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Abstract: Genetic manipulation is one of the indispensable techniques to examine gene functions
both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot
be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out
and knock-in experimental animals to understand the pathophysiological roles of specific genes
on the disease conditions. Although genome-wide association studies (GWAS) in various human
populations have identified multiple genetic variations associated with increased risk for hypertension
and/or its complications, the causal links remain unresolved. Genome-editing technologies can be
applied to many different types of cells and organisms for creation of knock-out/knock-in models. In
the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the
risk variants and/or candidate genes by creating genome-edited organisms.
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1. Introduction

Hypertension is the leading preventable risk factor for cerebro-cardiovascular compli-
cations, including heart failure and stroke. Effective anti-hypertensive drugs with different
pharmacological actions have been developed; nevertheless, it is deemed that there are
1.28 billion hypertensive patients globally and 0.7 billion or more patients are untreated [1].
Given the resulting mortality and disability as well as the high prevalence, hypertension is
still a major public health burden in the world.

It is needless to say that gene-targeted knock-out (KO) and knock-in (KI) or transgenic
rodent models have greatly contributed to understanding the pathophysiological basis of
hypertension and its vascular complications. In particular, mice have been widely used as
the best experimental animal since the gene engineering technique to create KO models
was established for over 30 years ago. By contrast, it had been technically difficult to create
KO rats for a long time because of the difficulty of rat ES cell culture. Recent advances
in genome-editing technologies, however, have made it possible to easily create KO rats
similar to mice [2,3]. Given that spontaneous cerebro-cardiovascular disease models, such
as Dahl salt-sensitive (SS) and stroke-prone spontaneously hypertensive rats (SHRSP),
have been commercially available, a genome-editing strategy using the rat disease models
has much potential to clarify the novel pathogenesis of hypertension. In this review, we
outlined recent advances in basic research for hypertension using KO and KI or transgenic
rodent models to clarify the underlying mechanisms.

2. Mouse Models

Essential hypertension is a highly complex pathological condition that is formed by
synergistic influences of multiple lifestyles, social, environmental, and genetic factors.
Since blood pressure (BP) is collaboratively controlled by various organs and tissues,
there are many studies that have investigated tissue (or cell)-specific roles of genes on BP
regulation using conventional and conditional KO or transgenic mice. In contrast to rats, no
spontaneous hypertensive mouse models have been established; accordingly, angiotensin
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II (Ang II)-infused models have been widely used to investigate the pathogenesis of Ang
II-related hypertension. Deoxycorticosterone acetate (DOCA)-salt or high-salt diet (usually
containing 4% or 8% NaCl) models have been also used to investigate the pathogenesis
of salt-sensitive hypertension. In this section, we overview proposed mechanisms for
controlling BP found in the phenotyping of KO or transgenic mouse models, especially
focusing on the findings in the recent decade.

2.1. Kidney

The kidney plays pivotal roles in arterial BP regulation by controlling blood volume
and plasma electrolyte balance. Activities of the renin–angiotensin–aldosterone system
(RAAS) and mineral transporters (Na+/H+ exchanger; NHE, Na+–K+–Cl− co-transporter;
NKCC, Na+–Cl− co-transporter; NCC, epithelial sodium channel; ENaC, etc.) distributed
along with nephron are important for physiological BP regulation; thus, genes that may
regulate those activities have been widely investigated (Table 1).

Ang II regulates BP via Ang II type 1 receptor (Agtr1a, AT1R). As BP lowering effects
were observed in proximal tubules (PT) or collecting duct (CD)-specific KO mice [4,5],
blockade of AT1R signaling in renal epithelial cells would be a pharmacological target
for hypertension therapy. Of note, AT1R-associated protein (Agtrap), which is widely
distributed along renal tubules, has been found to suppress AT1R signaling by facilitating
internalization of AT1R resulting in decreased cell surface expression of AT1R [6,7], sug-
gesting that activation of endogenous AGTRAP has potential to reduce BP. In fact, it has
been reported that the renal-specific overexpression and conventional KO mice show lower
and higher BP phenotype compared with the wild-type (WT) control, respectively [8–11].
In contrast to the results in mice, however, the deletion in Dahl SS rats exacerbated renal
damage under a 4% NaCl diet condition with no change in BP [12]. Although AGTRAP
may play double-edged roles in reno-cardiovascular functions in a context-specific manner,
it is a potential candidate gene located in a GWAS loci for BP in humans [12].

Although Ang II is the most well-known bioactive peptide hormone in the RAAS,
(pro)renin and Ang-(1-7) produced by angiotensin-converting enzyme 2 (ACE2) are also
known to regulate BP via its specific receptors. The (Pro)renin receptor (PRR) that specifi-
cally recognizes both prorenin and renin was cloned by Nguyen et al. in 2002 [13]. In the
kidney, PRR is mainly expressed in renal vasculature, PT and distal tubules (DT), and CD
and enhances the catalytic activity of (pro)renin that converts Ang I to Ang II, resulting
in an increase in Ang II production [14]. Consistent with the physiological function of
PRR, decreases in BP elevation induced by Ang II infusion have been observed in both
tubular- and CD-specific KO mice through inhibition of ENaC activation [15–17]. Ang-(1-7)
generated by mainly ACE2 is a vasoactive peptide that induces a vasodilation response by
binding to Mas receptor [18]. Therefore, ACE2-Ang-(1-7)-Mas axis exerts a counteracting
effect on Ang II that causes BP elevation. Ni et al. reported that conventional double KO of
both ACE2 and Mas receptor in mice caused greater Ang II-induced BP elevation when
compared with the WT littermates [19]. In addition, they also showed that the dual deletion
of ACE2 and Mas receptor worsened hypertensive nephropathy, suggesting that ACE2-
Ang-(1-7)-Mas receptor axis has protective roles in both the development of hypertension
and the resulting hypertensive kidney injury.

Tubuloglomerular feedback (TGF) is an important physiological system to regulate
long-term BP by sensing blood volume and electrolyte balance at the level of juxtaglomeru-
lar apparatus in each nephron [20]. Accumulating evidence has shown that local activities
of renal oxide synthases (NOS), which produce a major chemical vasodilator NO, play an
important role in the regulation of the TGF system. NOS families are composed of three
isoforms, i.e., neuronal NOS (nNOS, encoded by Nos1), inducible NOS (iNOS, Nos2), and
endothelial NOS (eNOS, Nos3). Although all the three isoforms are expressed in the kidney,
Nos1 and Nos3 are thought to be major isoforms that physiologically participate in the TGF
because of low baseline expression of Nos2. Interestingly, Lu et al. showed that macula
densa-specific deletion of Nos1 exacerbated a high-salt diet-induced BP elevation under
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a condition of Ang II infusion accompanied by reduced glomerular filtration rate (GFR)
and Na+ excretion [21]. It was also reported that local NOS1 activity at the macula densa
contributed to a sex difference in BP response to Ang II [22]. Moreover, Hyndman et al.
and Gao et al. have investigated renal-specific roles of NOS1 and NOS3 on BP regulation
using CD-specific and nephron-specific KO mice, respectively [23,24]. They suggested that
deletion of the two isoforms caused greater high-salt-induced BP elevation by enhancing
ENaC [25] and NCC activities in the tubular cells, respectively.

Pathophysiological roles of NEDD4-2 (encoded by Nedd4l) and with-no-lysine kinases
1 and 4 (Wnk1 and Wnk4) in (salt-sensitive) hypertension have been well-investigated in
humans as well as in rodent models. NEDD4-2 is an E3 ubiquitin ligase that ubiquitylates
ENaC to down-regulate its cell surface expression and activity [26]. Although NEDD4-2
was initially found as a ENaC-specific regulator in the kidney [25], Ronzaud et al. reported
that NEED4-2 also regulated NCC activity and its renal tubule-specific deletion caused
salt-dependent hypertension [27]. Consequently, NEED4-2 is involved in the pathogenesis
of salt-sensitive hypertension through the two-independent pathways that controls renal
Na+ homeostasis. WNK1 and WNK4 are known to be responsible genes of pseudohypoal-
dosteronism type 2 (PHA2) that is caused by large deletions in intron 1 of WNK1 or gain-of
function mutations in WNK4 [28]. Mechanistically, WNKs phosphorylate SPAK/OSR1,
thereby activating NCC in the DT and resulting in increased Na+ reabsorption and salt-
sensitive hypertension [28,29]; however, the molecular network may be a little complicated
as a paradoxical role of kidney-specific WNK1 lacking a kinase domain on the development
of salt-sensitive hypertension was reported [30]. Moreover, Mu et al. suggested a unique
pathway involving salt-sensitive hypertension caused by epigenetic down-regulation of
WNK4 [31]. In this context, kelch-like protein 3 (KLHL3) and cullin 3 (CUL3), which are
the E3 ubiquitin ligase complex to degrade WNK, have also received much attention as
target molecules to prevent salt-sensitive hypertension [28,29].

Unlike the local mechanisms in the kidney described above, Pan et al. uniquely
identified the liver–kidney and liver–adipocytes axis to control BP via a hepatocytes-
producing hormone, fibroblast growth factor 21 (FGF21), which has pleiotropic effects
on glucose and lipid metabolism [32]. They found that FGF21 augmented peroxisome
proliferator-activated receptor γ (PPARγ)-mediated activation of ACE2 in both the kidney
and adipocytes; thereby, an increase in Ang-(1-7) production reduced both BP and vascular
injury. Because FGF21 production was stimulated by Ang II, the FGF21–ACE2 axis may
counteract Ang II-induced hypertension and the vascular injury. This might be a key
mechanism in obesity-related hypertension.

Besides the above, multiple mechanisms have been proposed such as by circadian
clock- [33,34], osmotic stress- [35], and genome-wide association study (GWAS)-related
genes [36,37] as well.
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Table 1. Target molecules in kidney.

Targets Type of Genetic Modification Models Phenotypes References

AGTRAP (angiotensin II
receptor-associated protein, Agtrap)

Renal tubule-specific overexpression Ang II ↓BP, ↓NCC and αENaC activities Wakui et al. [8]

Conventional KO Ang II ↑BP, ↑ENaC activity Ohsawa et al. [9]

Conventional KO 5/6 nephrectomy ↑BP, ↑plasma volume, ↑αENaC and
TNF-α expression Kobayashi et al. [10]

Proximal tubule-specific KO Ang II No differences in basal BP, pressor response
to Ang II, and cardiac hypertrophy Kinguchi et al. [11]

PRR ((Pro)renin receptor, Atp6ap2)

Tubular-specific KO Ang II ↓BP, ↓Na+ retention, ↓αENaC expression Ramkumar et al. [15]

Collecting duct-specific KO Ang II ↓BP, ↓urinary renin and αENaC activities Peng et al. [16]

Collecting duct-specific KO Ang II ↓BP (basal and Ang II), ↓α/γENaC
activation, ↓urinary Ang II and renin levels Prieto et al. [17]

ACE2 (angiotensin-converting enzyme-2,
Ace2), Mas receptor (Mas1) Conventional double KO Ang II ↑BP, ↑ renal injury, ↑serum Cr, ↓Cr clearance Ni et al. [19]

NOS1 (NO synthase 1, Nos1)

Macula densa-specific KO Ang II + high-salt diet ↑BP, ↑ tubuloglomerular feedback response,
↓GFR, urine flow, and N+ excretion Lu et al. [21]

Macula densa-specific KO Ang II
Diminished sex difference in Ang II-induced
BP, tubuloglomerular feedback response, and

natriuretic response
Zhang et al. [22]

Collecting duct-specific KO High-salt diet ↑BP, ↓urine output, ↓Na+, Cl−, and
NOx excretion Hyndman et al. [23]

NOS3 (NO synthase 3, Nos3) Doxycycline-inducible
nephron-specific KO High-salt diet ↑BP, ↑Na+ retention, ↑NCC activation Gao et al. [24]

NEDD4-2 (Nedd4l) Tetracycline-inducible
tubule-specific KO High-salt diet ↑BP, ↑β/γENaC and ROMK expression,

↑NCC activation, hypercalciuria Ronzaud et al. [27]

WNK1 (with-no-lysine kinase 1, Wnk1)

Kidney-specific overexpression of
the kidney-specific isoform No treatment ↓BP, ↑plasma Ang II and aldosterone, ↓NCC

and NKCC2 activation Liu et al. [30]

Kidney-specific KO (targeted
deletion of the first exon of the

kidney-specific isoform)
High-salt diet ↑BP, ↑Na+ retention, ↑NCC and

NKCC2 activation Liu et al. [30]
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Table 1. Cont.

Targets Type of Genetic Modification Models Phenotypes References

FGF21 (fibroblast growth
factor 21, Fgf21) Conventional KO Ang II

↑BP, ↑vascular hypertrophy and fibrosis,
↓vascular relaxation, ↓plasma/adipose ACE2

and Ang-(1-7), ↑plasma/adipose Ang II
Pan et al. [32]

BMAL1 (brain and muscle
ARNT-like 1, Arntl) Kidney-specific KO No treatment (or

K+-restricted diet) ↑BP, ↓Na+ retention under K+-restricted diet Crislip et al. [33]

Per1 (period 1, Per1) Distal nephron-specific KO DOCP-salt ↑BP, ↑Na+ retention, ↑plasma aldosterone,
↑medullary endothelin-1 Douma et al. [34]

NFAT5 (nuclear factor of activated
T-cells 5, Nfat5)

Doxycycline-inducible tubular
cell-specific KO High-salt diet ↑BP, hypernatremia, polyuria, ↓Na+

excretion, ↑ENaC expression Hiramatsu et al. [35]

HSD11β2 (11β-hydroxysteroid
dehydrogenase, Hsd11b2) Kidney-specific KO No treatment ↑BP, ↑αENaC and NCC activation Ueda et al. [36]

NPR-C (natriuretic peptide
receptor-C, Npr3)

Conventional KO Ang II ↓BP, ↑diuretic and natriuretic response,
↓NCC activation via WNK4/SPAK Shao et al. [37]

Tubule-specific KO Ang II ↓BP, ↓NCC activation via WNK4/SPAK Shao et al. [37]
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2.2. Vasculatures

Table 2 summarizes target genes in vasculatures and the representative phenotypes
described below. Peripheral vascular tone is one of the primary factors to control BP.
Two primary cell types, i.e., endothelial cells (ECs) and vascular smooth muscle cells
(VSMCs), play major roles in the regulation of the vascular tone mainly through production
of vasodilators (NO, etc.) or vasoconstrictors (endothelin-1, etc.) and sympathetic vaso-
constriction, respectively. Endothelial NOS (eNOS, NOS3) predominantly generates NO
from L-arginine in ECs; thereby, the released NO activates NO-sensitive guanylyl cyclase
(NO-GC) in VSMCs to increase cytosolic cGMP, then the activated cGMP-dependent protein
kinase (PKG) induces smooth muscle relaxation. The NO-GC/cGMP/PKG signaling is
indispensable for NO-dependent BP regulation as spontaneous BP elevation was found in
VSMC-specific NO-GC deficient mice [38].

In addition, NO-independent pathways that stimulate cGMP/PKG also exist. Na-
triuretic peptides, which are composed of A- (atrial; ANP), B- (brain; BNP), and C-type
(CNP), are well-studied vasoactive peptides that exert vasodilation via direct activation of
the transmembrane receptor NPR1 (natriuretic peptide receptor 1, also known as guanylyl
cyclase-A; GC-A) or NPR2 (also known as GC-B). Among the three members, CNP is se-
creted from ECs and specifically bind to NPR2, whereas ANP and BNP are cardiac peptides
targeting NPR1 [39]. In addition, CNP is thought to be an autocrine/paracrine factor in
the circulation system because of the relatively low plasma concentration compared with
ANP and BNP [40]. Several recent reports have uncovered the detailed mechanisms of
NPR1/2-mediated vasodilation.

Nakao et al. showed that EC-specific CNP KO mice had higher BP compared with WT
control independently of NO production, whereas VSMC-specific NPR2 KO had unaltered
BP [41]. On the other hand, Špiranec et al. thereafter reported that the deletion in ‘precapil-
lary arteriole SMCs and capillary pericytes’ caused BP elevation in mice accompanied by
an impaired CNP-induced vasodilatory response [42]. Collectively, these results indicate
that EC-derived CNP acts on precapillary arteriole SMCs and capillary pericytes as well as
ECs to lower peripheral vascular resistance and BP through an NO-independent manner.
It is of note that a CNP-induced vasodilatory response in mesenteric arteries was also
impaired in VSMC-specific KO mice by Nakao et al.; nevertheless, BP of the KO mice was
compatible with that of WT [41]. Conflicting results for the BP phenotype between the
two VSMC-specific KO models may be partly due to the difference in promoters driving
Cre expression (sm22 [41] or Pdgf-rb [42] promoter) to create the conditional NRP2 KO
mice. Furthermore, it was very recently reported that EC-specific, but not VSMC-specific,
deletion of NPR1 diminished BP reduction by intravenous ANP administration [43].

Intracellular Ca2+ mobilization is a key modulator to induce both NOS-mediated vas-
cular relaxation by EC and VSMC contraction; thus, cell-type specific genetic modification
is necessary to clarify functional implications of the target molecules on vascular responses.
Stromal interaction molecule 1 (Stim1) is an endoplasmic reticulum (ER) resident transmem-
brane protein that senses Ca2+ store in ER lumen via its N-terminal EF hand motif. When
the Ca2+ store is depleted, STIM1 moves toward the cytoplasmic membrane and opens
the target Ca2+ channels, ORAI1, and transient receptor potential families (TRPs) to elicit
Ca2+ entry into the cytosol (store-operated Ca2+ entry; SOCE) [44]. STIM1 is expressed
in broad cell types including ECs and VSMCs and plays key roles in the maintenance of
intracellular Ca2+ homeostasis [43]. Kassan et al. revealed that VSMC-specific deletion
of Stim1 ameliorated Ang II-induced hypertension with decreased vascular ER stress [45].
By contrast, a significant increase in nighttime BP was observed in EC-specific Stim1 KO
mice that showed decreased NO production and an EC-dependent vasodilation phenotype
in vitro [46]. These studies suggest that STIM1 exerts an opposite role in the regulation
of vascular tone in the two different cells. Interestingly, we found that the stroke-prone
spontaneously hypertensive rat (SHRSP) had a premature stop codon in this gene that
caused the expression of truncated STIM1 with decreased SOCE activity [47,48]. Although
the recovery of STIM1 function in SHRSP by CRISPR-Cas9-mediated gene KI did not alter
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the BP [49], systemic impairment of SOCE activity would have important implications for
the pathogenesis of hypertensive end-organ damage in SHRSP independently of the BP
phenotype. Phenotyping of the KI rat model is currently in progress; the findings will be
described elsewhere.

Fluid shear stress is an important mechanical stimulus that physiologically enhances
NO production by ECs to maintain vascular integrity. Increasing evidence has shown
that a mechanosensitive cation channel PIEZO1 on ECs mediates laminal flow-dependent
activation of purinergic P2Y2 receptor, thereby activating PI3K/Akt signaling to phosphory-
late NOS3 [50]. Recently, an alternative pathway mediated by the PIEZO1adrenomedullin
(ADM) axis was reported [51]. ADM is a circulatory vasodilator and diuretic and natriuretic
peptide that is mainly produced by ECs [52]. Iring et al. showed that PIEZO1 enhanced en-
dothelial ADM secretion, then the secreted ADM bound to calcitonin receptor-like receptor
(CALCRL) on ECs by an autocrine/paracrine fashion. ADM-CALCRL complex activates its
adjacent adenylyl cyclase; thereby, cAMP-dependent protein kinase (PKA) phosphorylates
and activates NOS3, resulting in NO-dependent vasorelaxation [50]. Actually, it is of interest
that all EC-specific single KO of ADM, CALCRL, and Gαs, which is the downstream G pro-
tein of CALCRL, in mice caused apparent BP elevation. This finding indicates an essential
role of PIEZO1-ADM signaling on controlling vascular tone and BP at a resting condition.

Prostaglandins (PGs) are endogenous lipid mediators that have multiple bioactivities
such as uterine contraction, platelet aggregation, and bronchodilation and is generated from
arachidonic acid by catalytic activities of cyclooxygenases (COXs). PGs are also involved in
BP regulation as nonsteroidal anti-inflammatory drugs (NSAIDs), which block COX activity,
have hypertensive side effects [53]. Among the known PGs, PGE2 is a major prostanoid
that affects BP both positively and negatively via its specific receptor EP1-4 [54,55]. Thus
far, it was shown that EP1 and EP3 mediate vasoconstrictive response, while EP2 and EP4
lead to vasodilation [53]. The diverse effects of PGE2 on vascular functions may be due to
the characteristic of tissue distribution of the receptors. Recently, Xu et al. reported that
EC-specific KO and overexpression of EP4 resulted in higher and lower BP compared with
control mice, respectively [56], under both basal and high-salt diet conditions. Physiological
roles of PGs on BP regulation may be still controversial; however, the recent report clearly
indicates a hypotensive potential of PGE2-EP4 signaling via enhancing NO production in ECs.

2.3. Immunity

A growing body of evidence has emerged in the last decade suggesting the pathogenic
aspects of innate and adaptive immune responses on the development and progression of
hypertension and hypertensive end-organ damages. The possible mechanisms have been
well reviewed [57–59]; herein, we shortly highlight recent findings on this topic (Table 3).
Among various subpopulations of immune cells, previous reports indicate that T cells espe-
cially have diverse contributions to the etiology [56]. In particular, CD4+- and regulatory T
cell (Treg)-mediated pathological cascades have been raised in several recent studies.
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Table 2. Target molecules in vasculatures.

Targets (Official Symbols) Type of Genetic Modification Models Phenotypes References

NO-GC (NO-sensitive guanylyl
cyclase, Gucy1b1)

Tamoxifen-inducible
VSMC-specific KO No treatment ↑BP, ↓NO-induced vasorelaxation Groneberg et al. [38]

CNP (C-type natriuretic
peptide, Nppc) EC-specific KO No treatment

↑BP, ↓acetylcholine- and
endothelium-dependent relaxation,

↑Endothelin-1 and Ace expression in ECs
Nakao et al. [41]

NPR2 (natriuretic peptide receptor 2,
Npr2)/Guanylyl cyclase-B (GC-B)

VSMC-specific KO No treatment No difference in BP, ↓CNP-induced
relaxation in mesenteric arteries Nakao et al. [41]

Tamoxifen-inducible EC-specific KO No treatment ↑BP, ↓cGMP production Špiranec et al. [41]

NPR1 (natriuretic peptide
receptor 1, Npr1) EC-specific KO No treatment

Loss of EC-dependent BP reduction by ANP,
unaltered NO production, K+

channel-mediated hyperpolarization in EC
Tokudome et al. [43]

STIM1 (stromal interaction
molecule 1, Stim1)

VSMC-specific KO Ang II ↓BP, ↓cardiac hypertrophy, ↓perivascular
fibrosis, ↓endothelial dysfunction Kassan et al. [45]

EC-specific KO No treatment ↑BP (nighttime), ↓NO production,
↓endothelium-dependent relaxation Nishimoto et al. [46]

ADM (adrenomedullin, Adm),
CALCRL (calcitonin receptor-like,

Calcrl), Gαs (GNAS (guanine
nucleotide binding protein, alpha
stimulating) complex locus, Gnas)

Tamoxifen-inducible EC-specific KO No treatment ↑BP, ↓eNOS activation,
↓flow-induced vasorelaxation Iring et al. [51]

EP4 (prostaglandin E2
receptor, Ptger4)

EC-specific KO No treatment, high-salt diet,
Ang II

↑BP, ↓NO production,
↓vasorelaxation response Xu et al. [56]

EC-specific overexpression No treatment, high-salt diet ↓BP, ↑eNOS activation, ↑NO production Xu et al. [56]
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Hydrogen sulfide (H2S) is a cardioprotective endogenous gaseous mediator that
is generated by three major enzymes: cystathionine beta synthase (CBS), cystathionine
gamma lyase (CSE), or 3-mercaptopyruvate sulfurtransferase [60]. Although it was reported
that a conventional CSE KO mice showed an age-dependent increase in BP [61], Cui et al.
revealed that CD4+ T cell-specific deletion of CSE was sufficient to induce greater BP in mice
under both physiological and Ang II-treated conditions [62]. Mechanistically, they suggest
that CSE-derived H2S activates liver kinase B1 (LKB1)-PKA signaling and the resulting
activation of Treg attenuates vascular and renal inflammation, thereby preventing BP
elevation. In addition, Sun et al. reported that mineralocorticoid receptor (MR) deficiency
in CD4+ T cells ameliorated Ang II-induced BP elevation and vascular and renal damage in
mice [63]. In contrast to the KO model, the MR overexpression exacerbated the increase
in BP after Ang II infusion; however, IFN-γ-neutralizing antibodies could abolish the
deleterious effect, suggesting that IFN-γ produced by infiltrated T cells was a key cytokine
link between MR signaling in CD4+ T cells and the resulting hypertension.

For Treg, a detailed pathological mechanism caused by a microRNA function has been
proposed. MicroRNAs (miRs) are involved in numerous (patho)physiological conditions by
controlling gene expression mainly at a translational level, and among the identified miRs,
miR-31 has multifaceted roles in regulation of immune responses [64]. Interestingly, Li et al.
reported that Ang II-induced BP elevation and vascular and renal damage were reduced
in mice lacking miR-31 in Treg compared with control mice, which were accompanied by
increased Treg differentiation [65]. Furthermore, the opposite phenotypes were observed
in mice with Treg-specific deletion of protein phosphatase 6c (Ppp6c), a direct target of
miR-31, suggesting that Ppp6c had potential to improve Ang II-induced hypertension [64].
This may be a novel posttranslational mechanism that worsens hypertensive phenotypes
through an overexpression of a specific microRNA that regulates Treg functions.

AT1R, an Ang II receptor, is widely expressed in immune cells [66]. It has been shown
that deletion of AT1R on T lymphocytes or macrophages do not affect BP even under an
Ang II-infused condition [67,68]. In contrast to the previous findings, Lu et al. revealed
that the deletion on CD11c+ myeloid cells (dendritic cells; DCs) in mice with chronic Ang
II infusion resulted in increased BP, renal infiltration of inflammatory cells (memory T,
CD40+ DCs), and Na+ retention with greater β/γENaC expression [69]. It is of interest
that AT1R on DCs exerts a cardioprotective role in spite of harmful effects of Ang II on
renal and cardiovascular functions. Moreover, Sag et al. showed that mice with myeloid
cell-, but not endothelial cell-, specific deletion of NADPH oxidase 2 (NOX2), which is a
superoxide-generating enzyme, had lower basal BP compared with control mice [70].

Beside the above, the pathophysiological actions of C-C motif chemokine receptor
7 (CCR7) [71], toll-like receptor 3/4 (TLR3/4) [72], placental growth factor (PlGF) [73],
complement C3a/C5a receptors (C3aR/C5aR) [74], T cell receptor delta chain (TCRδ) [75],
and interleukin-1 receptor type 1 (IL-1R1) [76] have been also proposed using conventional
KO mouse models. Overall, accumulated evidence has commonly suggested pathophysio-
logical connections between immune responses and renal dysfunction on the development
of hypertensive conditions. Clinical perspectives of anti-inflammatory therapies targeting
specific cytokines were also discussed [77].



Biomedicines 2022, 10, 1855 10 of 22

Table 3. Target molecules in immune system.

Targets (Official Symbols) Type of Genetic Modification Models Phenotypes References

CSE (Cystathionine γ lyase, Cth) CD4+ T cell-specific KO Ang II ↑BP, ↑blood and renal Treg, ↑renal and
peripheral adipose tissue CD4+/CD8+ T Cui et al. [62]

MR (mineralocorticoid
receptor)/nuclear receptor subfamily

3, group C, member 2 (Nr3c2)

CD4+ T cell-specific KO Ang II ↓BP, ↓renal/vascular damage,
↓IFNγ-producing T cell Sun et al. [63]

CD4+ T cell-specific overexpression Ang II ↑BP Sun et al. [63]

MicroRNA-31 (miR-31, Mir31) Conventional and Treg-specific KO Ang II ↓BP, ↑Treg differentiation,↓renal and
vascular injury Li et al. [65]

Ppp6c (protein phosphatase 6c, Ppp6c) Treg-specific KO Ang II ↑BP, ↓Treg differentiation,↑renal injury Li et al. [65]

AT1R (angiotensin II receptor
type 1, Agtr1a) CD11c+ cell-specific KO Ang II ↑BP, ↑renal memory T and CD40+

DC, ↑ENaC Lu et al. [69]

NOX2 (NADPH oxidase 2, Cybb) Myeloid cells-specific KO No treatment ↓BP, ↑NO bioavailability Sag et al. [70]

Ang II No effect on BP Sag et al. [70]

CCR7 (C-C motif chemokine
receptor 7, Ccr7) Conventional KO Ang II ↓BP, ↑renal CD8+ T, ↓renal draining lymph

node CD4+ T and CD8+ T Wen et al. [71]

TLR3/4 (toll-like receptor 3/4, Tlr3/4) Conventional KO Ang II ↓BP and cardiac hypertrophy in TLR3 KO,
↓cardiac hypertrophy in TLR4 KO Singh et al. [72]

PIGF (placental growth factor, Pgf ) Conventional KO DOCA-salt ↓BP, ↓renal damage and T cell infiltration Perrotta et al. [73]

C3aR/C5aR (complement 3a and 5a
receptors, C3ar1/C5ar1) Conventional double KO Ang II ↓BP, ↑renal Treg, ↓renal/vascular remodeling Chen et al. [74]

TCRδ (T cell receptor delta
chain, Tcrd) Conventional KO Ang II ↓BP, ↓endothelial dysfunction Caillon et al. [75]

IL-1R1 (IL-1 receptor type 1, Il1r1) Conventional KO Ang II ↓BP, ↓NKCC2 activity Zhang et al. [76]
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2.4. Other Organs and Tissues (Brain, Adipocyte, and Adrenal Gland)

Table 4 summarizes target genes in other major organs and tissues and the representa-
tive phenotypes. Pathological implications of brain RAAS on hypertension have been well
investigated [78]. Based on the distribution of RAAS components in the brain, it has been
verified that brain RAAS activity can induce BP elevation independently of renal RAAS
function by using cell type-specific transgenic mice targeting AGT and/or renin [79–81].
Consistent results were observed in DOCA-salt mice with neuron-specific deletion of PRR
that exhibited decreases in BP and brain Ang II production [82].

Pathological relationships between salt intake and hypertension have been long sug-
gested in humas as well as in rodents; however, the precise mechanism remains elusive. In
this context, it is noteworthy that Nomura et al. reported that the Nax channel expressed
in specific glial cells in the organum vasculosum lamina terminalis (OVLT) functioned as
the brain sensor detecting [Na+] increase in the body and that deletion of Nax diminished
salt-induced hypertensive phenotype [83]. Concerning this, neuronal 11β-hydroxysteroid
dehydrogenase type2 (Hsd11b2), which encodes a corticosterone-producing enzyme, and
PRR have been proposed to be involved in both the development of salt-sensitive hy-
pertension and sodium appetite [84,85]. In addition, PRR deficiency in adipocytes was
pathologically implicated in a high-fat diet-induced BP increase in male mice but not in
female mice [86].

The adrenal gland is a major endocrine organ that plays a pivotal role in BP reg-
ulation and fluid and electrolyte homeostasis via production of steroid hormones and
catecholamines. The two-pore domain K+ channels (TASKs) expressed in zona glomerulosa
(zG) cells down-regulate the production of aldosterone in the cells [87]. Guagliardo et al.
showed that zG cell-specific deletion of TASK-1 and -3 caused autonomous hyperaldos-
teronism and chronic BP elevation in mice [88]. In addition, Mathar et al. reported that
mice lacking transient receptor potential melastatin 4 (TRPM4) had chronically increased
BP with exaggerated sympathetic tone [89]. TRP families are non-selective cation channels
that are involved in many physiological processes and are regarded as potential targets
for drug design for various diseases [50]. According to the report by Mathar et al., TRPM4
deficiency increases catecholamine release from chromaffin cells and thereby augments
sympathetic tone resulting in a continuous BP elevation.

It is generally known that plasma concentrations of adrenal gland-derived steroid
hormones are controlled by the physiological circadian rhythm of adrenocorticotropic
hormone (ACTH) secretion. Circadian clock genes, cryptochrome-1 and -2 (Cry-1 and -2),
play key roles in this mechanism by direct regulation of Hsd3b6 expression encoding an
aldosterone-producing enzyme, 3β-hydroxysteroid dehydrogenase-isomerase (3β-HSD).
Therefore, Cry-1 and Cry-2 KO mice exhibited salt-sensitive hypertension under a high-salt
diet condition due to constitutive activation of 3β-HSD such asthe DOCA-salt model [90].

Multiple genetic and physiological mechanisms as thus far described are complicat-
edly involved in the pathogenesis of hypertension. Furthermore, the pathogenic roles
of epigenetic modifications [91–93], microbiota/metabolome [94–96], and sympathetic
overactivity [97–99] in cardiovascular disease have been also discussed.
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Table 4. Target molecules in brain, adipocyte, and adrenal gland.

Organs, Tissues Targets (Official Symbols) Type of Genetic
Modification Models Phenotypes References

Brain

Human AGT (angiotensinogen, AGT) Glial-specific overexpression No treatment ↑BP,↑salt preference Morimoto et al. [79]

Human REN (renin, REN) Glial- and neuron-specific
overexpression No treatment ↑BP, ↑salt preference Morimoto et al. [80]

Human AGT (angiotensinogen, AGT) Glial-specific KO No treatment ↓BP Sherrod et al. [81]

PRR ((Pro)renin receptor, Atp6ap2) Neuron-specific KO DOCA-salt
↓BP, ↓brain Ang II production,
↓cardiac and vasomotor

sympathetic tone
Li et al. [82]

Nax (sodium channel, voltage-gated, type
VII, alpha, Scn7a) Conventional KO High-salt diet ↑BP Nomura et al. [83]

HSD11β2 (11β-hydroxysteroid
dehydrogenase, Hsd11b2) Neuron-specific KO High-salt water ↑BP, ↑salt preference Evans et al. [84]

Adipocytes PRR ((Pro)renin receptor, Atp6ap2) Adipocyte-specific KO High-fat diet
↑BP (basal and high fat

diet-induced), ↑glucose tolerance,
↓diet-induced obesity

Wu et al. [86]

Adrenal gland

TASK-1/3 (potassium channel, subfamily
K, member 3/9, Kcnk3/9)

Zona glomerulosa
cells-specific KO No treatment ↑BP Guagliardo et al. [88]

TRPM4 (transient receptor potential cation
channel, subfamily M, member 4, Trpm4) Conventional KO No treatment

↑BP, ↑plasma epinephrine,
↑urinary

catecholamine metabolites
Mathar et al. [89]

Cry1/2 (cryptochrome-1/2, Cry1/2) Conventional KO High-salt diet ↑BP, ↑increased expression and
activity of 3β-HSD Doi et al. [90]
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3. Rat Models

Rats are the generally used experimental animal the same as mice and have some
advantages compared with mice such as large body and tissue size and physiological prop-
erties similar to those in humans. Despite the advantages, mice have been more frequently
used than rats; this is probably due to, except for higher experimental costs than mice,
the technical difficulty of creating KO/KI rats. However, genome-editing technologies,
i.e., zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and
clustered regularly interspaced short palindromic repeats (CRISPRs)-associated proteins
9 (CRISPR-Cas9), made it possible to also create KO/KI rats easily. In 2009, Geurts et al.
first reported the creation of KO rats by ZFN [100]. Thereafter, a growing body of literature
has emerged in the last decade reporting phenotypes of KO/KI rats including genetic
hypertensive models as below [101,102].

3.1. KO Models of SHR and SHRSP

SHR (spontaneously hypertensive rat) is a representative genetically hypertensive
model that was established by selective breeding of rats with relatively high blood pres-
sure in an outbred colony of Wistar rats that had been maintained in Kyoto University.
SHRSP (stroke-prone SHR) is a substrain of SHR that genetically develops more severe
hypertension and stroke. Despite the fact that both strains have been widely used for
clarifying the responsible genes and the underlying mechanisms of hypertension and its
complications [103–105], the literature evaluating cardiovascular phenotypes by using
KO/KI models are still scant (Table 5).

SHR is a useful model for hypertensive cardiac hypertrophy [106]. A quantitative
trait locus (QTL) related to the left ventricular hypertrophy was previously mapped on
chromosome (Chr) 8 by phenotyping of congenic strains between SHR and normotensive
Brown Norway (BN) rats [107]. Liška et al. identified promyelocytic leukemia zinc finger
(Plzf ) as a candidate gene on the cardiac QTL and showed that the deletion in SHR did not
alter the BP but ameliorated cardiac hypertrophy and fibrosis [108].

Complement 3 (C3) that is overexpressed in aortic smooth muscle cells of SHR has
been proposed as a candidate gene responsible for the development of hypertension
in this model [109]. Mechanistically, C3-C3a receptor signaling accelerates a change in
the characteristic of VSMC and glomerular mesangial cells from contractile to synthetic
phenotype via activation of Krüppel-like factor 5 (KLF5) that is a transcription factor to
induce the synthetic phenotype of mesenchymal cells [110,111]. Negishi et al. revealed that
the C3 deficiency mitigated a salt-sensitive BP elevation and renal injury with decreased
renal Ang II level and urinary catecholamine excretion [112].

Rubattu et al. previously identified a QTL on Chr 1 responsible for the susceptibility
to salt-induced stroke by a linkage analysis F2 cross between SHR and SHRSP [113].
They identified NADH dehydrogenase (ubiquinone) 1 subunit C2 (Ndufc2), encoding a
component of the electron transport chain, as a plausible candidate gene in the stroke
QTL, then proved that the heterozygous deletion in SHR by ZFN strongly exacerbated the
stroke susceptibility with increased oxidative stress and inflammation both in vitro and
in vivo [114].

Besides the above, we recently created peroxiredoxin 2 (Prdx2) KO SHR to investigate
whether the deletion of an antioxidant gene exacerbates cerebro-cardiovascular phenotypes
of SHR [115]. Consequently, Prdx2 KO SHR had greater basal BP compared with WT SHR.
Furthermore, the lifespan of Prdx2 KO SHR under a salt loading condition was shorter than
that of WT SHR despite no difference in BP after salt loading between the KO and the WT.
No apparent inter-strain differences were found in histopathological evaluation for brain,
heart, and kidney lesions, and therefore, the reason for the short life span of Prdx2 KO SHR
under the salt loading condition remains fully unknown.

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is an endothelial
scavenger receptor that is closely involved in the pathogenesis of atherosclerosis [116].
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Recently, Liang et al. reported that LOX-1 deficiency had a protective role in spontaneous
brain damage in SHRSP with no significant change of BP [117].

We previously found a QTL on Chr1 that affected exaggerated sympathetic responses
to the stress of SHRSP by genetic analysis of congenic lines between SHRSP and normoten-
sive Wistar-Kyoto rat (WKY) [118]. Among the genes in the QTL region, stromal interaction
molecule 1 (Stim1) with a nonsense mutation in SHRSP was identified as a promising candi-
date ([47], see also Section 2.2 Vasculatures). As STIM1 plays a key role in Ca2+ homeostasis
in the body, we expected that the Stim1 mutation was a genetic determinant responsible for
cerebro-cardiovascular traits; however, no significant differences were observed in the sym-
pathetic stress responses as well as age-dependent changes in BP between Stim1 KI SHRSP
and SHRSP, i.e., with WT and mutant allele for Stim1, respectively [49]. Phenotyping of the
Stim1 KI SHRSP is currently in progress, and the results will be described elsewhere.

3.2. KO Models of Dahl SS

Dahl salt-sensitive (SS) rats originate from a closed colony of Sprague-Dawley (SD)
rats and are widely used as a salt-sensitive hypertension model that develop severe hy-
pertension (>200 mmHg) and the complications such as hypertensive kidney injury and
heart failure when fed high-salt diets [119]. SS/Jr and DSS/N strains have been separately
established by Rapp and Iwai, respectively. Compared with SHR and SHRSP, multiple
KO/KI models with SS/Jr genetic backgrounds have been actively created (Table 5).

In 2011, Moreno et al. first reported the phenotype of renin KO SS/Jr, in which
a severe decrease in basal BP and abnormal kidney morphologies were observed [120].
Thereafter, a growing literature has shown pathophysiological implications of multiple
genes on cardiorenal disease traits in SS/Jr [121–133]. Among them, pleckstrin homology
domain containing family A member 7 (Plekha7) is a plausible candidate gene for essential
hypertension identified by GWAS. A risk variation on Plekha7, encoding an adherence
junction protein [134], for elevated systolic BP has been found in multiple human popula-
tions [135–139]. In this context, Endres et al. created SS/Jr lacking the functional domain
of Plekha7 by ZFN and revealed that the Plekha7 functional KO SS/Jr had significantly
lower BP and renal and cardiac damage under the 8% high-salt diet condition [123]. This
is a meaningful study that verified a direct effect of the GWAS gene on the hypertensive
phenotype in a genetic rat model with salt sensitivity.
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Table 5. Target molecules in rat models.

Strains Targets (Official Symbols) Methods Phenotypes References

SHR/OlaIpcv Plzf (promyelocytic leukemia zinc finger, Zbtb16) TALEN ↑cardiomyocyte hypertrophy and fibrosis Liška et al. [108]

SHR/NCrl Ndufc2 (NADH dehydrogenase (ubiquinone) 1
subunit C2, Ndufc2) ZFN No effect on BP, ↑salt-induced stroke susceptibility,

oxidative stress, and inflammatory signaling Rubattu et al. [113]

SHR/Izm
C3 (complement 3, C3) ZFN ↓salt-induced BP, ↓renal Ang II level, ↓urinary

catecholamine excretion Negishi et al. [112]

Prdx2 (peroxiredoxin 2, Prdx2) CRISPR-Cas9 ↓basal BP, ↑life span under salt loading condition Mahal et al. [115]

SHRSP/Izm LOX-1 (lectin-like oxidized low-density lipoprotein
receptor-1, Olr1) ZFN ↓stroke susceptibility independently of BP Liang et al. [117]

SS/JrHsdMcwi

Renin (Ren) ZFN ↓BP, abnormal kidney morphology Moreno et al. [120]

Rag1 (recombination activating 1, Rag1) ZFN ↓BP, ↓renal injury Mattson et al. [121]

ROMK (renal outer medullary potassium
channel, Kcnj1) ZFN ↓BP Zhou et al. [122]

Plekha7 (pleckstrin homology domain containing
family A member 7, Plekha7) ZFN ↓BP, ↓renal injury, ↓cardiac fibrosis Endres et al. [123]

HV1 (voltage-gated H+ channel, Hvcn1) ZFN ↓BP, ↓renal injury, ↓oxidative stress Jin et al. [124]

CD247 (Cd247) ZFN ↓BP, ↓CD3+ T cells, ↓renal injury Rudemiller et al. [125]

BNP (B-type natriuretic peptide, Nppb) ZFN ↑BP, ↑cardiac hypertrophy and fibrosis,↑renal injury Holditch et al. [126]

Nr2f2 (nuclear receptor subfamily 2 group F
member 2, Nr2f2) ZFN ↓BP, ↑left ventricular/vascular functions,

↑urinary protein Kumarasamy et al. [127]

Adora2b (A2B adenosine receptor, Adora2b) ZFN ↑BP, ↑body weight, ↓glucose clearance Nayak et al. [128]

Nox4 (NADPH oxidase 4, Nox4) ZFN ↓BP, ↓renal injury, ↓oxidative stress Cowley et al. [129]

Rffl-lnc1 (a novel long-noncoding RNA) CRISPR-Cas9 ↑BP, shorter QT intervals Cheng et al. [130]

Resp18 (regulated endocrine-specific
protein 18, Resp18) ZFN ↑BP, ↑renal injury, ↓survival time Kumarasamy et al. [131]

Gper1 (G protein-coupled estrogen
receptor 1, Gper1) CRISPR-Cas9 ↓BP, ↑vascular relaxation, ↓microbiotal dysbiosis Waghulde et al. [132]

p67phox (neutrophil cytosolic factor 2, Ncf2) ZFN ↓BP, ↓renal injury, ↓renal immune cell infiltration Abais-Battad et al. [133]
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4. Conclusions

Hypertension is a multifactorial disease; nevertheless, the majority of previous re-
search has focused on monogenic effects under inducible hypertensive conditions such as
Ang II infusion and DOCA-salt in mice. Recent advances in genome-editing techniques,
however, have made it possible to create knock-out and knock-in animals more easily,
efficiently, and rapidly in rats as well as in mice [140–143]. Accordingly, it is necessary to
create knock-out and knock-in models with multiple mutations in different loci to mimic
complex genetic backgrounds of hypertensive patients and to uncover how the genetic
interactions cause hypertension. As in the case of Dahl SS [144], translation of the findings
in the experimental model into human hypertension remains highly challenging. However,
translational approaches to bridge the gap between humans and rodent models would be
necessary for understanding genetic and molecular mechanisms of essential hypertension in
the post-GWAS era. A goal of basic hypertension research using experimental models may
reconstruct ‘genetically hypertensive mice/rats’ from normotensive strains, and vice versa.
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