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Abstract: A chemically explainable machine learning model was constructed with a small dataset
to quantitatively predict the singlet-oxygen-scavenging ability. In this model, ensemble learning
based on decision trees resulted in high accuracy. For explanatory variables, molecular descriptors by
computational chemistry and Morgan fingerprints were used for achieving high accuracy and simple
prediction. The singlet-oxygen-scavenging mechanism was explained by the feature importance
obtained from machine learning outputs. The results are consistent with conventional chemical
knowledge. The use of machine learning and reduction in the number of measurements for screening
high-antioxidant-capacity compounds can considerably improve prediction accuracy and efficiency.

Keywords: machine learning; antioxidant; singlet oxygen; feature importance; interpretability;
carotenoid

1. Introduction

Oxygen is essential for human life. However, in the human body, some amount of
oxygen exists as reactive oxygen species, which contributes to the immunity mechanism.
However, aging and carcinogenesis are also attributed to reactive oxygen species because of
their high reactivity [1]. Antioxidants are substances that remove reactive oxygen species in
the body, and the ability to scavenge reactive oxygen species is called antioxidant capacity.
Therefore, dietary intake of antioxidants through vegetables, fruits, crustaceans, and other
foods is recommended [2].

The method for measuring the scavenging activity depends on the target reactive
oxygen species. Furthermore, the use of only one method for determining the antioxidant
capacity of compounds and foods may not provide reliable results. The oxygen radical
absorbance capacity (ORAC) assay [3,4] was developed as an antioxidant capacity assay
for peroxyl radicals, which are commonly used as an indicator of the antioxidant capac-
ity of foods and compounds [5]. Phenolic antioxidants exhibit high radical-scavenging
capacity. However, carotenoids exhibit low peroxyl radical-scavenging ability and high
singlet-oxygen-scavenging ability [6]. The singlet-oxygen-scavenging ability is critical for
peroxyl radical scavenging [7]. The singlet oxygen absorbance capacity (SOAC) assay [8]
was developed to measure the singlet oxygen. Research on the effects of foods and com-
pounds on singlet oxygen is ongoing. The Antioxidant and Functional Research Group [9],
established in Japan to promote research on antioxidant and functional properties of foods,
named the general antioxidant capacity of foods antioxidant unit and defined it as the sum
of ORAC and SOAC measurements.

The analysis of antioxidant capacity is time consuming and expensive. To screen
compounds from candidates, the development of a simple and rapid method for measuring
the antioxidant capacity of compounds is critical. Machine learning was widely used in
various fields, such as industry, medicine, and engineering, for efficient research, and
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diagnosis [10,11]. In the chemical field, the use of machine learning is promoted in domains
such as toxicity determination [12], retrosynthesis [13], and prediction of the antioxidant
capacity of polyphenols [14]. Machine learning can efficiently evaluate physical properties
and provide details for searching the structure of new substances. In chemical studies,
preparing a large amount of data for training is difficult, and machine learning should be
performed with a small amount of data. Therefore, a method to obtain accurate predictions
from a small amount of data is necessary.

In this study, a regression model that predicts singlet-oxygen-scavenging capacity as
an objective variable was constructed by using the molecular structure as an explanatory
variable. The numerical values obtained from computational chemistry and Morgan
fingerprinting [15] were used as the input data. To obtain the interpretability of the
machine learning model, regression coefficients were obtained from the linear model, and
the feature importance was obtained from the prediction model based on the decision
tree [16]. To verify the interpretability of the model, we attempted to explain the reaction
mechanism [17] of singlet oxygen scavenging from the feature importance.

2. Experiment
2.1. Preparing Dataset

The singlet-oxygen-scavenging capacities of 74 compounds were used in the dataset.
The SOAC values of compounds were obtained from previous studies [8]. The SOAC
values can be calculated as the ratio of the quenching rate constants of the antioxidants
and α-tocopherol.

SOAC values for the compounds whose values are not available in literature but
whose singlet-oxygen-scavenging rates are known were determined by calculating the
ratio of the quenching rate constants of the antioxidant and α-tocopherol. The natural
logarithm of the rate ratio was used as the objective variable. Examples of compounds in
the dataset are displayed in Figure 1. The names of all compounds in the dataset and their
singlet-oxygen-scavenging capacities are listed in Table S1 of the Supporting Information.
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Figure 1. Examples of compounds in dataset.

The compounds data were obtained from PubChem as isomeric SMILES (Simplified
Molecular Input Line Entry System) [18]. The most stable structure was determined as the
initial structure for each sample by exploring the coordination from the molecular force
field calculation using Balloon [19]. Then, the most stable structure was used as the initial
structure. From the obtained structures, molecular descriptors and Morgan fingerprints
were output using RDkit [20] and used as explanatory variables for the dataset. Using the
most stable structure, PM7 [21] calculations were performed using MOPAC (Molecular
Orbital PACkage) [21]. The PM7 method, which is a semiempirical method, was applied to
optimize the structure under the assumption of vacuum conditions. We obtained HOMO
(Highest Occupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital),
formation heat, and dipole moment values for each compound via PM7. Because PM6
is as accurate as density functional theory (DFT) calculations [22,23], we assumed that
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the PM7 calculations exhibit identical acceptable errors as DFT calculations under the
B3LYP/6-31G* condition.

Feature selection was performed using more than 100 descriptors generated through
RDkit and PM7. Firstly, descriptors with zero variance or duplicate content were deleted.
Secondly, the correlation coefficients between explanatory variables were calculated. For
the two descriptors with the highest absolute values of correlation coefficients, one of the
descriptors was deleted. Descriptors with high correlation coefficients with many variables
were omitted from the dataset because one indicator could substitute for many descriptors.
Therefore, the number of descriptors used in the dataset was 61. The list of descriptors is
provided in the Supporting Information.

2.2. Machine Learning Model

In this study, XGBoost [24,25], LightGBM [12,26], CatBoost [27], random forest [28],
AdaBoost [29], LASSO regression [30], and the deep neural network (DNN) [31] were used
to construct machine learning models. Additionally, we used Scikit-learn [32], Tensor-
Flow [33], and Keras [34] to construct the machine learning model. The hyperparameters
were set as described in the Supporting Information. The compound data were randomly
categorized into 66 training data and 8 test data by setting the random state values to 0,
10, and 100. The same machine learning model was trained on molecular descriptors and
Morgan fingerprints separately to evaluate and compare prediction performance. In this
study, we compared the prediction accuracy using the coefficient of determination R2 and
root mean squared error (RMSE) and used the leave-one-out cross-validation (LOOCV)
method to ensure sufficient level of learning. In LOOCV, one sample from the original set
was removed and used as the validation sample, and the rest was used for training. By
changing a validation sample, n training datasets were created when the original training
dataset had n samples. The output value by LOOCV (RMSELOO) is the average value of the
RMSE obtained by evaluating the machine learning model with each validation sample.

2.3. Feature Importance

The contribution of each feature to the prediction was analyzed by using the absolute
values of coefficients obtained by LASSO regression and feature importance obtained
by random forest, XGBoost, LightGBM, CatBoost, and AdaBoost. To analyze feature
importance, we created a feature ranking for each machine learning model [16]. We focused
on prediction models with R2 ≥ 0 and analyzed the feature importance. For each model,
the top-10 important features were assigned a score in the order of importance: 10, 9, 8, 7, 6,
5, 4, 3, 2, and 1. By summing the scores of the prediction models and comparing them, we
identified the important variables in the machine learning model for antioxidant capacity.

3. Results
3.1. Prediction

The performance of machine learning was estimated using LOOCV. To evaluate the
prediction performance of each algorithm, RMSELOO was calculated. Table 1 lists the
values of the evaluation indices for prediction accuracy when predicting the test data for
each model. Comparison of the datasets revealed that superior predictive performance was
achieved when molecular descriptors were used as explanatory variables. In AdaBoost and
LASSO regression, superior performance was obtained when Morgan fingerprints were
used as the explanatory variable. The optimal performance was obtained when random
forest was combined with molecular descriptors as explanatory variables. Random forest
exhibited robustness of the prediction model as R2 did not become negative. When the
Morgan fingerprint was used as an explanatory variable, the performance of AdaBoost
was the highest, followed by random forest and XGBoost. In the case of AdaBoost, the
coefficient of determination was sometimes negative, whereas R2 was greater than zero in
the case of XGBoost or random forest. XGBoost and random forest exhibited prediction
accuracy comparable to AdaBoost and robustness superior to that of AdaBoost. Figure 2
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displays the relationship between the values of the target variables (literature values) and
the predicted values of the datasets for the random forest model trained with molecular
descriptors and the AdaBoost, random forest, and XGBoost models trained by Morgan
fingerprints. The relationship between literature values and predicted values in other cases
is shown in the Supporting Information.

Table 1. Regression metrics values of machine learning using estimator candidates.

Model Dataset Random_State RMSE R2 RMSELOO

XGBoost

descriptors
0 1.2913 0.9147

1.756610 1.6867 0.8279
100 2.0362 0.6968

fingerprint
0 1.0857 0.9397

1.785710 2.7150 0.5542
100 3.1873 0.2325

LightGBM

descriptors
0 2.4106 0.7028

1.872310 1.8021 0.7546
100 1.8021 0.7546

fingerprint
0 3.7413 0.2841

2.405510 2.9596 0.4702
100 3.4717 0.0894

CatBoost

descriptors
0 2.0570 0.7836

1.737510 2.1533 0.7196
100 2.4917 0.5309

fingerprint
0 2.1026 0.7739

2.547710 2.3711 0.6600
100 3.6750 −0.0200

Randomforest

descriptors
0 1.0123 0.9476

1.573110 1.9342 0.7737
100 1.9166 0.7225

fingerprint
0 1.3950 0.9005

1.761310 1.2796 0.9163
100 2.0136 0.7548

AdaBoost

descriptors
0 0.8141 0.9661

1.700610 2.1277 0.7262
100 1.9945 0.6995

fingerprint
0 0.9573 0.9531

1.601710 1.8246 0.7986
100 3.8793 −0.1370

LASSO

descriptors
0 2.1668 0.7599

2.331410 2.4023 0.6510
100 5.5896 −1.3605

fingerprint
0 1.7224 0.8483

1.985310 3.0045 0.4540
100 4.0502 −0.2393

DNN

descriptors
0 2.0145 0.7924

2.986510 2.6807 0.5653
100 3.6878 −0.0275

fingerprint
0 1.8309 0.8286

3.358410 3.3159 0.3350
100 3.4791 0.0855
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Figure 2. Relationship between objective feature values in the dataset and the predicted values. Top row: descrip-
tors/random forest (left), and Morgan fingerprint/AdaBoost (right); Bottom row: Morgan fingerprint/random forest
(left), and Morgan fingerprint/XGBoost (right). In all panels, the blue and orange markers indicate test and training
data, respectively.

3.2. Importance Analysis

We focused on the sum of the importance scores of all models to understand the
relationship between the structure and singlet-oxygen-scavenging capacity. The top seven
features and their scores in the order of summation are listed in Table 2. The ranking of the
importance obtained from each model is displayed in the Supporting Information. From
the molecular descriptor dataset, HOMO, HOMO–LUMO gap, SlogP_VSA2, SlogP_VSA4,
SlogP_VSA6, and PEOE_VSA7 values were obtained. SlogP_VSA2, SlogP_VSA4, SlogP_
VSA6 and PEOE_VSA7 are molecular descriptors representing atomic contributions to logP
and atomic partial charge [35]. They are based on van der Waals surface area. BalabanJ is a
topological index based on the sum of distance of each bond in a certain molecule [36].

Figure 3 displays the partial structure of each bit considered important in the machine
learning using the Morgan fingerprint. Bits 1515 and 252 indicate that the presence or
absence of a conjugated system considerably affects the singlet-oxygen-scavenging ability.
Bit 1722 represents a methyl group attached to an aliphatic carbon atom, and bit 926
represents a carbon chain or a carbon atom with two C-H bonds. Bits 807, 1356, and 1380
represent carbon atoms with double bonds and single bonds. Bits 807 and 1380 exhibit no
information regarding bond destination of each carbon atom.
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Table 2. Feature importance points of features with a large contribution for prediction.

Descriptor Score Fingerprint Score

HOMO 175.5 1515 148.5
HOMO–LUMO gap 109 1722 118.5

SlogP_VSA4 84.5 926 93.5
SlogP_VSA2 72.5 807 87.5
SlogP_VSA6 72 1356 80
PEOE_VSA7 62 252 58.5

BalabanJ 44 1380 35.5
HOMO, Highest Occupied Molecular Orbital; LUMO, Lowest Unoccupied Molecular Orbital; VSA, Van der
Waals Surface Area; PEOE, Partial Equation of Orbital Electronegativity.
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allyl group or an unsaturated aliphatic carbon ring. Bit 252 represents an aromatic ring that has a
methyl group.

4. Discussion
4.1. Prediction Accuracy

An excellent prediction performance was obtained by using the proposed machine
learning method. Predictions without computational chemistry and using computational
chemistry were both possible, which indicated that machine learning can be useful for un-
derstanding the antioxidant capacity. Machine learning exhibits considerable flexibility to
provide prediction accuracy according to the user’s objectives by using various explanatory
variables, which is critical for practical applications. Each bit of the Morgan fingerprint
is represented by 0 and 1, respectively. Furthermore, the substructure from the central
atom to at most two bonds ahead is used as the feature value. Therefore, the length of
the conjugated system is not reflected, and counting the number of locations that have
the same substructure is not feasible. Therefore, the prediction results using the Morgan
fingerprint were less accurate than those using molecular descriptors. LASSO regression
was an exception to this trend, but more variables can improve prediction accuracy. DNNs
did not perform well on either dataset in this study. Thus, the simple DNN was not suitable
for predicting the antioxidant capacity using a small amount of data.

Comparing the RMSE during cross-validation with the RMSE when evaluated on the
test data, we determined that the machine learning models did not overfit. We also revealed
that the Morgan fingerprint tends to overfit our models. Whether or not overfitting occurs
depends on the size of the data, especially the number of features.

4.2. Importance Analysis

The results of the Morgan fingerprint revealed that conjugated systems and carbon
atoms with double and single bonds are of particular importance. As the conjugated chain
became longer, the absorption due to the π–π* transition shifted to the longer wavelength
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side [37]. This result indicated that the HOMO–LUMO gap became narrower, which is
consistent with the high importance of the HOMO and HOMO–LUMO gaps in molecular
descriptor datasets.

The electronic energy transfer (EET) [17] is expressed as Equation (1), in which the
quencher transitions to the triplet state upon elimination of singlet oxygen and exhibits
a rate constant close to the diffusion-rate-limiting rate of the quenching mechanism of
singlet oxygen.

O2(1∆γ) + Σ0→O2(3Σg
−) + T1 (1)

In this scheme, the narrow HOMO–LUMO gap implied the ease of energy exchange
between the quencher and singlet oxygen. In the EET mechanism, an encounter complex
is formed by singlet oxygen and an antioxidant in the singlet state, and energy transfer is
proposed to occur through the term crossing of the complex [38]. The larger HOMO value
suggested that the antioxidant is more likely to approach the singlet oxygen, which is an
electrophilic agent, thus promoting energy transfer. The reaction mechanism reported as a
competitive reaction in this scheme is displayed in Scheme 1 [39]. The quencher and oxygen
reacted to form a complex that underwent radicalization. Subsequently, oxygen chemical
quenching occurred, or peroxides and carbonyl compounds were formed. Therefore,
HOMO is expected to be used as an indicator of nucleophilicity from antioxidants to
oxygen during chemical quenching.
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Scheme 1. Competitive reactions in electron energy transfer (EET) mechanisms considered as chemical quenching.

In the quenching of singlet oxygen by phenols, two types of physical quenching
reactions are known, namely, electrons are transferred between the aromatic ring and
oxygen in the transition state but no oxygen is consumed, and chemical quenching, in which
peroxides are formed [40]. The EET mechanism was consistent with machine learning
inference because the reaction rate of the EET mechanism is close to the diffusion rate.

As mentioned earlier, singlet-oxygen-scavenging activity is correlated with the length
of the conjugated chain, the length of the carbon chain, and the absorption wavelength of
the ground state. The Morgan fingerprint bit displayed in Figure 3 is a critical indicator
that can be explained using the EET mechanism as well as the HOMO and HOMO–LUMO
gap because it can represent the structure of the conjugated system or a part of it. Because
fingerprints can be used for machine learning, the substructure of the compound could be
used as an alternative indicator to the HOMO.

Because SlogP_VSA2, SlogP_VSA4, SlogP_VSA6, and PEOE_VSA7 are critical when
molecular descriptors are used as a dataset, atomic distribution for solubility, and partial
charge were important in predicting antioxidant capacity. Reorganizing the dataset and
examining new descriptors of electron density or polarity can improve the prediction
performance and reveal electronic effects that are critical for studying antioxidants.
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Analyzing the behavior of machine learning models by feature importance can explain
prediction accuracy. Although feature importance is an ineffective measure for explaining
causality, we interpreted it chemically by comparing it to previously known information.
The process of testing hypotheses formulated by machine learning with computational
chemistry and experiments is useful not only for efficiently evaluating properties that
previously relied solely on experiments, such as antioxidant capacity, but also for verifying
the validity of the evaluation.

5. Conclusions

A critical challenge in applying machine learning in chemistry and life science is
that the prediction process remains unclear and the amount of data to be collected is
small. In this study, we developed a prediction model that is easily interpretable by
chemists and requires only a small amount of data. The proposed machine learning model
can predict singlet-oxygen-scavenging activity of compounds, which is critical in food
science. Molecular descriptors and Morgan fingerprints were used to validate the simple
antioxidant capacity by the proposed method, and the importance of the features and
interpreted the behavior of the machine learning model were examined chemically. Thus,
the evaluation of antioxidant capacity was simplified and did not require time-consuming
experiments. The prediction mechanism was also explained.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10111751/s1, Table S1: The Dataset; Figures S1–S5: Relationship between the objective
variable of the data set and its predictive values; Table S2: Feature importance in ensemble learning
and coefficient of linear regression.
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22. Amić, D.; Lučić, B. Reliability of Bond Dissociation Enthalpy Calculated by the PM6 Method and Experimental TEAC Values in

Antiradical QSAR of Flavonoids. Bioorg. Med. Chem. 2010, 18, 28–35. [CrossRef] [PubMed]
23. Nakata, M.; Shimazaki, T.; Hashimoto, M.; Maeda, T. PubChemQC PM6: Data Sets of 221 Million Molecules with Optimized

Molecular Geometries and Electronic Properties. J. Chem. Inf. Model. 2020, 60, 5891–5899. [CrossRef]
24. Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
25. Sheridan, R.P.; Wang, W.M.; Liaw, A.; Ma, J.; Gifford, E.M. Extreme Gradient Boosting as a Method for Quantitative Structure–

Activity Relationships. J. Chem. Inf. Model. 2016, 56, 2353–2360. [CrossRef]
26. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision

Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 3147–3157.

27. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features.
Adv. Neural Inf. Process. Syst. 2018, 31, 6638–6648.

28. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
29. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
30. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.

2010, 33, 1–22. [CrossRef]
31. Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep Neural Nets as a Method for Quantitative Structure–Activity

Relationships. J. Chem. Inf. Model. 2015, 55, 263–274. [CrossRef]
32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
33. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.; et al. Tensor flow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2015, arXiv:1603.04467.
34. Gillet, F. Keras. 2015. Available online: https://keras.io/ (accessed on 1 November 2021).
35. Labute, P. A Widely Applicable Set of Descriptors. J. Mol. Graph. Model. 2000, 18, 464–477. [CrossRef]
36. Balaban, A.T.; Balaban, A.T. Highly discriminating distance-based topological index. Chem. Phys. Lett. 1982, 89, 399–404.

[CrossRef]
37. Edge, R.; Truscott, T.G. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids-A Review. Antioxidants 2018, 7,

5. [CrossRef] [PubMed]
38. Schmidt, R. Deactivation of O2(1∆g) Singlet Oxygen by Carotenoids: Internal Conversion of Excited Encounter Complexes.

J. Phys. Chem. A 2004, 108, 5509–5513. [CrossRef]
39. Garavelli, M.; Bernardi, F.; Olivucci, M.; Robb, M.A. DFT Study of the Reactions between Singlet-Oxygen and a Carotenoid

Model. J. Am. Chem. Soc. 1998, 120, 10210–10222. [CrossRef]
40. Al-Nu’airat, J.; Dlugogorski, B.Z.; Gao, X.; Zeinali, N.; Skut, J.; Westmoreland, P.R.; Oluwoye, I.; Altarawneh, M. Reaction of

Phenol with Singlet Oxygen. Phys. Chem. Chem. Phys. 2018, 21, 171–183. [CrossRef]

http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1038/s42256-019-0018-3
http://doi.org/10.1021/acs.jcim.9b00633
http://www.ncbi.nlm.nih.gov/pubmed/31560206
http://doi.org/10.1021/acscentsci.7b00303
http://doi.org/10.1021/acs.jafc.5b04406
http://www.ncbi.nlm.nih.gov/pubmed/26457815
http://doi.org/10.1021/ci100050t
http://doi.org/10.1186/s13321-020-0417-9
http://doi.org/10.1021/cr010371d
http://www.ncbi.nlm.nih.gov/pubmed/12744692
http://doi.org/10.1021/ci00057a005
http://doi.org/10.1021/ci6005646
http://www.ncbi.nlm.nih.gov/pubmed/17892278
https://www.rdkit.org/
http://doi.org/10.1007/s00894-012-1667-x
http://doi.org/10.1016/j.bmc.2009.11.015
http://www.ncbi.nlm.nih.gov/pubmed/19944611
http://doi.org/10.1021/acs.jcim.0c00740
http://doi.org/10.1021/acs.jcim.6b00591
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.1021/ci500747n
https://keras.io/
http://doi.org/10.1016/S1093-3263(00)00068-1
http://doi.org/10.1016/0009-2614(82)80009-2
http://doi.org/10.3390/antiox7010005
http://www.ncbi.nlm.nih.gov/pubmed/29301252
http://doi.org/10.1021/jp048958u
http://doi.org/10.1021/ja9805270
http://doi.org/10.1039/C8CP04852E

	Introduction 
	Experiment 
	Preparing Dataset 
	Machine Learning Model 
	Feature Importance 

	Results 
	Prediction 
	Importance Analysis 

	Discussion 
	Prediction Accuracy 
	Importance Analysis 

	Conclusions 
	References

