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Abstract

Objective: To describe the development of a new clinically applicable method for assessing vestibular function in
humans with particular application in Meniere’s disease.

Study design: Sophisticated signal-processing techniques were applied to data from human subject undergoing
tilts stimulating the otolith organs and semicircular canals. The most sensitive representatives of vestibular function
were extracted as “features”.

Methods: After careful consideration of expected response features, Electrovestibulography, a modified
electrocochleography, recordings were performed on fourteen Meniere’s patients and sixteen healthy controls
undergoing controlled tilts. The data were subjected to multiple signal processing techniques to determine which
“features” were most predictive of vestibular responses.

Results: Linear discriminant analysis and fractal dimension may allow data from a single tilt to be used to
adequately characterize the vestibular system.

Conclusion: Objective, physiologic assessment of vestibular function may become realistic with application of
modern signal processing techniques.
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Introduction
Vestibular disorders are among the most common rea-
sons that patients seek the advice of a physician, yet the
diagnosis of dizziness largely relies on the patient his-
tory. The patient history is subjective and its reproduci-
bility has not been validated. Significant physiologic
disruptions of neurological function should cause repeat-
able, measureable changes in neural activity. We believe
that sophisticated and objective measurement of these
changes should be diagnostic and should reveal under-
lying pathologic mechanisms. This paper outlines the
application of advanced statistical signal processing tech-
niques from the fields of engineering and statistics to
understand normal and pathologic vestibular function
using Meniere’s disease as a prototype.
Evoked potentials have been successfully applied to

diagnose auditory disorders but may be difficult for ves-
tibular diagnosis. Auditory evoked potentials typically in-
volve temporal averaging of several hundred auditory
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stimuli which may be problematic in vestibular stimuli.
On the other hand, when observing the averaging process
of auditory evoked potentials in real time, the first re-
sponse or two are often adequate to see the general nature
of the response. It would seem then that the first response
or two should contain diagnostic information if it could
be extracted. With this observation in mind is seems
plausible that sophisticated signal processing techniques
might be able tease out enough information from a few
tilts to permit recognition of repeatable patterns of wave-
forms that could be diagnostically useful.
Electrocochleography (ECoG) is a diagnostic evoked-

potential method that records an excitatory ‘gross’ evoked
response by averaging responses to a series of auditory
clicks [1-3]. A useful, analagous vestibular test would dir-
ectly measure the dynamic response of the vestibular sys-
tem to both excitatory and inhibitory inputs, and derive a
measure of its dynamic range. Electrovestibulography
(EVestG) [4,5] is similar to ECoG but the multiple acous-
tic stimuli are replaced by one or two passive whole body
tilts in a hydraulically controlled chair located in an elec-
trically and acoustically shielded chamber. The EVestG
signal is recorded during dynamic and static phases via
tral. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:umdastgh@myumanitoba.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Dastgheib et al. Journal of Otolaryngology - Head and Neck Surgery  (2015) 44:14 Page 2 of 7
ECoG electrodes resting near the tympanic membrane of
both ears [6]. Figure 1, shows the recording system with
the hydraulic chair. A proprietary software algorithm
called the “Neural Event Extraction Routine (NEER)” [5]
has been developed to extract the field potential (FP) sig-
nals from the EVestG recordings. NEER algorithm derives
two signals from the recording raw signals: the averaged
response of FPs and the time intervals between the FPs.
Pattern recognition techniques applied to EVestG signals
have shown very encouraging results in other neurological
diagnostic applications such as Parkinson’s disease, depres-
sion, and schizophrenia disorder by other studies [7-9]. In
this paper will apply EvestG techniques to Meniere’s dis-
ease patients with a view to developing an objective test for
the disorder.
Usually several features as biomarkers are extracted

from the output of the NEER algorithm on the EVestG
signals. Most diagnostic tests measure the signals’ most
important parameters to classify a system as normal or ab-
normal. The “feature” extraction technique utilizes many
quantitative criteria from the signal to categorize the re-
sponse. Extracted criteria may be statistical parameters,
calculations of some characteristic of the waveform or
derivations from multiple other sources. The technique of
“feature extraction” is similar to that used in cochlear im-
plants. Herein, we apply it to vestibular function. A major
difficutly in measuring biological electrical potentials is
Figure 1 The recording system with Hydraulic chair. System diagram is
and C illustrates the method of holding the subject’s head for testing while
the signal-to-noise ratio. We are trying to detect a small
signal in the midst of tremendous electrical noise from
nerve, muscle and other cells. In this paper we discuss the
clinical utility of NEER algorithm and EVestG extracted
signals. First we briefly describe of the key concepts. Fur-
ther details can be found in the Additional file 1.

Features
In signal processing, features are quantities that are associ-
ated with a signal or a process. Features may be statistical
measures such as the mean, standard deviation, skewness,
kurtosis, etc. of a statistical process, or they may be other
quantitative measures representing fractal nature, power
distribution, etc. of a signal or process. In addition to stat-
istical features, this report includes features representing
fractal dimension (FD) as assessed by the Higuchi fractal
dimension (HFD), and entropy-based dimensions such as
the Information dimension (DI) [10] and the Correlation
dimension (DC). These features were extracted from the
FP and timing intervals of the EVestG recordings from pa-
tients undergoing EVestG testing.
Fractal dimension calculation (FD) can be interpreted

as the “degree of meandering” (roughness, brokenness,
irregularity or singularity) of an object. Another interpret-
ation of a fractal dimension is that it is the critical exponent
in a power-law relation [10,11]. Fractal dimension math-
ematically refers to a non-integer or fractional dimension
shown in A. B displays the hydraulic chair with the axes of rotation
the electrodes are connected.
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of a self-similar (or a self-affine) object [10]. The self-
similarity (or self-affinity) of the object is confirmed if a
portion of the object is exactly (or statistically) a scaled
down version of itself.
FD analysis is widely used as an analytical tool in a

variety of research areas particularly biological signal
processing [11]. It measures the irregularity, the com-
plexity and the self-similarity of a signal. The more com-
plex the signal, the higher the FD value will be. Two
effective methods for FD calculation are the Higuchi
fractal dimension and Entropy based fractal dimension
(see Additional file 1 for details).
Higuchi Fractal Dimension (HFD) is well suited for

studying signal fluctuation in one dimension [12]. HFD,
proposed in 1988, is an efficient algorithm for measuring
the FD of discrete time series [13]. HFD has been estab-
lished as a method to characterize the morphological
complexity of biological signals [14].
Entropy-Based Fractal Dimensions - Entropy can be

defined as the amount of information needed to specify
the state of a system [10]. Entropy is known as the meas-
ure of disorder in physical systems, or an amount of infor-
mation that may be gained by observations of disordered
systems [15]. Entropy-based fractal dimensions can deal
with fractals objects which have non-uniform distribu-
tions, while the morphological fractal dimensions such as
HFD deal with the shape of a projection of the fractal only.
This is understandable because the morphological dimen-
sions are purely metric and not probabilistic concepts.
The information dimension (DI) and correlation dimen-
sion (DC) are special cases related to generalized entropy
concept as introduced by Alfred Renyi in 1955 [16]. Both
dimensions are improvements of the geometric definition
of a fractal object (See Additional file 1).
The DI reveals the expected spread in the non-uniform

probability distribution of the fractal objects, but not its
correlation. The DC was introduced to address this prob-
lem. Both DI and DC represent a weighted average meas-
ure of the actual distribution of self-information over the
fractal object (See Additional file 1).
Linear Discriminant Analysis (LDA) is a mathematical

technique that utilizes features to classify objects or sig-
nals into one or more classifications. Each object/signal
has certain features that may be relevant in classifying that
object/signal; some of these features can be more import-
ant predictors than others. In this study, we are trying to
classify patients as with either Meniere’s disease or no
Meniere’s disease.
Minimal-redundancy-maximal-relevance (mRMR)

feature selection method [17] is a method of ranking
features based on the two criteria of minimum redun-
dancy and maximum relevancy; thus allowing to choose
the most relevant and least redundant features as the
best set of features for classification.
Methods
EVestG research labs have been established for human
testing at Alfred Hospital in Melbourne Australia and
Riverview Health Center in Winnipeg, Canada. In this
study, however, only data recorded at Alfred Hospital in
Australia has been used. The EVestG signal acquisition
apparatus is illustrated in Figure 1.

Study subjects
EVestG data of 14 Meniere’s patients (54.2 ± 9.7 years, 4
males) and 16 healthy individuals (56.1 ± 5.5 years, 7
males) from the EVestG lab at the Alfred Hospital,
Melbourne, Australia, were used as the training data to
design the diagnostic algorithm. Ethics approval was
granted by the Health Research Ethics Board of Alfred
Hospital, and all study subjects signed an informed
consent form prior to the experiments.

EVestG protocol
A complete EVestG recording [4,5] includes passive lat-
eral whole body tilts, up/down movements, rotations
from the sitting position and up/down movements and
rotations from the supine position. This paper will re-
port data for right and left lateral tilts only. Tilts were
symmetric movements moving over 3 seconds from the
upright sitting position to a position 45 degrees from the
vertical to the right, then upright and then to the left.
The EVestG signal was recorded at a sampling rate of
41666 Hz.
Table 1 shows the timing segments and names for a

tilt to the right and back to the upright position. The la-
bels for the segments in Table 1 are those from the ori-
ginal EvestG description in the literature that relate to
EvestG in general, rather than specific application to the
ear. Following this tilt to the right, a tilt to the left is per-
formed with the same naming system. Rightward tilts
are referred to as right ipsilateral (IP) and left contralat-
eral (CT). In different segments of the motion, there are
“periods of interest” that are the critical time periods for
analysis as indicated in Figure 2.
The NEER [5] algorithm extracts data from the neural

response. Each tilt’s recorded data results in two main
signals, an average field potential (FP) and its firing pat-
tern for each time segment (see Table 1) for each ear. In
this study, we only used signals of the contralateral and
ipsilateral side tilt stimuli that presumably stimulate oto-
lith and semicircular canals.

Signal analysis
An average field potential is illustrated in Figure 3 top.
Each FP fires many times representing its firing pattern.
The firing pattern of the FP is presented by 1) the time in-
tervals between each two successive FP occurrences, as in
Figure 3 lower left, and 2) the probability distribution



Table 1 Labeling of components of EvestG test

Segment Period of Interest (POI) of the segment (See Figure 2) Name of POI

20 s background recording the final 1.5 s BGi

3 s lateral tilt to the right (about 40 degrees) first half, 1.5 s, the acceleration phase On AA

second half, 1.5 s the deceleration phase On BB

17 s rest in the tilted position final 1.5 s just before returning to center RTC BGi

3 s returning back to center the first 1.5 s RTC OnAA

the second 1.5 s RTC OnBB

17 s rest at the center position before a new tilt Transition to Steady State RTC OnSS

Labeling of components of EvestG test.
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function (pdf) of the time intervals estimated by the
histogram of time interval data as shown in Figure 3
lower right.
We investigated the changes in the differences among

different time segments for each tilt signal to examine
the effects of dynamic changes from resting to acceler-
ation or deceleration phases of the time segment, and
also the differences between the two phases (acceler-
ation/deceleration) of chair movement as well as differ-
ences between the right and left symmetry (L-R).
The NEER algorithm [5] removes segments of the ori-

ginal signal that are corrupted by large artifact (due to
hydraulic chair, muscle artifact, movements, poor elec-
trode contact, etc.); therefore, not all the segments were
precisely of 1.5 s duration. We excluded the segments
shorter than 1.36 s. Thus, it was possible that not every
subject have all the extracted features.

Feature extraction
We calculated the mean, mean of the absolute value,
variance (Var), skewness, kurtosis, HFD, entropy-based
dimensions such as the Information dimension (DI) and
Figure 2 The chair movement pattern during the side tilt.
the Correlation dimension (DC), the total energy and
the average power of the aforementioned intervals for
the range of 100–11000 Hz of the pre- and post-
potential regions of every FP signal. Also the depth of
the AP point was selected as suggested in [6].
From the time interval of the FP’s firing pattern signals

(Figure 3 lower left), we calculated the mean, standard
deviation (Std), skewness, kurtosis, mode, median, the
DI, DC, HFD. We also calculated the average number of
the time intervals less than 0.5 msec, and the correlation
of the probability distribution function (PDF) of the time
interval signals (Figure 3 lower right) with the relevant
FP signals (Figure 3 top) as another feature.
Overall, we calculated over 40 features to consider.

The features are grouped in three categories based on
which signal they were calculated: 1) the features from
from the field potential signals, 2) the features from one
of the firing pattern representations, and 3) the features
from the correlation calculation between the pdf of the
time interval signals and FPs. The names of the features
are summarized for the sake of space. For example, the
names of “Pre Kurtosis”, “Pre mean abs”, or “Pre Energy”



Figure 3 An EVestG FP (A) and its firing pattern signals (B and C) of OnBB segment for a CTL tilt of a typical control subject. A:
The waveform's minimum point is called the action potential (AP) notch at time=10 msec. The time durations of 4.5 ms (4.5 – 9.0 ms) and 5.2 ms
(11.0 – 16.2 ms) before and after the AP are considered the pre- and post- potential intervals respectively. This field potential fires repeatedly
during EVestG testing and is modulated by vestibular input. B: The time interval signal of the FP occurences. C: The histogram of the time
interval signal.
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show that the features are found by calculation of the
kurtosis, mean of absolute value, or total energy (from
the entire frequency range) of the pre potential interval
of the mentioned original segment.
A t-test was used to assess the statistical significance

of differences for CT tilt and IT tilt between Meniere’s
patients and controls. Then, we ran the mRMR algo-
rithm on these 39 statistically significant features, and
selected 5 top features (from every tilt) as the best fea-
tures for classification.

Classification (Average Voting Classifier)
Each selected feature was used in a single feature classi-
fier using linear discriminant classification algorithm
(LDA) [18]. We used leave-one-out routine [18] for
training classifiers. Then, we considered each feature as
a symptom, and used a heuristic method for a final
classification, called Average Voting Classifier, in which
every feature has “a vote” for the test subject as either
Meniere’s (vote = 1) or non-Meniere’s (vote = 0) based on
the LDA classifier, and the final classification is based on
the average vote of all the selected best features. In this
way, the final vote represents the probability that the test
subject is a Meniere’s or non-Meniere’s patient. If that
probability is greater than 0.5, the subject is classified as
a Meniere’s patient; otherwise as non-Meniere’s.

Results
Of the features extracted from the side tilt signals, 39
(22 from CT tilt and 17 from IT tilt) were found signifi-
cantly different among the Meniere’s patients and controls
(t-test, p < 0.05). The proposed Average Vote Classifier
resulted in 85.7%, 75% and 80% sensitivity, specificity and
accuracy, respectively assuming the clinical diagnosis as
the “gold standard” (Figure 4), which are encouraging in
this first attempt. The five best features for IT and CT tilts



Figure 4 Final Vote classification results of the training subjects for side (CT&IT) tilt for 30 subjects (14 Meniere’s patients and 16
normals). If the probability is greater than 0.5 (above the reference line in the figure) the subject would be classified as a Meniere’s patient,
otherwise the subject would be classified as normal. Sensitvity, specificity and accuracy were 85.7%, 75% and 80% respectively.
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identified by the mRMR algorithm and used for classifica-
tion, are shown in Table 2.
The features that extracted in this study represented

some consistent variations. Fractal dimension calculation
(DI, and CI) over both firing patterns and FP signals
showed higher values for control subjects compared to
those of the Meniere’s subjects. This may imply the
higher complexity in control subjects’ data compared to
Meniere’s patient, which is congruent with the observed
pattern of fractal dimension features calculated from
other biological signals [19].
Table 2 Five best features for CT (Feature 1–5), and IT
(Feature 6–10) tilts

Feature Number Feature Name Original Signal p_value

1 Post skewness OnBB - R 0.007

2 Ap height RTC OnAA - RTC
OnBB - L-R

0.028

3 ID of Time
Interval Signal

OnBB – L + R 0.007

4 Correlation OnBB - L-R 0.048

5 Correlation RTC OnBB - R + L 0.0079

6 Pre energy RTC BGi - L 0.0046

7 Post HFD RTC OnAA - R 0.0066

8 Post mean BGi - OnBB - R 0.006

9 CD of Time
Interval Signal

BGi - OnBB - R 0.0071

10 Correlation RTC OnBB - L 0.017
Moreover, the correlation between the FP and the pdf of
FP’s firing signal demonstrated positive values in Meniere’s
patients, while negative ones were observed in controls.
Also, the AP was lower (wider FPs) in Meniere’s patients
compared to Control ones. This may talk about possible
slower conductivity of the stimulus in the vestibular organ
of Meniere’s patients.

Discussion
Tilts cause angular (rotational) accelerations and changes
in the direction of gravity. For these reasons EVestG test-
ing involves a combination of head movement responses
that may or may not be consistent among patients with
Meniere’s disease. Our long-term goal is to develop an
objective test that is diagnostic and specific for Meniere’s
disease. Our current tests, electronystagmography, rotary
chair, and others, are supportive or helpful, but have no
features that are unique to Meniere’s disease. We observed
a distinct difference in the pre- and post-potential parts
within the period time of the interest of the average FP
curve of the Meniere’s and control subjects. Our finding
that the fractal dimensions showed more complexity in
Meniere’s patients than controls is consistent with the
general physiologic literature regarding chaos theory in
other organ systems – that abnormal systems lose their
variability [20,21].
The results of this study show a new potential of

EVestG signals toward generating an adequate set of bio-
features as a diagnostic and monitoring aid for dizziness
related diseases, especially Meniere’s disease. We suspect,
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but cannot prove at this point, that our data identify fea-
tures unique to Meniere’s disease as opposed to some gen-
eral findings of reduced vestibular function. If EVestG
turns out to be a general method of quantifying vestibular
function, it should be clinically useful. This is an ongoing
study, and we hope to confirm these results with other
populations. The results may lead to a simple, objective
and non-invasive clinical assessment of Meniere’s disease.
We acknowledge that this small dataset is not adequate to
recommend clinical use without further development.
The method must be tested in larger populations in future
studies, which is currently under investigation at the
EVestG lab at Winnipeg, Canada.

Conclusion
Modern signal processing techniques such as EVestG
may identify neural firing patterns that are diagnostic in
patients with vestibular disorders but much more work
needs to be done.
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