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Abstract
Context: Iatrogenic hypoglycemia remains one of the leading hindrances of optimal glycemic management in insulin-treated diabetes. Recurring 
hypoglycemia leads to a condition of hypoglycemia-associated autonomic failure (HAAF). HAAF refers to a combination of (i) impaired hormonal 
counterregulatory responses and (ii) hypoglycemia unawareness to subsequent hypoglycemia, substantially increasing the risk of severe hypo-
glycemia. Several studies since the 1990s have experimentally induced HAAF, yielding variable results.
Objective: The aim of this review was to assess the varying designs, clinical outcomes, potential assets, and drawbacks related to these 
studies.
Method: A systemic literature search was conducted on PubMed and Embase in winter 2021 to include all human studies attempting to experi-
mentally induce HAAF. In different combinations, the search terms used were “hypoglycemia-associated autonomic failure,” “HAAF,” “hypogly-
cemia,” “recurring,” “recurrent,” “repeated,” “consecutive,” and “unawareness,” yielding 1565 publications. Inclusion criteria were studies that 
had aimed at experimentally inducing HAAF and measuring outcomes of hormonal counterregulation and awareness of hypoglycemia.
Results: The literature search yielded 27 eligible publications, of which 20 were successful in inducing HAAF while statistical significantly 
impairing both hormonal counterregulation and impairing awareness of hypoglycemia to subsequent hypoglycemia. Several factors were of 
significance as regards inducing HAAF: Foremost, the duration of antecedent hypoglycemia should be at least 90 minutes and blood glucose 
should be maintained below 3.4 mmol/L. Other important factors to consider are the type of participants, insulin dosage, and the risk of unin-
tended hypoglycemia prior to the study.
Conclusion: Here we have outlined the most important factors to take into consideration when designing a study aimed at inducing HAAF, 
including to take into consideration other disease states susceptible to hypoglycemia, thus hopefully clarifying the field and allowing qualified 
studies in the future.
Key Words: hypoglycemia, hypoglycemia-associated autonomic failure, type 1 diabetes, type 2 diabetes
Abbreviations: GH, growth hormone; HAAF, hypoglycemia-associated autonomic failure; IAH, impaired awareness of hypoglycemia; ITT, insulin tolerance test.

Presently, iatrogenic hypoglycemia is a common and dreaded 
side effect to insulin therapy and some oral antidiabetic drugs, 
and “still remains one of the leading hindrances for optimal 
glycemic management of insulin-treated diabetes” [1]. In in-
dividuals without diabetes, hypoglycemia leads to a timely 
well-organized sequence of hormonal counterregulatory re-
sponses comprising decreased secretion of insulin from the 
β  cells at a glycemic blood glucose threshold of approxi-
mately 4.5  mmol/L and increased secretion of glucagon by 
the α cells, increased release of epinephrine and norepineph-
rine (catecholamines) together with cortisol from the ad-
renal glands, and growth hormone (GH) from the pituitary 
gland at a blood glucose concentration of approximately 
3.8 mmol/L. The combined metabolic response to these hor-
mones includes an increased endogenous glucose production 
primarily from the liver and to a lesser extent from the kid-
neys, enabling a restoration of blood glucose to a normal con-
centration. Furthermore, the hormones increase the rate of 
lipolysis and of ketogenesis, which relieve glucose needs in 

virtually all tissues, augmenting proteolysis and ureagenesis 
and decreasing peripheral glucose disposal [2-4]. Likewise, 
autonomic symptoms of hypoglycemia arise allowing pro-
tective behavioral actions of approximately 3.2  mmol/L, 
whereas neuroglycopenia impairs it and inhibits protective 
behavior actions [5] (Fig. 1).

Hypoglycemia-associated Autonomic Failure
After the introduction of insulin therapy in 1922 [6], clinicians 
soon recognized that some insulin-treated individuals did not 
experience symptoms during hypoglycemia [7]. Presumably, 
this early observation reflects hypoglycemia unawareness—
an inherent component of hypoglycemia-associated auto-
nomic failure (HAAF) [8]. HAAF is induced by a recent 
antecedent episode of hypoglycemia causing a (mal-)adap-
tive condition with defective hormonal counterregulatory 
responses and hypoglycemia unawareness during a subse-
quent hypoglycemic episode (Fig. 2). Inherent to repeated 
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hypoglycemia is a lowering of the glycemic threshold at which 
the counterregulatory responses occur. These phenomena can 
result in a vicious cycle of recurring hypoglycemia, signifi-
cantly increasing the risk of severe hypoglycemia, rendering 
the individual unaware until blood glucose concentrations 
become too low to maintain adequate brain function and im-
pairment of cognition and consciousness supervenes [9, 10] 
(see Fig. 2). It is estimated that HAAF is present in 25% of 
individuals with type 1 diabetes [11], and in some individ-
uals with longer duration of type 2 diabetes [12]. The mech-
anism behind HAAF remains to be fully clarified though 
several hypotheses exist [13]. The aim of this review is to 
assess the varying design in studies aimed at experimentally 
inducing HAAF in individuals with and without diabetes. 
Furthermore, we aimed at describing the clinical outcomes 
and potential drawbacks based on these studies in the hope of 
encouraging future qualified studies aiming at understanding 
and preventing HAAF and severe hypoglycemia.

Materials and Methods
To identify studies attempting to describe and induce HAAF in 
humans, the databases PubMed and EMBASE were searched 
from their inception until January 2022. Inclusion criteria 
were studies that had aimed at experimentally inducing 
HAAF measuring outcomes of hormonal counterregulation 
and awareness of hypoglycemia (studies measuring only hor-
monal counterregulation and not awareness of hypoglycemia 
were also included). A search string was composed after guid-
ance from a trained librarian. In different combinations, the 
search terms used were “hypoglycemia-associated autonomic 
failure,” “HAAF,” “hypoglycemia,” “recurring,” “recurrent,” 
“repeated,” “consecutive,” and “unawareness,” yielding 1565 
publications. The search was limited to English language 
manuscripts (excluding 174 publications) and human studies 
(excluding 339 publications), yielding 1052 potentially eli-
gible publications. Following the screening of titles and 
scrutinizing abstracts, we found 27 papers eligible for this re-
view. In addition, we also searched the reference list of the 
27 eligible papers for additional publications. Data extrac-
tion was performed using a standard data-extraction sheet. 

Though the term impaired awareness of hypoglycemia (IAH) 
[14] is related to HAAF, studies merely investigating IAH 
were excluded, as we opted for the HAAF definition coined 
by Philip Cryer predicating the coexistence of defective hor-
monal counterregulatory response and hypoglycemia un-
awareness [15]. Studies combing exercise and hypoglycemia 
were also omitted.

Results
A total of 27 studies have attempted to experimentally in-
duce HAAF during the period 1991 to September 2020 
(Table 1). To summarize, 20 studies succeeded in inducing 
HAAF (both statistically significantly impaired hormonal 
counterregulation and IAH to subsequent hypoglycemia 
[including 6 studies not assessing symptoms]); 5 studies used 
1 antecedent hypoglycemic episode and 15 studies used 2 or 
more antecedent hypoglycemic episodes. Five studies par-
tially induced HAAF (either statistically significant impaired 
hormonal counterregulation or IAH; here is also included 1 
study inducing HAAF in 13 of the 24 participants); 1 study 
used 1 antecedent hypoglycemic episode and 4 studies used 
2 or more antecedent hypoglycemic episodes. Seventeen 
studies assed hypoglycemic symptoms; 12 recorded IAH to 
subsequent hypoglycemia, 5 studies recorded no changes in 
hypoglycemic symptoms to subsequent hypoglycemia. Seven 
studies investigated cognitive function or brain function. Two 
studies did not induce HAAF (neither statistically significant 
impaired hormonal counterregulation nor IAH); both studies 
used a single, short antecedent hypoglycemia episode.

Baseline Demographics
All studies were conducted with participants with median age 
younger than 35 years apart from 4 studies; 1 study included 
participants with type 2 diabetes (median age 50 years) and 
3 studies had healthy participants with a median age younger 
than 42 years. The number of participants within each group 
ranged from 5 to 27 as further outlined in Table 1. Overall, 
6 studies investigated 2  study groups consisting of parti-
cipants with diabetes and healthy controls, and 21 studies 
had 1 study group consisting of either participants without 

Figure 1. Normal glycemic thresholds and counterregulation during hypoglycemia is characterized by inhibition of insulin secretion, counterregulatory 
hormone release in the hierarchical order of glucagon, catecholamines (epinephrine and norepinephrine), cortisol, and growth hormone followed by 
autonomic symptom onset. If hypoglycemia prevails, cognitive inability to perform complex tasks and later severe neuroglycopenia develop.
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diabetes (20 studies) or participants with type 1 diabetes (1 
study). Twenty studies were conducted both with female and 
male participants and 7 studies with only male participants.

Discussion
Since the 1990s, HAAF has been experimentally induced in 
humans in order to improve the understanding of the con-
dition; Heller and Cryer were the first in 1991 to success-
fully induce HAAF in individuals without diabetes [16]. Since 
then, several studies have followed including studies in indi-
viduals with type 1 and type 2 diabetes [17-42]. The fact that 
it can be reproduced both in individuals with and without 
diabetes underlines that HAAF is not specific for diabetes but 
rather for hypoglycemia, sleep, and exercise [8]. This concept 
is further supported by several case reports of hypoglycemia 
unawareness in spontaneous hypoglycemia, including individ-
uals with insulinoma [43]. Most studies (21 of 27) examined 
participants of both sexes, thus increasing representativeness 
and transferability.

Varying Designs
It has been demonstrated that a single episode of hypoglycemia 
in the afternoon is enough to significantly impair hormonal 
counterregulatory responses and hypoglycemic symptoms to 
subsequent hypoglycemia the following morning. For this to 
occur, the duration of the single antecedent hypoglycemic epi-
sode should be at least 90 minutes [16, 17, 20, 22, 30] as we 
[41] and others [31] have shown unaltered counterregulation 
after single antecedent hypoglycemia of shorter duration (30 
minutes and 15 minutes) in participants with type 1 diabetes 
and participants without diabetes. Furthermore, HAAF can be 
induced by 2 episodes of antecedent hypoglycemia the same 
day each lasting 40 minutes with blood glucose maintained 
around 2.2 to 2.3 mmol/L in participants without diabetes 
[34, 35]. Likewise, other studies have investigated the effects 
of repeated antecedent hypoglycemia, and it is apparent that 2 
or more shorter antecedent hypoglycemia episodes effectively 
impair counterregulation to subsequent hypoglycemia; Davis 
et al [26] showed that 2 episodes of antecedent hypoglycemia 

in individuals without diabetes with blood glucose main-
tained at 2.9 mmol/L for only 5 minutes the same day was 
sufficient to reduce hormonal counterregulatory responses in 
subsequent hypoglycemia the following morning, although 
hypoglycemic symptoms were not statistically significantly 
reduced. On the other hand, Peters et al [24] were not able to 
induce HAAF in individuals without diabetes using 1 episode 
of hypoglycemia with nadir blood glucose of 2.8  mmol/L 
lasting 15 minutes every day for 4 consecutive days. More re-
cently, frequently used models include an episode of 90 to 120 
minutes antecedent hypoglycemia with blood glucose main-
tained at 2.8 to 3.3 mmol/L in the morning followed by a 
similar hypoglycemic episode in the afternoon the day before 
the actual study day [25-27, 29, 31-33, 37, 38]; some studies 
have additionally added a third 120-minute antecedent hypo-
glycemia the morning of the actual study day [18, 36, 39, 40].

In general, the first antecedent hypoglycemic episodes have 
been induced in the afternoon 18 to 24 hours before the ac-
tual hypoglycemic event of interest [16-42]. The subsequent 
hypoglycemic episode of interest was in most studies in-
duced in a manner identical to the antecedent hypoglycemia. 
Overall, the blood glucose nadirs of antecedent hypoglycemia 
have varied in the range between 1.7 mmol/L and 3.9 mmol/L 
[16-42]. One study [26] explored the effects of varying 
depths of antecedent hypoglycemia with regard to hormonal 
counterregulatory responses in participants without diabetes; 
they found that when antecedent hypoglycemic blood glucose 
concentrations were reduced and maintained at 3.9 mmol/L, 
only adrenaline and glucagon responses to subsequent hypo-
glycemia were significantly reduced while blood glucose con-
centrations of 3.3 mmol/L during antecedent hypoglycemia 
also led to significant reductions in noradrenaline and GH 
concentrations to subsequent hypoglycemia. These findings 
to some extent support the proposed hierarchy of the gly-
cemic threshold levels at which the designated hormones are 
secreted [2, 5] (see Fig. 1). Another important factor related 
to recurring hypoglycemia is the lowering of glycemic thresh-
olds in individuals with diabetes due to previous recurring 
hypoglycemia [44], meaning that a lower nadir blood glu-
cose is required to obtain useful data on counterregulation. 

Figure 2. Compromised hypoglycemic counterregulation. Individuals treated with insulin therapy lack the ability to decrease insulin levels. Furthermore, 
hypoglycemia-associated autonomic failure (HAAF) is induced by recent antecedent hypoglycemia causing impaired hormonal counterregulatory 
responses and hypoglycemia unawareness during a subsequent hypoglycemic episode, making the individual susceptible to recurrent hypoglycemia 
severalfold, increasing the risk of severe hypoglycemia.
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The 2 studies unable to induce HAAF using a single ante-
cedent hypoglycemic episode had blood glucose nadirs of 
2.5 mmol/L [41] and 2.8 mmol/L [22] examining individuals 
with and without type 1 diabetes. Therefore, the most im-
portant factor to successfully induce HAAF by means of a 
single antecedent hypoglycemic episode appears to be a dur-
ation of at least 90 minutes, whereas it is apparent that the 
depth of the antecedent hypoglycemic episode is of lesser im-
portance as long as it is below 3.4 mmol/L blood glucose.

Methodology
The most frequently used method for the induction of hypo-
glycemia is the hyperinsulinemic clamp technique [45]. The 
technique enables investigators to reduce the blood glucose in 
a safe and stepwise manner, and blood glucose can be main-
tained at any desired level. The most commonly used dosage 
of insulin is 1 to 2 mU/kg/min leading to supraphysiological 
plasma insulin concentrations, which overcomes the presence 
of insulin resistance both in type 1 and type 2 diabetes patients 
[46]. It is clearly important to ensure similar insulin concen-
trations when comparing several groups. Individuals with dia-
betes may have higher basal insulin concentrations compared 
with healthy participants [47], potentially affecting α-cell glu-
cagon secretion and endogenous glucose production. Usually 
the participants eventually are given intravenous glucose to 
restore euglycemia, a procedure that obviously affects the 
natural course of hormonal and metabolic counterregulation. 
Peters et al [24] used an insulin tolerance test (ITT) [48] to 
induce hypoglycemia in individuals with and without type 1 
diabetes. During an ITT, an insulin bolus (usually 0.1 IU/kg 
body weight) is intravenously injected and nadir blood glu-
cose is reached after 30 to 40 minutes. The gradually pro-
gressing hypoglycemia mimics to some extent more faithfully 
the real-life hypoglycemia often induced by subcutaneously 
injected insulin compared with the stepwise hypoglycemic 
clamp, though hypoglycemia cannot be maintained at any de-
sired level. Furthermore, during an ITT there is a certain risk 
of not achieving hypoglycemia, especially in insulin-resistant 
individuals, and variable nadirs are often encountered making 
comparisons between participants problematic.

Over time, there have been certain discrepancies as regards 
successful induction of HAAF; one study reported impaired 
hormonal counterregulation to subsequent hypoglycemia in 
healthy participants but failed in matched participants with 
type 2 diabetes [27]. This is probably because it may be more 
difficult to further attenuate the counterregulation in individ-
uals who per se already have an impaired counterregulation 
[19]. Several studies have been discrepant as regards impairing 
both hormonal counterregulation and hypoglycemic symp-
toms [21, 28, 38, 39]. This is most likely related to the de-
sign and methods used for obtaining and analyzing data, or 
could reflect a dissociation between the 2 inherent compo-
nents of HAAF.

Some studies have induced HAAF with statistically sig-
nificant reductions in cortisol and/or GH and/or epinephrine 
and/or norepinephrine but without statistically significant re-
ductions in glucagon during subsequent hypoglycemia [22, 
29, 39, 40]. This could either reflect lack of analytical per-
formance with earlier glucagon kits [49] or indicate that de-
fective glucagon responses are already prevailing regardless 
of glycemic intervention. One study [42] aimed at inducing 
HAAF applying a robust model of 2 antecedent episodes of 
hypoglycemia lasting 120 minutes but reported successful R
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induction of HAAF in merely 13 of 24 participants without 
diabetes. The authors [42] contemplate that interindividual 
variability in hormonal responses may explain an individual’s 
susceptibility to HAAF.

All studies measuring symptoms used a standardized ques-
tionnaire to asses autonomic and neuroglycopenic symptoms. 
Some studies included more complex methods of assessing 
cognitive function including brain function [20, 21, 23, 30, 
34, 39, 40]. Limitations of cognitive testing include incorrect 
administration and scoring increases the risk of skewed re-
sults. Furthermore, the lack of consensus concerning appro-
priate tests for measurement of cognitive function makes it 
difficult to compare between studies. Lastly, it is important to 
exert caution before extrapolating the results of neurophysio-
logical measurements to cerebral function as a whole.

Unintended Hypoglycemia
One of the major difficulties in investigating HAAF in indi-
viduals with diabetes is the potential interference from unin-
tended hypoglycemia before the study day. Most studies seek 
to overcome this by instructing participants to frequently 
monitor blood glucose and avoid hypoglycemia 1 to 5 days 
[21, 22, 41] or 14  days [33] before the study days. Some 
studies have hospitalized the participants to control outside 
interference the night preceding and during the study [19, 22, 
30, 37, 38, 41]. It should be noted that once HAAF is present 
only scrupulous avoidance of hypoglycemia for 1 to 3 weeks 
seems to reverse the condition [50-52], implying that avoid-
ance of hypoglycemia for a few days preceding the study is 
insufficient. Furthermore, if participants only measure blood 
glucose during the daytime, there is a risk of unrecognized, 
long-lasting nocturnal hypoglycemic episodes [53]. The in-
creased availability of novel technological devices including 
continuous glucose monitoring may offer a way to overcome 
these challenges [54]. Lastly, it has been demonstrated that 
HAAF also occurs with hypoglycemia associated with exer-
cise and sleep [8]. This emphasizes the importance of appro-
priate guidance and precautions prior to experimental days, 
including strict absence of exercise.

Perspectives
Based on the studies we have scrutinized, it is clear that the 
hormonal counterregulatory responses to hypoglycemia are 
derailed in individuals with type 1 diabetes and long-lasting 
type 2 diabetes, but whether the actual metabolic re-
sponses following hypoglycemia, for example, stimulated 
gluconeogenesis, proteolysis, and lipolysis, are afflicted is more 
uncertain. Some studies reported augmented endogenous glu-
cose production and decreased rates of lipolysis post hypo-
glycemia in individuals with type 1 diabetes compared with 
individuals without diabetes [55, 56], whereas others have 
found comparable metabolic responses between individuals 
with and without type 1 diabetes [41]. Furthermore, few 
studies have investigated the relationship between hypogly-
cemia and the posthypoglycemic insulin-resistance state in 
type 1 diabetes. One potential mechanism protecting partici-
pants with type 1 diabetes against hypoglycemia could be in-
sulin resistance evidently present both in skeletal muscle and 
adipose tissue during euglycemia [46] and following hypo-
glycemia [41], allowing for adequate metabolic responses 
despite derailed hormonal responses in a compensatory 
manner. Some studies have assessed cognitive function during 

subsequent hypoglycemia with more complex methods [20, 
23, 34] and a few studies have assessed cerebral function 
including using middle latency auditory evoked potentials 
as a measure of neurophysiological function [21], measuring 
cerebral alterations in brain glucose uptake [23], cerebral 
blood flow by positron emission topography [30], hypothal-
amic glucose transport [39], and cerebral glycogen levels [40] 
using magnetic resonance imaging. Functional magnetic res-
onance imaging and utilization of different positron emission 
topography tracers are potential future directions to test cog-
nitive function during hypoglycemia and could be ways of 
revealing the unknown mechanisms behind HAAF.

Of note, other hypoglycemia-prone disease states are less 
well characterized metabolically, to some extent because 
they are much less prevalent than diabetes. There is evi-
dence that people with spontaneous hypoglycemia caused by 
insulinoma display defective counterregulation and features 
of HAAF [5,57], and it has been reported that people with 
non–islet cell tumor hypoglycemia associated with insulin-
like growth factor-2 have low levels of cortisol and GH [58, 
59]. In addition, it is becoming increasingly clear that a sub-
stantial proportion of individuals with diabetes exhibit exo-
crine pancreatic dysfunction and reduced pancreatic volume 
[60]; conversely, “pancreatic/type 3c” diabetes secondary to 
exocrine pancreatic disease is relatively common in adults 
and often misdiagnosed as type 2 diabetes [61, 62]. Clearly 
such exocrine pancreatic abnormalities, together with 
gastrointestinal transit disturbances [63], have implications 
for absorption and glucagon responses during hypoglycemia. 
Finally, type 1 diabetes increases the risk of associated auto-
immune disease, including adrenocortical failure, and people 
with concomitant Addison disease and type 1 diabetes have 
increased risk both of hypoglycemia and adrenal crisis [64, 
65]. It would appear advisable to incorporate the existence 
of additional organ dysfunction including HAAF in the set-
ting of therapeutic targets, perhaps aiming at less-strict gly-
cemic windows in closed-loop systems likely to dominate 
the future; adding adjustable glucagon infusion to such sys-
tems could be considered in selected patients with defective 
counterregulation [66].

In our review, we chose not to perform further statistical 
analyses to compare results from the varying studies, based 
on the fact that the number of individuals studied in general 
is limited and that a vast number of heterogeneous design 
issues determine the outcome. In general, systematic reviews 
and meta-analyses will tend to be biased toward evidence of 
inefficacy of interventions if the statistical power of studies is 
not taken into consideration.

Conclusion
The most important factors to successfully induce experimen-
tally HAAF with a single antecedent hypoglycemic episode is 
a duration of at least 90 minutes with a glucose nadir below 
3.4 mmol/L blood glucose. Combining shorter repeated ante-
cedent hypoglycemia the same day is effective in impairing 
counterregulation to subsequent hypoglycemia. The risk of 
unintended hypoglycemia in participants with diabetes be-
fore the study is an important confounder and needs to be 
considered. Furthermore, other disease states susceptible to 
hypoglycemia are less well characterized metabolically and 
should be taken into account when designing future studies. 
Clarification of these issues are of importance for the design 
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and interpretation of future studies of HAAF, insulin resist-
ance, and hormonal and metabolic responses, and eventu-
ally our understanding and potential prevention of severe 
hypoglycemia.
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