencing 
of the coding exons of FYCO1 identified two novel and a 
reported mutation that segregated with the disease phenotype 
in all three families and was absent in control individuals. 
Taken together, these results strongly suggest that mutations 
in FYCO1 are responsible for recessive congenital cataracts 
in PKCC193, PKCC202, and PKCC220.

http://www.molvis.org/molvis/v26/334
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FYCO1 is a member of the PI(3)P-binding protein 
family localized to autophagosomes and mediates transport 
of microtubule plus-end-directed vesicles [47]. The domain 
structure of FYCO1 comprises an α-helical RUN domain, 
four long coiled-coil regions, an FYVE zinc-finger domain, 
an LC3-interacting region (LIR), and a Golgi dynamics 
(GOLD) domain [17,48]. Pras et al. first reported a novel locus 
CATC2 (cataract, autosomal recessive congenital 2, OMIM: 
610019) mapped in three consanguineous Arab families to 
the short arm of chromosome 3 [49]. Subsequently, Chen and 
colleagues mapped additional multiple familial cases with 
arCC at chromosome 3p overlapping with the CATC2 locus 
and identified mutations in FYCO1 in 12 Pakistani and one 
Arab family [17].

To date, a total of 19 mutations have been reported 
in FYCO1, including 11 mutations in the coiled-coil 
region of FYCO1 (Table 3). In another study, Chen and 
colleagues reported two homozygous variants (c.2345delA; 
p.Gln782ArgfsTer32 and c.3151–2A>C; p.Ala1051AspfsTer27) 
implicated in arCC in Pakistani families [18]. Recently, 
multiple studies reported mutations in FYCO1 implicated 
in arCC in Saudi (c.2506delG; p.Ala836ProfsTer80 and 
c.449T>C; p.Ile150Thr), Egyptian (c.2206C>T; p.Gln736Ter), 
and British (c.3670C>T; p.Arg1224Ter and c.3945–1G>C) 
familial and sporadic cases [34,50-52]. Moreover, two 
compound heterozygous variants in FYCO1 have been 
reported from Saudi Arabia and China [53,54]. Two homozy-
gous mutations in FYCO1 have also been identified in Iranian 
and Russian familial cases [55,56].

In conclusion, identification of multiple mutations in 
FYCO1 in diverse populations and the higher frequency of 
frameshift, splice, and nonsense mutations strongly suggest 
the significant contribution of FYCO1 in congenital cataracts. 
Moreover, the identification of mutations responsible for 
arCC in the present study further highlights the significant 
genetic contribution in familial cases of Pakistani descent, 
in general, and this cohort of arCC in particular, nearly 
15% (19/129). This investigation will help to devise better 
strategies for identifying individuals at risk through genetic 
diagnosis leading to better cataract prevention.
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