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TNF Superfamily: A Growing Saga of Kidney Injury Modulators
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Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal
cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related
apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related
genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells
and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-
induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell
death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK
promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses.
TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCI21
and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK
promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory
milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily
cytokines, including multipronged approaches targeting several cytokines should be further explored.

1. TNF Superfamily

Tumor necrosis factor (TNF) was isolated and cloned 25
years ago [1, 2]. This molecule became the prototype of a
growing familyof related proteins called the TNF superfamily
(TNFSF) that share common features. Most members of the
family are synthesized as type Il transmembrane proteins
and share a common structural motif, the TNF homology
domain (THD), that mediates self-trimerization and recep-
tor binding [3, 4]. The extracellular domain can be cleaved
by specific proteases to generate soluble cytokines.

The TNF receptor superfamily (TNFRSF) includes recep-
tors for the TNFSF ligands. Most are type I transmembrane

glycoproteins and are characterized by the presence of
extracellular cysteine-rich domains [5]. TNFRSF proteins
are usually membrane bound, but some also exhibit a
soluble form [6]. Similarly to TNFESF ligands, the functional
receptors are usually trimeric. Ligands and receptors undergo
clustering during signal transduction [7, 8].

Most TNESF ligands bind to a single receptor; some bind
to more than one, and there is evidence of crosstalk between
receptors for different ligands [5]. Genetic approaches have
defined the physiological function linked to the individual
ligands or receptors [9].

Ligand activation of TNFRSF members modulates cell
proliferation, survival, differentiation, and apoptosis [9].
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Such cellular events participate in a broad array of biolog-
ical processes such as inflammation, fibrosis, the immune
response, and tissue repair [10]. TNFSF and TNFRSF
proteins have been targeted therapeutically, and several
drugs and biologicals are approved for use in inflammatory
and autoimmune diseases [11]. Cumulative experimental
evidence supports a role of the TNFSF/TNFRSF members in
kidney injury outlined in Table 1.

Many TNESF cytokines, including TNF, FasL, TRAIL,
and TWEAK may activate the NF-kappaB family of tran-
scription factors [12]. However, different cytokines activate
different members of the NF-kappaB family. NF-kappaB
DNA-binding complexes are homo- or hetero-dimers of five
Rel proteins: NF-kappaB1 (p50, generated from p105), NF-
kappaB2 (p52, generated from p100), RelA (p65), RelB, and
c-Rel. The nuclear translocation and DNA binding of NF-
kappaB occurs by two main pathways. Classical or canonical
NF-kappaB activation is a rapid and transient response to a
wide range of stimuli whose main effector is RelA/p50. The
alternative or noncanonical NF-kappaB pathway is a more
delayed response to a smaller range of stimuli resulting in
NIK activation and DNA binding of RelB/p52 complexes.
There is evidence that these pathways target a partially
overlapping set of inflammatory mediators. NF-kappaB also
regulates cell proliferation, survival, and differentiation.

TNFSF/TNFRSF members mediate different functions,
in different tissues that depend on the surrounding milieu.
Unraveling their complex and pleiotropic actions will be
essential for their use as therapeutic targets.

2. TNF and Kidney Injury

TNF (TNFESF2) was the first member of the family to be
implicated in the pathogenesis of kidney injury [13]. TNF
is a potent proinflammatory cytokine and an important
mediator of inflammatory tissue damage. TNF also has an
immunoregulatory role [11].

In the kidney, TNF is expressed, synthesized, and released
by infiltrating macrophages and by intrinsic kidney cells,
namely, endothelial, mesangial, glomerular, and tubular
epithelial cells [14]. In vivo, the TNF expression pattern
seems to be related to the primary kidney compartment
injured [15]. TNF activates two receptors, TNFR1 and
TNFR2. TNFRI is present in normal glomeruli and is
upregulated on infiltrating leukocytes in response to renal
injury. TNFR?2 is usually not expressed in normal kidney and
is upregulated in tubular cells in response to renal injury
[15].

These receptors induce different and possibly opposing
functions in inflammation and immunity, and the differ-
ential contribution of TNFR1- and TNFR2-mediated TNF
signaling in renal lesions has only recently started to be
explored [11, 16].

Increasing evidence has implicated TNF as a major
participant in the pathogenesis of kidney injury, promoting
inflammation, apoptosis, and accumulation of extracellular
matrix, reducing glomerular blood flow and damaging
the glomerular permeability barrier with development of
albuminuria [14, 17-22]. The pathogenic role of TNF as
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well as the potential benefits of modulating TNF activity
has been shown in models of immune complex-mediated
glomerulonephritis, lupus nephritis, antineutrophil cyto-
plasmic antibodies (ANCA-) associated glomerulonephritis,
minimal change disease, diabetic nephropathy (DN), acute
kidney injury (AKI), obstructive uropathy, and kidney
allograft rejection [14, 15, 19, 21, 23-26]. TNFR1 or TNFR2
deficiency protects mice from cisplatin-induced AKI [27, 28]
and obstructive uropathy [29].

However, TNF also has immunosuppressive functions,
depending on the surrounding milieu, the timing of the
inflammatory response, and the differential interaction with
its receptors [15]. Thus, TNFR1 deficiency enhances disease
in MRL-lpr/lpr lupus mice [30], while TNFR2 deficiency
confers protection from autoimmune renal injury [31, 32].

In 1995, we wrote “First candidates for (anti-TNF
strategies) trials will be .... rapidly progressive glomeru-
lonephritis and vasculitis” [14]. In 2010, emerging clinical
data suggest a potential benefit of TNF antagonism in
lupus nephritis [33, 34] and Wegener’s granulomatosis
[35, 36]. However, overall experience with different TNF
formulations in vasculitis is inconclusive, and questions
remain on the optimal combination of immunosuppressive
drugs and specific subgroups of patients that might benefit
[37-40]. Moreover, TNF blockade has been associated with
the emergence of autoantibodies [41] and lupus syndromes
[41, 42] and with the development of infection, particularly
reactivation of tuberculosis [43, 44]. The net effect of TNF
actions depends on the balance between the proinflamma-
tory and immunosuppressive functions, and current efforts
are focusing on the selective inhibition of its deleterious
actions.

3. Fas Ligand: A New Kid in the Block

Fas (Apo-1/CD95/TNFRSF6) is a 45-kDa type I membrane
receptor containing an intracellular death domain (DD). Fas
is engaged by Fas ligand (FasL/TNFSF6), a 36-40-kDa type I
membrane TNFSF member [45]. The regulation of Fas/FasL
functions is complex. Metalloprotease-mediated soluble FasL
(sFasL) shedding from membrane-bound FasL (mFasL) as
well as decoy receptors modulates the system [46—48]. Thus,
mPFasL induces apoptosis more efficiently than sFasL [49, 50].

Fas activation triggers apoptosis through recruitment
and activation of caspase-8 by the adaptor protein, Fas-
associated protein with dead domain (FADD) [51]. Non-
apoptotic effects, such as proliferation, cell differentiation
and inflammation, are also triggered in a range of cell types
[51-53].

FasL and Fas play a critical role in modulating the
immune response, including the peripheral deletion of
autoimmune cells, activation-induced T cell death, and T
cell-mediated cytotoxicity [45], thereby guarding against
autoimmunity and tumor development [51].

The Fas receptor is constitutively expressed by mesan-
gial and tubular cells, podocytes, and fibroblasts and is
upregulated by noxious stimulus and inflammation [54-57].
Several inflammatory cytokines and nephrotoxins upregulate
tubular cell Fas [58-61]. Potential sources of renal FasL
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TaBLE 1: TNF superfamily cytokines and receptors involved in kidney injury. Common names as well as TNFSF and TNFRSF numbers are

provided.
Cytokines Receptors Decoy/soluble receptors
TNEFR1 TNER2

TNF (TNFSF2) (TNFRSF1A) (TNFRSF1B) STNEFR

FasL/ApolL/CD95L Fas/Apol/CD95

(TNFSF6) (TNFRSF6) DcR3(TNFRSF6B)

TRAIL/Apo2L TRAILR1/DR4 TRAILR2/DR5 TRAILR3/DcR1 TRAILR4/DcR2

(TNFESF10) (TNFRSF10A) (TNFRSF10B) (TNFRSF10C) (TNFRSF10D)
Osteoprotegerin
(TNFRSF11B)

TWEAK/Apo3L TWEAKR/Fnl4 CD163

(TNFSF12) (TNFRSF12A)

include infiltrating leukocytes and intrinsic renal cells,
mainly tubular, but also mesangial, endothelial, and fibrob-
lastic cells [54]. FasL is normally expressed by renal cells and
is upregulated during renal injury [62]. Activation of NF-
kappaB upregulates FasL in cultured mesangial cells exposed
to inflammatory mediators [63] and in HIV-associated
nephropathy podocytes [55]. Fas and FasL are segregated
from each other to different cellular compartments in kidney
tubular cells: Fas is restricted to the basolateral surface, while
FasL is sequestered to an intracellular compartment and,
to a lesser extent, the apical surface [64]. This segregation
may prevent autocrine/paracrine cell death, but is lost upon
disruption of tight junctions by physical injury, ischemia, or
proinflammatory cytokines [64].

The FasL-Fas system participates in renal injury, regulat-
ing renal cell apoptosis and the immune and inflammatory
responses [54, 59, 65]. Fas activation promotes apoptosis of
cultured mesangial cells [66] and fibroblasts [18]. However,
tubular cells are resistant to Fas-dependent apoptosis under
basal conditions, despite the constitutive, low-level Fas
expression [18, 59, 67]. Activation of these low amounts
of Fas receptors results in JNK activation, not apoptosis,
in renal tubular cells [68]. Other inflammatory mediators
upregulating Fas are required to prime tubular cells to
undergo FasL-induced apoptosis [59, 69] (Figure 1). These
facts underscore the importance of the extracellular microen-
vironment to define cell fate in response to Fas/FasL. Renal
cell FasL promotes apoptosis of lymphoid cells [59], poten-
tially modulating the immune and inflammatory response.
Consistent with novel roles as a mediator of cell stress or
chronic inflammation, FasL activates NF-kappaB and the
expression of proinflammatory cytokines [52, 70]. Moreover,
Fas stimulation upregulates alpha(v)beta (8) integrin on
tubular cells, relating Fas to cell migration and fibrosis [71].

Fas agonists induce glomerular cell apoptosis and
glomerular injury characterized by proteinuria and hema-
turia [67]. In vivo, Fas/FasL signaling has been implicated in
tubular cell apoptosis in experimental ischemic injury [72],
endotoxemia [73], transplant rejection [74], chronic kidney
disease [69, 75], tubulointerstitial injury of obstructive
uropathy [76], and focal segmental glomerulosclerosis [77,
78]. Apoptosis of glomerular and tubular cells has also

been linked to Fas/FasL expression in hypertensive renal
disease [79, 80], HIV-associated nephropathy [81], and
human proliferative lupus nephritis [63]. This has fueled
the search for potential therapeutic applications of Fas
targeting. Mice with genetically disrupted FasL/Fas systems
(B6 Ipr/Ipr mice) or these treated with small interfering RNA
targeting Fas are protected from tubular cell injury during
ischemia-reperfusion [72, 82, 83] and cisplatin-induced AKI
[27].

The Fas/FasL system is also a key regulator of inflam-
mation and autoimmunity. Loss-of-function mutations on
Fas (lpr/lpr) or FasL (gld/gld) on the MRL background
result in lymphoproliferation, autoimmunity, and lupus-
like glomerulonephritis. The autoimmune milieu appears
to be the main inducer of injury, as kidney removal
from the autoimmune (Ipr/lpr) environment significantly
reduces inflammation, and wild-type or lpr/Ipr kidney grafts
transplanted to lpr/lpr recipients display similar inflam-
mation [84]. Moreover, in the course of lupus nephritis
Fas deficiency does not protect from renal disease or from
tubular cell apoptosis [85]. Fas and FasL may be important
for resolution of inflammation, promoting apoptosis of
infiltrating lymphocytes as shown in B6 lpr/Ipr mice [86]
and B6 gld/gld mice [87]. In addition, in FasL-defective mice
(gld/gld), Fas agonists decrease renal injury, probably by
limiting autoimmunity [87].

The role of Fas/FasL in renal transplantation is ambigu-
ous: FasL gene transfer prolonged rat renal allograft survival,
probably by inducting cytotoxicity in alloreactive T cells [88].
In other studies, the absence of donor kidney Fas (lpr) or
FasL (gld) did not impact on histological lesions or apoptosis
[58, 89] although it improved mice survival and kidney
function [58].

A gene-targeted murine model exploring the relative
importance of mFasL and sFasL. demonstrated that mFasL is
essential for cytotoxic activity, while sFasL appeared to pro-
mote autoimmunity through nonapoptotic actions, namely
NF-kappaB activation. Mice that lacked sFasL (mFasL intact)
appeared normal, while mice lacking mFasL (sFasL intact)
had higher NF-kappaB activation and developed a lupus-like
autoimmune kidney disease more severe than gld/gld mice
(which lack sFasL and mFasL) [70].
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FIGURE 1: Schematic representation of TNFSF cytokine actions on tubular renal cells. The microenvironment influences the cell response.
Among the many potential microenvironmental factors, we have highlighted those more consistently shown to modulate the cell response
to a particular cytokine. The localization of the receptors has been best characterized for Fas and shown to be present in the basolateral
membrane. This does not exclude expression in the apical membrane under certain circumstances. Proximal tubular cells are presented
since they have been most extensively studied, but TNFSF cytokines also have actions on other tubular cells, glomerular cells, endothelial

cells, leukocytes, and fibroblasts.

4. TRAIL: The Saga Continues

TNF-related apoptosis-inducing ligand (TRAIL) was orig-
inally identified by two independent groups as the third
member of the TNF superfamily to induce apoptosis [90,
91]. TRAIL is a type II transmembrane protein of 281
and 291 amino acids in the humans and mice, respec-
tively, with an expected molecular mass of 33-35 kDa.
Membrane-bound TRAIL can be cleaved from the cell
surface to form a soluble trimeric ligand that retains the
proapoptotic activity [91]. TRAIL is normally expressed
in many human tissues including kidney, suggesting that
TRAIL must not be cytotoxic to most tissues in vivo under
normal physiological conditions [91, 92]. However, when

normal cells are immersed in an inflammatory environment,
data from knockout mice suggest that TRAIL may induce
parenchymal cell apoptosis [93]. Two additional alternative
splice variants of TRAIL in human cells lacking either
exon 3 (TRAIL-beta) or exons 2 and 3 (TRAIL-gamma)
had been described [94]. The lack of apoptotic activity
in both isoforms and an alternative splicing in response
to cytokine stimulation add complexity to the system
[95].

One of the system particularities is the multiple set
of TRAIL receptors. Five receptors for TRAIL have been
described in humans; four membrane-bound and one
soluble receptor. Of the membrane-bound receptors, TRAIL
receptor 1 (TRAIL-R1, APO-2, DR4) and TRAIL receptor 2
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(TRAIL-R2, DR5) contain an intact intracellular DD which
is required for apoptosis induction [96]. TRAIL receptor 3
(TRAIL-R3, DcR1) has a glycosylphosphatidylinositol mem-
brane anchor and lacks an intracellular domain, and TRAIL
receptor 4 (TRAIL-R4, DcR2) contains a truncated DD. The
latter may function as decoy receptors or be involved in
nonapoptotic signaling [97, 98].

Osteoprotegerin is a soluble receptor without cytoplas-
mic or transmembrane domains, first described as a bone
remodeling regulator. Osteoprotegerin is a decoy receptor for
the TNFSF cytokine receptor activator of NF-kappaB ligand
(RANKL) and for TRAIL [99, 100]. The affinity of TRAIL for
osteoprotegerin is weaker than for transmembrane receptors
[101]. However, recent studies support the biological rele-
vance of the osteoprotegerin/TRAIL interaction in different
in vitro cell systems [102—105]. Further studies to unravel the
relation between TRAIL, osteoprotegerin, and RANKL could
illuminate potential cross-regulatory mechanisms.

4.1. TRAIL and Renal Cells. Most TRAIL literature is referred
to its potent tumor cell-killing activity [106]. Different
combinations of TRAIL and chemotherapeutic drugs or
the use of agonistic anti-TRAILR1 or R2 antibodies shows
promising results in the treatment of renal carcinoma
[107, 108]. However, TRAIL also has nonapoptotic func-
tions, such as prosurvival and proliferative effects [109—
112]. In normal kidney, TRAIL is expressed only in
tubules and absent from glomeruli [113]. TRAIL-R1 has
a similar pattern of expression to TRAIL, while TRAIL-
R2 is additionally expressed in Henle’s loop [92]. TRAIL-
R3 expression was not detected in the normal kidney,
and there are no reports regarding renal tissue expression
of TRAIL-R4. No kidney pathology has been reported
in TRAIL knockout mice, suggesting that TRAIL is not
required for normal kidney development and physiology
[114].

4.2. TRAIL in Diabetic Nephropathy. Apoptosis contributes
to human DN [115]. Transcriptomics disclosed increased
TRAIL and osteoprotegerin expression in human DN that
correlated with parameters of kidney injury [113]. Interest-
ingly, in DN there was de novo glomerular TRAIL expression
and increased tubular staining. Inflammatory cytokines,
such as TNE interferon-y (INF-y), and macrophage migra-
tion inhibitory factor (MIF), induce TRAIL expression in
tubular cells [59, 116]. A high-glucose medium, character-
istic of diabetes, sensitized tubular cells and podocytes to
the proapoptotic effect of TRAIL. Although it is difficult
to extrapolate from cell culture studies to the in vivo
situation, the low level of apoptosis induced by TRAIL in
cultured tubular cells is consistent with the slow loss of
renal function, over years, characteristic of DN [113]. TRAIL
blockade in murine models of autoimmune diabetes (type
I diabetes) led to an increased incidence and severity of
disease [117-119]. Thus, depending on the type of diabetes
and on the disease stage, TRAIL can have a dual role either
as an immune modulator or as a regulator of renal cell
survival.

5. The Family Grows: TWEAK

While many TNESF ligands bind to multiple receptors [120],
only a single signaling receptor for TWEAK (TWEAKR)
has been confirmed [121, 122]. TWEAKR was identical to
the previously characterized human fibroblast growth factor-
inducible 14 (Fnl4) receptor [123]. TWEAKR/Fn14 is the
smallest member of the TNFRSF and lacks a DD. Initial
reports that the TNFRSF protein death receptor 3 (DR3)
was the TWEAK receptor [124] were not confirmed in
subsequent studies [125, 126]. CD163 was recently identified
as a potential scavenger receptor for TWEAK [127]. Current
knowledge suggests that TWEAK and Fnl4 might play a
role in several processes relevant to kidney damage such
as regulation of survival/proliferation of kidney cells and
their ability to regenerate in response to aggression and the
regulation of the inflammatory response.

5.1. TWEAK and Renal Cells. Both TWEAK and Fnl14 are
expressed by glomerular and tubular cells. The potential
sources of TWEAK in the kidney include infiltrating mono-
cytes and T lymphocytes, tubular cells, and mesangial cells
[128]. Human and murine mesangial cells, podocytes, and
tubular cells express Fnl4 and are responsive to TWEAK
[129, 130]. The process of TWEAK binding and activation
of the Fnl4 receptor has proliferative, proapoptotic, and
proinflammatory actions in renal cells that depend on cell
type and the microenvironment (Figure 1).

TWEAK, as other TNFSF members, can either induce
apoptosis or proliferation depending on the experimental
conditions (Figure 1). TWEAK increased the proliferation,
cell number, and cyclin D1 expression of quiescent cultured
tubular cells [131]. TWEAK also induced proliferation in
mesangial cells and podocytes [129, 131]. TWEAK-induced
tubular cell proliferation is enhanced in the presence of
survival factors from serum which increase Fnl4 expres-
sion [131]. There is little information about the molecu-
lar pathways that mediate TWEAK-induced proliferation.
TWEAK-induced tubular cell proliferation was prevented by
inhibitors of mitogen-activated protein kinases and by the
NEF-kappaB inhibitor parthenolide [131].

Several TNEFSF cytokines, such as FasL, TNEF and
TRAIL, induce apoptosis in stressed renal cells [62, 113].
Similar to FasL, TWEAK did not induce cell death in
nonstimulated tubular cells. However, in the presence of
inflammatory cytokines (TNF and INFy), TWEAK induced
apoptosis in tubular cells through the activation of the
Fnl4 receptor, caspases, and mitochondria involvement.
TNF or INFy alone increased Fnl4 expression but neither
was sensitized TWEAK-induced cell death. The combination
of both cytokines is required to sensitize TWEAK-induced
apoptosis. This, together with a more intense proliferative
response, but not cell death, when Fnl4 is upregulated by
serum, suggests that Fnl4 upregulation, per se, does not
determine the type of response to TWEAK. Further, less
characterized intracellular changes are required to determine
the lethal or proliferative response of tubular cells to
TWEAK. Interestingly, a pan-caspase inhibitor prevented



TWEAK/TNEF/INFy-induced apoptosis, but it sensitized cells
to necrosis via generation of reactive oxygen species [132].

In tubular cells TWEAK engagement of Fnl4 induced
a sustained NF-kappaB activation [133]. NF-kappaB acti-
vation was associated with degradation of IkappaB-alpha,
nuclear translocation of RelA, and early (3—6h) increased
mRNA and protein expression of the chemokines monocyte
chemotactic protein-1 (MCP-1) and RANTES. Partheno-
lide, which prevents IkappaB-alpha degradation, inhibited
TWEAK-induced NF-kappaB activation and prevented the
expression of MCP-1 and RANTES on tubular cells. TWEAK
also induced the expression of inflammatory mediators in
glomerular mesangial cells through NF-kappaB activation
[130] and in podocytes [129].

In addition, TWEAK induces NIK-mediated, noncanon-
ical NF-kappaB activation in tubular cells, characterized
by late nuclear translocation of RelB/NF-kappaB2 DNA-
binding complexes [134, 135]. The delayed TWEAK-
inducted upregulation of the CCL21 and CCL19 chemokines
was under noncanonical NF-kappaB control and was not
observed in cells stimulated with TNE

5.2. TWEAK in Renal Injury: Functional Studies. Fnl4
receptor is the mediator of both the proliferative and
the apoptotic effects of TWEAK, and the cell response is
modulated by the cell microenvironment: in the presence of
proinflammatory cytokines, TWEAK potentiates cell death
while in the presence of serum TWEAK has the opposite
effect, proliferation. Given the multifunctional nature of
TWEAK/Fnl14, only in vivo functional studies in specific
diseases will clarify their role. In lupus proliferative nephritis,
TWEAK/Fn14 are upregulated and TWEAK contributes to
mesangial cell proliferation or apoptosis [129, 136].

TWEAK/Fnl4 contribute to compensatory renal
hypertrophy and hyperplasia observed following unilateral
nephrectomy [131]. This is a situation characterized by
tubular cell proliferation in the absence of tubular injury or
increased expression of inflammatory cytokines [137]. Fnl4
expression is increased in remnant kidney tubules [131].
Lower tubular cell proliferation was observed in the remnant
kidney of TWEAK knockout mice compared with wild-type
mice. Moreover, administration of exogenous TWEAK to
uninephrectomized wild-type mice further increased renal
cell proliferation [131].

AKI is characterized by renal inflammation. During AKI
an initial wave of cell death is followed by compensatory
tubular cell proliferation taking place in an inflammatory
environment that leads to recovery. Prophylactic treatment
with anti-TWEAK antibodies decreased inflammation and
the rates of apoptosis and tubular cell proliferation during
AKI [131, 133]. Studies with TWEAK-deficient mice con-
firmed a role of TWEAK in tubular cell apoptosis as well as in
proliferation during AKI. These data are consistent with the
proapoptotic action of TWEAK in an inflammatory milieu
in cultured tubular cells [131]. Since renal function was
improved by anti-TWEAK strategies and there was no delay
in recovery, it was hypothesized that the reduced tubular cell
proliferation during AKI observed in anti-TWEAK-treated
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animals reflected the lesser degree of initial injury, rather
than a requirement for TWEAK for compensatory post-AKI
tubular proliferation.

6. Conclusions

Multiple lines of evidence indicate the involvement of
different TNFSF cytokines, including TNE, FasL, TRAIL,
and TWEAK in the pathogenesis of renal injury. These
observations may lead to the development of new therapeutic
strategies. However, there is an insufficient understanding of
the cooperation between cytokines in the complex in vivo
environment. This information is important for the design
of multipronged approaches aimed at targeting several
members of the family in order to maximize benefit and
minimize side effects.
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