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Abstract

This article uses the ideas of neuroenergetic and neural field theories to detect stimulation-driven energy flows in the brain
during face and auditory word processing. In this analysis, energy flows are thought to create the stable gradients of the
fMRI weighted summary images. The sources, from which activity spreads in the brain during face processing, were
detected in the occipital cortex. The following direction of energy flows in the frontal cortex was described: the right inferior
frontal = .the left inferior frontal = .the triangular part of the left inferior frontal cortex = .the left operculum. In the left
operculum, a localized circuit was described. For auditory word processing, the sources of activity flows were detected
bilaterally in the middle superior temporal regions, they were also detected in the left posterior superior temporal cortex.
Thus, neuroenergetic assumptions may give a novel perspective for the analysis of neuroimaging data.
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Introduction

Dynamical neural field theories [1,2] provide a theoretical

framework to describe macroscopically the activity of the neuron

ensemble. The need for the macroscopic approach stems from the

fact that at the microscopic level even with only three states of

activity for a cortical neuron (rest, activation, deactivation),

approximately 1037 different configurations of cortical activity

exist [1]; indeed, the precise analysis of each of them is beyond any

computational facilities. Neural field modelling applies the

equations from statistical mechanics and non-equilibrium thermo-

dynamics to brain processes. The other direction of statistical and

thermodynamic modelling of brain function is based on the free

energy minimisation principle [3] and gradient reduction [4].

Since these models present a certain reflection of brain processes,

it is possible to apply their principles to the other reflection of brain

processes, which is observed in neuroimaging methods.

Current neuroimaging methods use different approaches to

detect the changes in brain energy: the increase of metabolism

reflected by the increase of blood flow, blood oxygenation (PET

with H2O15 and BOLD fMRI), the increase in the metabolic rate

of glucose (PET with FDG) [5]. fMRI measures the consumption

of energy by the brain through oxygen consumption, which is

needed for the synthesis of the energy-carrying ATP molecules.

This energy is then used for different processes, resulting in

changes of the electric field. Therefore the internal energy of

molecules in a population of neural cells is primary, and is then

used for the electric signalling. The link of the BOLD signal with

electric measurements in the brain can reach up to 0.9 of

correlation value [6,7], so the measured energy consumption is

closely coupled with electric activity. Actually, whether we

measure electromagnetic or metabolic energy in the brain, these

are two sides of the same coin [8,9]. Combining the approaches of

statistical physics and Bayesian hierarchical modelling of brain

function, Friston [3,10] proposed that the most suitable form of

energy to describe brain mechanisms is free energy, and

introduced the free energy minimization principle for the brain.

Each molecule moves and has a potential to move, and thus each

molecule has kinetic and potential energy. The sum of these

energies for a brain volume is called internal energy. Free energy is

a sort of internal energy with some corrections for temperature

and entropy. This approach does not consider individual

molecules and cells in the brain. Instead, it considers the brain

as a field of energy with a certain mean value of energy in each

small volume. We do not know the size of the smallest

information-encoding volume in the brain; it may be infinitesimal.

For practical purposes, the size of these brain volumes (voxels) can

be arbitrarily chosen on the basis of the technically available

spatial resolution and the need for precision.

When a neural signal reaches a neuroglial population, it induces

changes in the states of many molecules in this population

(receptors, mediators, enzymes, ions etc). Thus, it increases the

internal energy and the free energy of this neuroglial population.

The resulting activity can propagate to the neighbouring brain

areas but it does not propagate backwards to the source of the

input, i.e. in the antidromic direction. Thus, an abrupt change of

neural activity and the related change of the BOLD signal appear

in the direction of the input. Spontaneously, this abrupt change

(the gradient) should disappear [11,12] with time as it happens

with temperature gradients. We apply the term ‘‘energy flow’’ [12]

to the activity, which propagates in the same direction as the

resulting abrupt changes (gradients) of activity. Energy flows in the

brain were earlier defined as coherent spatial and temporal

changes in the energy turnover of neuroglial units related to
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information treatment [13]; these flows are the result of the

stimulation-driven transformations of energy that propagate in

certain directions along the cellular structures (axons, dendrites,

synapses, etc.). Energy flow is physiologically equivalent to activity

propagation in the brain. E.g., if during visual processing

information propagates from the thalamus to the visual cortex

and then to the temporal cortex, this is the route of activity

propagation or energy flow at the macroscopic level. The gradient

vector indicates the direction of the fastest increase in the three-

dimensional space. The fastest spatial increase occurs in the places

where there is a burst of activity in a specialized neural population

and a smaller activity in the input pathway downstream [14,15].

Thus, for the spatial blob of visual activation the fastest activity

increase would be at its ‘‘edge’’ receiving information from the

thalamus. Localization of this abrupt change of activity permits to

deduce the direction of signal propagation. As this abrupt change

occurs every time for the same stimulus, it may be possible to

detect it in the time-averaged spatial image of brain activity. This

conclusion is supported by the linear relation between the increase

in the number of neuronal spikes and the increase of the BOLD

signal [16,17].

In this present study, we applied vector analysis to the fMRI

data (Figure 1). In particular, we used statistical parametric

mapping (SPM) to describe gradient vectors and their divergences

in the fMRI data at the group level. As the BOLD signal reflects

neuroglial activity, these gradients and divergences reflect

gradients and divergences of activity in the brain. Compared with

the classical activation analysis of fMRI data, which simply

indicates where energy turnover is higher, gradients and

divergences of the signal help understand the directions of energy

flow (i.e., activity propagation) in the brain. The analysis of

divergences should not be confused with classical activation

analysis, because within the classical activations, which reflect a

‘‘plateau’’ of energy turnover, no divergence may exist; on the

contrary, it may exist in the other regions. Positive divergence

indicates the regions with the highest flow of energy outside of the

region, i.e. sources of energy flows.

The challenge of this approach is to deduce the stimulus-related

stable energy flows in the brain from the summary static images of

the corresponding brain activity.

Firstly, we verify whether statistically significant gradients and

divergences in the weighted contrast maps of the BOLD signal can

be detected. As the answer is positive, in the Discussion section we

analyse the neurocognitive interpretation of the results.

We applied the analysis to the exemplary face processing data of

Henson et al. [19], available in free access on the Internet. The

results and the logic of the interpretation are explained in detail for

this data. The second analysis is done on a passive word

perception dataset from a study performed in our laboratory

[18]. The objective is to confirm that the sources of energy flows

depend on sensory modality, so only the results for the sources are

presented for this dataset given the spatial limitations of the article.

Results

First of all, we applied our analysis of energy flows to the face

processing data set. In the analysis of brain activations for the main

effect of faces, significant activations where found bilaterally in the

frontal and pre-central cortex, in the left inferior parietal cortex

and in the right lingual region (Table 1).

The divergence analysis corresponds to the sources of energy flows,

i.e. regions with the net flow of energy outside of the region.

Divergence for face processing was positive in the right superior frontal

region, in the left postcentral region, in the right middle occipital and

in the fusiform regions bilaterally, in the left calcarine and right lingual

regions (Table 2, Figure 2A). Negative divergence (convergence) for

face processing was observed in the left thalamus and middle

cingulum, in the left superior frontal and left postcentral regions, and

bilaterally in the orbital parts of the frontal cortex (Table 2).

Brain activity can induce different directions of gradient vectors,

but for convenience of description it is useful to consider the

significant projections of these vectors on the three principal axes.

In the MNI and Talairach conventions of brain coordinates, the X

axis goes from left to right, the Y axis goes from back to front and

the Z axis goes upwards. Thus, positive projections on an axis in a

given region imply that the direction of most energy changes in

this region corresponds to the direction of the axis. Negative

projections mean that the directions of energy changes in this

region are mostly opposite to the direction of the axis.

For example, positive projections on the X axis mean that in

these clusters, the more rapid changes of the BOLD signal happen

in the ‘‘left-right’’ direction. It means that the predominant

direction of energy flows in these clusters is from left to right.

Positive projections (the left-right direction) of the gradient on

the X axis were found in the thalamus and cingulum bilaterally, in

the left lingual cortex, in the right cerebellum and right inferior

parietal cortex, in the bilateral frontal regions, in the left

hippocampus and in the left supramarginal cortex (Table 3,

clusters are ranged in the direction of the increase of the X

coordinate; Figure 3). Negative projections (the right-left direction)

of the gradient on the X axis were observed in the right superior

frontal and left triangular frontal cortex, in the right putamen, in

the right cingulum, in the right surpramarginal and angular

regions, in the left superior temporal, left precentral and superior

parietal regions, in the right angular and in the right fusiform

cortices, and bilaterally in the cuneus (Table 3, clusters are ranged

in the direction of the decrease of the X coordinate; Figure 3).

Positive projections (the occipito-frontal direction) of the

gradient on the Y axis were detected in the left precentral and

superior temporal cortex, in the left thalamus in the right

supplementary motor cortex, in the right hippocampus, and right

precentral and inferior frontal regions (Table 4, clusters are ranged

in the direction of the increase of the Y coordinate; Figure 3).

Negative projections (the fronto-occipital direction) of the gradient

on the axis Y were observed in the right occipital and orbital

frontal regions, in the left superior and orbital frontal regions, in

the left postcentral, in the left fusiform cortex, and in the left

thalamus and in the left putamen (Table 4, clusters are ranged in

the direction of the decrease of the Y coordinate; Figure 3).

Positive projections (down-up direction) of the gradient on the Z

axis were found in the bilateral frontal orbital cortex, in the left

subthalamic nucleus, in the left frontal triangular and opercular

cortex, in the left superior temporal cortex, in the left and right

cingulum, in the right supramarginal region and in the left

precentral cortex (Table 5, clusters are ranged in the direction of

the increase of the Z coordinate; Figure 3). Negative projections

(up-down direction) of the gradient on the Z axis were in the left

superior frontal and inferior opercular regions, in the left occipital

cortex, in the left cingulum, thalamus, putamen, in the right

lingual and inferior temporal regions (Table 5, clusters are ranged

in the direction of the decrease of the Z coordinate; Figure 3).

These results statistically confirm the existence of the gradients

of brain activity in response to the given cognitive load. The

gradients are supposed to reflect the direction of energy flows (i.e.,

activity propagation, see the biophysical interpretation below).

Thus, our analysis suggests that there are significant projections of

energy flows on the major axes X, Y, Z both in the positive and

negative directions of the axes.

Stable Activity Flows in fMRI
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Concerning the auditory word discrimination task, we conduct-

ed only the analysis of the sources of energy flows (positive

divergence of gradient vectors). For word processing, positive

divergence was detected in the insula and middle superior

temporal regions bilaterally and in the left posterior temporal

region at the junction with the inferior parietal lobule (Table 2,

Figure 2B).

Discussion

As can be seen from comparing the results of activation analysis

from Table 1 with the results for the analysis of divergence and

gradient (Tables 2,3,4,5), the latter provide additional information

on brain activity. This statistically significant additional informa-

tion proves a potential importance of the proposed method to

clarify the details about the distribution and dynamics of brain

response, and in particular about the directions of energy flows in

the brain. Besides, a potentially important output of this analysis is

the localization of the sites in brain cortex with a significant

divergence or convergence of energy flows.

Positive divergence (Table 2, Figure 2) indicates brain clusters

where net flow of energy from the voxels is outside; these voxels

and their clusters constitute a source of energy flows for the

surrounding voxels. As the task was related to visual face

processing, we confirmed using our approach that most of these

sources are in the occipital cortex (BA 19). However, as face

expressions also involve an internal representation of the sensory-

motor component, other sources are found in the postcentral and

superior frontal regions. These results are in agreement with

previous results based on static analysis of brain activity [21,22].

Further, the analysis of auditory word processing was realized to

validate our methodological approach. Indeed, the sources of

energy flows in this case were found in the vicinity of the auditory

cortex bilaterally, and in the language-specific posterior superior

temporal cortex on the left (Table 2). The results are in agreement

with the data on auditory speech processing with classical

activations [23,24] and are totally differentiated from the results

obtained by this method when applied to face processing.

If positive divergence indicates the sources of the flows of

energy, where do these flows finally end up in the brain? The

answer can be provided using the analysis of the negative

divergence (convergence). This analysis (Table 2) indicates voxels

in which the net flow of energy is in the inward direction; these

voxels constitute the equivalent of ‘‘sinks’’ for energy flows.

According to Table 2, these ‘‘sinks’’ can be detected in the orbital

Figure 1. Illustration of divergence and gradients in a single brain slice of one subject during face processing. (A) The levels of
divergence in a brain slice as coded by the white-black scale. (B) Each voxel in the slice is presented by an arrow – the direction of the arrow reflects
the direction of the fastest change of the signal, the size of the arrow reflects the size of this change. These arrows are gradient vectors in each voxel.
(C) The magnified part of B. where gradient vectors diverge. (D) The magnified part of B. where gradient vectors converge.
doi:10.1371/journal.pone.0033462.g001

Table 1. Brain activations for the main effect of faces.

Anatomic location p(cor) cluster cluster size z-value x y z

R cerebellum 0.000 7456 6.47 42 248 230

L cerebellum 230 260 227

R lingual 6 284 23

L precentral, sup. 0.000 483 5.81 248 12 33

L frontal, mid. 242 51 12

L frontal inferior, operculum 242 12 18

R sup. motor area 0.000 814 5.44 3 15 45

L frontal sup. medial 29 15 42

L inf. parietal 0.000 94 4.63 233 254 42

R middle cingulum 0.000 83 4.57 3 218 24

R frontal sup. 0.013 44 4.26 36 60 12

L prefrontal sup. 0.025 38 4.08 233 0 51

doi:10.1371/journal.pone.0033462.t001

Stable Activity Flows in fMRI
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frontal cortex and in the middle cingulum. Interestingly, they are

also found in the thalamus and in the postcentral region, which

can be related to feedback circuits involving these regions [25].

The analysis of divergence provides information about the

sources and ‘‘sinks’’ of energy flows in the brain but no

information about the directions of these flows in the brain. The

exact reconstruction of these directions would of course be very

complicated, given the existence of various parallel pathways and

feedback loops. Currently the spatial and temporal resolutions of

the fMRI technic are ineffective to determine precisely such

dynamic features. However, the analysis of gradients may indicate

some favored directions of energy flows in the group of subjects for

a certain task.

Concerning the face processing data from Table 3, the right-

directed flow (‘‘X axis, positive projections’’) happens in cortical

areas of the left hemisphere (the supramarginal and lingual

regions, the thalamus) as well as in some right hemispheric regions

(the middle frontal, the inferior frontal and parietal regions).

Interestingly, the opposite flow (to the left) happens in a large set of

brain structures (‘‘X axis, negative projections’’), including the

temporal and frontal cortices of both hemispheres.

Another interesting finding concerns the left thalamus, in which

the ‘‘left to right’’ flow is localized (‘‘X axis, positive projections’’).

This may indicate a localized neural circuit in the thalamus.

Considering projections of the gradient on the Y axis (Table 4),

one can see that the ‘‘backwards’’ direction of energy flows

(negative projections) is present in many structures from the

posterior part of the brain (the occipital region) to the anterior

parts in the frontal regions. In between, these flows involve the

thalamus and the postcentral cortex. This corresponds to the well

known cortical loops for processing visual information, which is

sent from the initial sources in the occipital regions (Table 2,

Figure 2A) to the frontal cortex for the integrative analysis and

then projected backwards for the top-down guidance of visual

strategies [21]. The anterior-posterior directions in the occipital

region can be also related to the fact that the thalamus is in a more

anterior position relative to the occipital region.

Of interest is that our analysis of energy flows allows to get

information of the following steps of information processing after it

has reached the most anterior point in positive projections (y = 15

in ‘‘Y axis, positive projections’’). The first line in ‘‘Y axis, negative

projections’’ shows that the energy flow moves higher in the right

frontal lobe (from z = 221 in ‘‘Y axis, positive projections’’ to

z = 212 in ‘‘Y axis, negative projections’’) and then continues a

backward direction in a more posterior region on the left (with

y = 30 and 24). Then it goes to the medial part of the left frontal

lobe terminating in the left medial frontal cortex. Thus, this

analysis permits us to reveal a complex loop for face processing in

the frontal cortex.

An interesting observation concerns the most posterior parts of

the brain (see the bottom of ‘‘Y axis, negative projections’’ in

Table 4: the right superior occipital region at y = 293). As on the

right this is the most posterior point, one could expect the flow

forward from this point. The flow in the right precuneus, which is

more anterior to the region in the right occipital region, is also

directed backwards, from the presumable transfer in the corpus

callosum.

Considering the Y projections, we have been able to reveal

opposite flows in the left and right thalamic region in the same

horizontal plane (at z = 3). One can see from ‘‘X axis, positive

projections’’ in Table 3 that in this horizontal plane (at z = 3), there

is a flow oriented in the ‘‘left-right’’ direction. To understand the

spatial relation of these flows, let us consider the Y coordinate for

each cluster in the left thalamus. In ‘‘Y axis, positive projections’’

(Table 4), which reflects the flow forward, the coordinate of the left

thalamus is y = 224. In ‘‘Y axis, negative projections’’, which

reflects the flow backwards, the coordinate of the left thalamus is

y = 212. Thus, the forward flow is localized more posteriorly than

the backward flow. The ‘‘left-right’’ flow in the left thalamus (‘‘X

axis, positive projections’’ in Table 3) is between the forward and

backward flows, at a coordinate of y = 218. This consideration

permits us to suggest a circuit in the left thalamus, mostly existing

in the horizontal plane.

Z axis projections in Table 5 indicate brain regions where the

directions of energy flows are mostly in the upward and downward

directions. Some of them are induced by anatomical constrains

such as in the most inferior orbital parts of the frontal cortex, in

which the direction of flows is mostly upward (‘‘Z axis, positive

projections’’, first lines). The mostly upwards flow in the anterior

cingulum suggests that it may go to the frontal cortex. This

Table 2. Divergences for face and word processing.

Anatomic location p(cor) cluster cluster size z-value x y z

Face, positive divergence (sources)

R fusiform 0.000 65 4.68 30 284 26

R mid occipital 4.68 24 287 3

3.79 30 278 9

L fusiform 0.001 16 4.56 233 236 224

4.50 233 248 215

R fusiform 0.000 21 4.49 36 263 215

3.69 42 245 212

L postcentral, inf 0.000 21 4.42 251 26 21

R sup frontal 0.004 14 4.42 18 21 45

L calcarine 0.002 15 4.29 26 263 18

3.83 29 257 12

L postcentral, mid 0.000 20 3.95 245 215 27

3.41 245 212 39

3.34 239 212 33

R lingual 0.002 15 3.81 21 266 26

3.62 15 281 26

3.28 15 272 26

R precuneus 0.001 16 3.71 21 242 0

L calcarine 0.016 11 3.45 29 293 12

L mid occipital 0.026 10 3.31 233 281 0

Face, negative divergences (convergences)

L thalamus 0.000 30 4.71 212 218 3

L middle cingulum 0.000 32 4.63 23 221 24

L inf frontal, orbital 0.016 11 4.34 230 21 212

R inf frontal, orbital 0.000 34 4.29 36 21 29

L sup frontal, medial 0.000 22 4.22 23 15 42

L postcentral, inf 0.006 13 4.02 257 215 15

Word, positive divergences (sources)

L insula/Sup temporal 0.007 15 5.55 236 221 3

R insula/Sup temporal 0.005 16 5.26 42 29 0

0.014 13 4.67 0 9 36

L sup temporal/Inf
parietal

0.003 17 4.45 257 224 21

doi:10.1371/journal.pone.0033462.t002

Stable Activity Flows in fMRI
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assumption is supported by the presence of bilateral flows in the

frontal regions.

Interestingly, the flow in the left superior temporal region is

directed upwards. The possible continuation of this flow may be

indicated by the upward flow in the left inferior frontal region and

in the left precentral region. The highest point (z = 48), from which

the flows go in the downward direction, is in the medial part of the

left superior frontal region (‘‘Z axis, negative projections’’). The

downward direction is also significant in the occipital regions. It

becomes clearer if we take into account that the inferior temporal

region (z = 224) is situated lower in the brain than the occipital

cortex - obviously, this is one of the targets of information and

energy flows from the visual cortex.

Comparing ‘‘Z axis, positive projections’’ and ‘‘Z axis, negative

projections’’, one can notice that at the same coordinates x = 233

and y = 12, there are two opposite flows in the left operculum. One is

higher, at z = 27 (‘‘Z axis, negative projections’’), and is directed

downwards; the other is lower, at z = 18 (‘‘Z axis, positive

projections’’), and is directed upwards. The existence of a circuit in

the left operculum is probable. This rather local circuit may explain

activation of this region in the analysis of activations (Table 1).

In the previous considerations of the gradients, we suggested the

following direction of energy flows in the frontal cortex: ‘‘right

inferior frontal – left inferior frontal – left medial frontal cortex.’’

(Figure 4). As the projection of the gradient in the triangular part

of the left frontal cortex is to the left (‘‘X axis, negative

projections’’), evidently, the flow goes next to the left operculum,

where it enters the more localized circuit of processing. This

direction of energy flows may clarify the long-standing debate

between the holistic and analytical views on face processing (see

[26] for the discussion); it suggests that the holistic processing in

the right hemisphere is followed by the analytical processing in the

left hemisphere.

Thus, the potential significance of our analysis consists in its

ability to provide novel information on the cortical dynamics of

face processing, which was unavailable in the classical activation

analysis of the fMRI dataset [19]. The results of the analysis

provided novel evidence for the favoured directions of the brain

activity propagation during the given task including the inter-

hemispheric relationship.

Limitations of the method
This method proposes to detect stable gradients of the fMRI

signal inside the grey matter volume. If a peak for a gradient

projection falls at the border of white and grey matter, the

observed gradient may be related to the difference in signal

between white and grey matter. Firm conclusions can be based

only on those peaks, which are inside grey matter; this should be

controlled on the basis of the anatomical fMRI images. The

gradient between extra-cerebral tissues and grey matter does not

present a problem for contrast images because there are NaN

values outside the brain, which are not used in Matlab

calculations. However, it may present a problem for some other

types of brain images with real values outside the brain; the values

outside the brain should be verified.

For the same reasons, the gradients in the small nuclei (e.g., the

left subthalamic nucleus in Table 5, ‘‘Z axis, positive projections’’)

surrounded by white matter should be interpreted with caution.

One should also check that the considered peaks of the gradients

are not situated in the walls of cerebral.

Figure 2. Divergence (sources) of the gradient vectors for face and word processing. (A) Sources for face processing in the occipital cortex.
(B) Sources for auditory word processing in the superior temporal cortex.
doi:10.1371/journal.pone.0033462.g002
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Perspectives
Though there are technical and interpretational limitations to

apply our method to the initial un-weighted and unprocessed

images of the BOLD signal, the possibilities of this approach

should be explored. One constraint to solve consists in the non-

functional gradients related to the extra-cerebral tissues in the

initial images. Another constraint is the possible negative influence

of smoothing on gradient images. Smoothing is helpful in the

present analysis because it enhances the overlap in the spatially

varying areas within one subject, creating the gradient in the

vicinity of this overlap in the summary weighted images. However,

the influence of smoothing, when applied to the initial gradient

images, is questionable and should be separately explored.

Another perspective is related to the development of the

statistical methods based on the present method. For example,

correlations of behavioural scores with the intensity of energy flows

in some directions may be an interesting approach. The region of

interest analysis can help determine the major directions of the

input or output from the given area. A more complex analysis with

the same statistical ideology could be the ‘‘path of interest’’

analysis, in which the direction of energy flows is estimated along

the given path in the cortex basing on the literature data on

cortical connections. As brain activity at rest reflects long-term

adaptive strategies [27], in addition to the effects of stimulation it

would be interesting to develop the applications of this method to

the resting-state activity.

Conclusions
In addition to the classical analysis of brain activation, the

implementation of the vector analysis into the analysis of

neuroimaging data during face processing provides important

insights into the understanding the information-driven propaga-

tion of energy flows between and within activated areas. The

sources, from which activity spreads in the brain during face

processing, were detected in the occipital cortex as well as in the

postcentral and superior frontal regions. The later regions

correspond probably to the loci where the sensory-motor

component of the face processing may be localized. Analysis of

the energy flows suggested inter-hemispheric transfer between the

visual and the frontal cortices. In addition, we have been able to

demonstrate a complex loop in the frontal cortex that originates in

the right inferior frontal cortex and ends in the triangular part of

the left inferior frontal cortex. Further this path propagates

backwards to the left operculum, where a localized circuit was

described. Regions, which gather information from the other areas

(‘‘sinks’’ of energy flows) were localized in the orbital frontal and

postcentral cortices as well as in the thalamus and in the middle

cingulum.

We have confirmed that this method differentiates between the

modalities of sensory processing that is important to validate the

discussed physical theory at the neurocognitive level. For the

auditory word processing, the sources of energy flows were

detected in the middle superior temporal regions bilaterally and in

the left posterior temporal region at the junction with the inferior

parietal lobule, in accordance with classical activation studies.

Thus, the proposed approach leads to reasonable results and

presents an interesting perspective for the analysis of neuroimaging

data based on biophysical assumptions.

Altogether, the visualization of energy flow based on the

computational thermodynamic approach to static activation maps

allows access to a dynamic view on the transfer of information in

the brain. Such a method that can be applied to both sensory and

cognitive functions is promising to reveal functional activity

streams in normal and pathological brain. Further developments

are needed to verify the validity of this method in comparison with

activity flows reflected by electrophysiological measurements and

on the simulated fMRI datasets. The consideration of the brain as

energy field may be helpful in providing new insights into brain

function, both at the theoretical and methodological levels.

Materials and Methods

Statistical and vector analysis
As fMRI data, we used a multi-subject event-related fMRI

dataset from the SPM site (http://www.fil.ion.ucl.ac.uk/spm/

data/face_rfx/). This data was collected by Henson et al. [19] in a

study of face repetition effects. In this study, the subjects were

repeatedly presented with various famous and non-famous faces;

the subject pressed a key to detect famous faces and those seen

previously during the session. The baseline was a chequerboard

Table 3. Projections of the gradients for face processing, X
axis.

Anatomic location p(cor) cluster cluster size z-value x y z

X axis, positive projections

L supramarginal 0.000 38 4.61 260 233 30

L lingual 0.046 16 4.44 224 269 23

L hippocampus 0.001 31 4.30 218 239 6

L thalamus 0.000 52 4.55 218 218 3

L cingulate, middle 0.000 37 4.83 29 221 24

L sup frontal, medial 0.000 338 5.68 29 15 42

Cerebellum, culmen 0.000 43 4.29 0 254 224

R thalamus 0.004 26 3.73 6 23 12

R cerebellum 0.000 131 4.83 18 260 230

R cingulate, post 0.016 20 3.68 18 236 33

R caudate 0.012 21 3.91 18 224 21

R middle frontal 0.003 27 4.29 27 0 51

R inf frontal, orb 0.000 40 3.89 27 30 218

R parietal inf 0.004 25 4.25 30 254 48

R sup frontal 0.035 17 3.80 30 51 12

X axis, negative projections

R supramarginal 0.001 33 4.43 60 221 36

R fusiform 0.012 21 3.49 51 257 218

R angular 0.000 44 4.19 39 257 36

R putamen 0.001 32 3.98 33 215 23

R putamen 0.000 47 4.81 24 23 12

R frontal sup medial 0.000 254 5.44 15 24 42

R sup frontal 0.000 46 4.53 12 39 27

R cingulum, middle 0.000 60 4.17 9 221 24

R cuneus 0.035 17 4.30 9 287 15

L cuneus 0.000 134 4.78 218 260 224

L sup parietal 0.000 53 4.00 221 257 60

L inf frontal, triang 0.000 44 4.13 224 21 212

L precentral 0.000 165 4.36 224 224 63

L sup temporal 0.002 29 4.24 242 224 15

Clusters are ranged in the direction of the increase of the X coordinate for the
positive projections and of the decrease of the X coordinate for the negative
projections of the gradient (the corresponding columns highlighted).
doi:10.1371/journal.pone.0033462.t003
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presented between the faces. The dataset comprises 12 subject-

specific t-contrasts on the main effect of faces versus baseline on

the canonical HRF (a contrast collapsing across face-types) as

‘‘con*.img’’ files.

A second dataset on auditory processing was included in this

analysis and originated from our work on speech processing.

Subjects lay in the camera with eyes closed and listened to

disyllabic words. One out of 13 stimuli was randomly repeated,

and the subjects were instructed to press the button when they

heard a repetition. The dataset comprises 15 subject-specific t-

contrasts on the main effect of words versus silent baseline on the

canonical HRF as ‘‘con*.img’’ files.

To each image file from the dataset, the following Matlab

procedure was applied (attention should be paid to the indicated

switching of the X and Y axes between the SPM and Matlab

conventions):

activity = load_nii(‘con_0006.img’); % load file

[GradientX,GradientY,GradientZ] = gradient (activity.img); %

gradient calculation, its projections on the axes as output

activity.img = GradientX;save_nii(activity,[‘GradientY_0006.img’]);

% save the image with projections of the gradient vector on the axis

X (the same for the axes Y and Z, switch Y and X!)

[x y z] = meshgrid(1:63,1:53,1:46); % meshgrid creation, the

size of the fMRI images

div = divergence (x,y,z,GradientX,GradientY,GradientZ); %

calculation of the divergence of the gradient vector

activity.img = div; save_nii(activity, [‘div_0006.img’]); % save

the divergence image

We used a special toolbox NIFTI for loading SPM images into

Matlab: http://www.rotman-baycrest.on.ca/,jimmy/NIfTI/

As a result, we had for each subject five images: the original one,

three images with projections of the gradient vector on the axes X,

Y, Z and one image with the divergence. For the word processing

dataset, only the divergence procedure was applied.

For each type of the images, a one sample t-test was performed

in SPM5 to estimate the images at the group level.

To find areas where divergence is positive or negative, contrasts

[1] and [21] were used. The same contrasts were used to find

Figure 3. Projections of the gradient vectors on the X, Y and Z axes for face processing. Positive projections are indicated in red and
negative projections in blue (p(uncor),0.001 for illustration purposes).
doi:10.1371/journal.pone.0033462.g003
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positive or negative projections of the gradient on the axes X, Y, Z.

Clusters were considered significant at p,0.05, FWE corrected.

The classical SPM estimation consists in estimating the folowing

regression-like equation:

Y~beta �Xzconstantzresidual error

where Y is the observed value per voxel and X is the value

predicted by our model (e.g, 1 for stimulation, 0 for the absence of

stimulation). The t-value is generally defined by the relation beta/

(the residual error) with the beta-value, which provides the best fit

of the data. The t-value is then compared with a theoretical

distribution to get a p-value. Given the large number of voxels, this

p-value is then corrected by special procedures for multiple

comparisons.

We use a one-sample t-test for our images of divergences and

gradient projections to detect a mean value per voxel; our model is

just a column of ones for X in the above equation [20]. In this

case, our null hypothesis is beta = 0 and the alternative hypothesis

is beta.0. If we want to test the other alternative hypothesis of

beta,0, we simply multiply the beta-value in the equation by 21.

In SPM, the first case of positive betas corresponds to the [1]

contrast, the second case of negative betas to the [21] contrast.

The [1] contrast corresponds to the case when the X and Y go in

the same direction (when X is positive, Y is positive). The [21]

contrast corresponds to the case when X and Y go in the opposite

directions (when X is positive, Y is negative). As our X is always

positive, the contrasts simply test whether the mean values of Y are

positive or negative in a given voxel. It permits to say whether the

mean divergence is significantly positive or negative or whether

the mean values of the gradient vector projections are significantly

positive or negative in each voxel.

The MRIcron software was used for illustrations (http://www.

mccauslandcenter.sc.edu/mricro/mricron/index.html).

Type of images for the analysis
The contrast images we used for the analysis represent spatially

distributed images of the weighted for the variance sum of the

parameter estimates for a particular contrast at each voxel. Thus a

contrast image summarizes the activation effect for a particular

subject. In particular, since the images we use for the analysis are

the contrasts of sensory stimulation with baseline activity, we can

claim that these changes in brain energy are related specifically to

information processing and not to the other states of the brain.

This would have been difficult to claim if we had not taken the

Table 4. Projections of the gradients for face processing, Y
axis.

Anatomic location p(cor) cluster cluster size z-value x y z

Y axis, positive projections

R hippocampus 0.004 24 4.33 24 233 9

L sup temporal 0.000 59 4.97 254 224 12

L thalamus 0.000 52 4.18 212 224 3

R precentral, sup 0.006 22 4.11 30 215 51

R suppl motor 0.000 101 4.95 6 26 51

L precentral, middle 0.000 54 4.78 257 6 21

R precentral, sup 0.000 65 4.70 51 6 33

R Inf frontal, orb 0.000 34 4.36 33 15 221

Y axis, negative projections

R inf frontal, orb 0.000 82 4.20 36 33 212

L sup frontal medial 0.006 22 3.73 0 33 42

L inf frontal, orb 0.000 52 4.23 230 30 23

L inf frontal, orb 0.005 23 4.09 245 24 29

L sup frontal medial 0.000 70 4.89 26 21 42

R rectus 0.005 23 4.75 21 15 212

L putamen 0.004 24 4.10 215 15 23

L middle frontal 0.000 89 4.99 227 3 45

L postcentral 0.000 131 5.02 257 29 21

L thalamus 0.001 28 3.88 212 212 3

R precuneus 0.000 37 4.53 21 245 0

R fusiform 0.000 143 4.78 42 251 218

L fusiform 0.000 120 5.44 233 251 212

R precuneus 0.034 16 3.91 15 260 36

R precuneus 0.045 15 4.13 3 266 54

L calcarine 0.000 36 4.40 29 269 15

L cerebellum 0.025 17 3.59 26 272 224

R sup occipital 0.000 53 3.96 24 293 9

Clusters are ranged in the direction of the increase of the Y coordinate for the
positive projections and of the decrease of the Y coordinate for the negative
projections of the gradient (the corresponding columns highlighted).
doi:10.1371/journal.pone.0033462.t004

Table 5. Projections of the gradients for face processing, Z
axis.

Anatomic location p(cor) cluster cluster size z-value x y z

Z axis, positive projections

L inf frontal, orbit 0.002 30 3.91 227 21 218

R inf frontal, orbit 0.011 22 3.66 30 27 218

L subthamic nucleus 0.000 69 4.72 212 215 23

Red nucleus 3.77 6 215 23

R inf frontal, triang 0.207 11 3.95 48 36 6

L sup temporal 0.002 30 3.76 257 215 6

L ant cingulum 0.000 89 4.45 0 36 15

L inf frontal, operc 0.004 27 3.94 233 12 18

R middle cingulum 0.000 106 4.57 6 18 33

R supramarginal 0.011 22 3.90 30 254 36

L precentral,sup 0.000 96 4.68 230 215 45

Z axis, negative projections

L sup frontal, medial 0.000 123 5.05 0 27 48

L middle cingulum 0.000 117 4.87 23 230 30

L inf frontal, operc 0.000 36 3.96 233 12 27

L cuneus 0.001 33 3.98 23 278 18

L thalamus 0.000 64 4.14 26 215 9

L putamen 0.002 30 3.84 227 23 9

R lingual 0.000 102 4.83 15 251 6

L calcarine 0.015 21 3.96 26 293 6

L calcarine 0.000 48 4.66 218 254 3

L fusiform 0.000 398 5.21 242 245 221

R inf temporal, post 0.000 513 4.79 45 245 224

Clusters are ranged in the direction of the increase of the Z coordinate for the
positive projections and of the decrease of the Z coordinate for the negative
projections of the gradient (the corresponding columns highlighted).
doi:10.1371/journal.pone.0033462.t005
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images statistically weighted by the baseline. Besides, the initial

images’ highest gradients are related not to the brain activity but to

the difference in signal between the brain and surrounding tissues.

Although energy flows in the brain are highly unstable over

time, the stability of the flows means that they persist during

stimulation, so that the temporal component can be left out of the

analysis. This justifies the use of static images as a summary over

the period of stimulation. In other terms, the temporal stability of

the calculated gradients is ensured by the statistical stability of the

estimates in the weighted contrast images. The proposed

calculation is not a new type of statistical analysis but just a

mathematical transformation of the data; it does not require

validation by split-half or other methods. We use the traditional t-

statistics implemented in SPM to estimate the transformed images

at the group level.

Biophysical interpretation
In this section, we will consider some very general physical ideas

concerning the interpretation of the free energy gradients and

energy flows. The detailed modeling is outside of the scope of the

present article.

Suppose the macroscopic states of a thermodynamic system

depend upon r extensive variables Xi, i = 1, r. There are then r+1

independent extensive variables consisting of the set Xi supple-

mented by entropy S. The fundamental relation for the system can

be expressed in the form of internal energy U = U[S, X1, …, Xr].

In the brain and in many other systems, Xi can be replaced by

the volume V and particle number N, and then U = U[S, V, N].

However, entropy S is not a convenient variable to measure

experimentally, so by means of the Legendre transformation, the

Helmholtz free energy F is introduced F = F[T, V, N] where T is

absolute temperature.

Both internal energy and free energy are thermodynamic

potentials, the meaning of which will be considered later.

If F depends on time t, the free energy minimization principle

[3,10] requires that the 1st derivative of F with respect to time

should tend to be zero and the 2nd derivative to be positive. The 1st

derivative in the Cartesian coordinate system can be expressed like

this:

dF

dt
~

LF

Lx

dx

dt
z

LF

Ly

dy

dt
z

LF

Lz

dz

dt
~+F :~vv~0

Here, the gradient of energy +F is generally in the same direction

as the velocity of its flow ~vv and their dot-product becomes zero

because of the gradient destructive nature of self-organizing

nonequilibrium living systems [11]. It follows that the gradient of F

in these voxels tends to equal zero:

+F~x̂x
LF

Lx
zŷy

LF

Ly
zẑz

LF

Lz
~0

As our analysis of fMRI data suggests the existence of the

gradients, which are stable in time, the minimization principle is

counterbalanced by some forces, which are evidently related to

information treatment.

In physics, the potential energy U(r) corresponding to a force

F(r) can be expressed as an integral of F(r) where r is a vector

pointing from the origin to the given location. The work W done

by F(r) in a small displacement from r to r+dr is:

W (r?rzdr)~F:dr~FxdxzFydyzFzdz

The work of the external force is positive when this force acts in

the direction of energy increase (e.g., climbing the mountain), and

thus equals the change of potential energy:

W (r?rzdr)~dU~U(rzdr){U(r)~

U(xzdx,yzdy,zzdz){U(x,y,z)

We can express this change of energy as the sum of changes along

each axis x, y, z:

dU~U(xzdx,yzdy,zzdz){U(x,y,z)~

LU

Lx
dxz

LU

Ly
dyz

LU

Lz
dz

We can see that the same work of the external force can be

expressed either as the function of the force or as the function of

the potential field, against which this force works:

W (r?rzdr)~F:dr~FxdxzFydyzFzdz,

Figure 4. The left-right and top-down projections of the gradients, the intensity of projections coded by colours. The following
direction of energy flows in the frontal cortex is detected: the right inferior frontal = .the left inferior frontal = .the triangular part of the left inferior
frontal cortex = .the left operculum. The whole range of t-values is used for illustration purposes.
doi:10.1371/journal.pone.0033462.g004
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W (r?rzdr)~dU~
LU

Lx
dxz

LU

Ly
dyz

LU

Lz
dz

Given these two equations, the external force equals the

gradient of U:

F~x̂x
LU

Lx
zŷy

LU

Ly
zẑz

LU

Lz
~+U

By analogy, if we consider the expression for the gradient of the

free energy field F

+F~x̂x
LF

Lx
zŷy

LF

Ly
zẑz

LF

Lz

the negative value of this gradient corresponds to a certain internal

‘‘force’’, which is directed ‘‘downhill’’ the free energy values. This

is not a usual force but a certain generalization called

thermodynamic force. As we have shown, this force would

normally drive everything in a voxel down to the minimum of the

free energy and the gradient will become zero. If the gradient

remains constant, it means that some forces act in the same

direction as the gradient of the field but opposite to the

thermodynamic force. These are forces related to the transmission

of the neural signal, and their direction is defined by the last

equation for +F . The nature of these forces is unknown; they may

be related to the mechanisms that prevent neural activity from

moving backwards along the same path.
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