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ABSTRACT
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies
produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using
only three complementarity-determining region (CDR) loops rather than the six present in conventional
VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope
structures that predispose them to preferential recognition of recessed protein epitopes, but poor or
non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the
evidence in support of this hypothesis. We found some support for a global structural difference in the
paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have
smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2
structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and
are no more extended (interatomic distance measured from CDR base to tip) than conventional anti-
body paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex
with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed
surface areas on proteins and form similar types of non-covalent interactions, although these are more
concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct
antigenic regions on proteins, but only owing to their small molecular size and not to general
differences in molecular recognition mechanism. The evidence surrounding the purported inability of
sdAbs to bind small molecules was less clear. The available data provide a structural framework for
understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.
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Introduction

Single-domain antibodies (sdAbs) are the monomeric binding
domains of heavy chain-only antibodies that have arisen
through convergent evolution at least three times (twice in
Chondrichthyes and once in Camelidae, roughly 220 and 25
million year ago, respectively1). The concept of autonomous,
antigen binding-competent sdAbs was first described by Ward
et al. in 1989,2 and several years later, naturally-occurring
antibodies lacking light chains were discovered in dromedary
camels3 and nurse sharks.4 The ~12–15 kDa variable domains
of these antibodies (VHHs and VNARs, respectively; Figure 1)
can be produced recombinantly and can recognize antigen in
the absence of the remainder of the antibody heavy chain. The
modular nature of VHHs and VNARs has been widely and
productively exploited in the development of antibody-based
drugs (reviewed in Ref.5).

Structural studies of the first VHHs and VNARs isolated6,7

provided an early indication that these molecules might interact
with antigens using mechanisms distinct from those of conven-
tional antibodies. With hindsight, the notion that sdAbs might
preferentially target particular types of antigenic structures may
not seem totally unexpected, given their recombination from

distinct repertoires of V, D and J genes (seeBox 1),8 their potential
ontogeny from separate B-cell precursors,9 and for camelid VHHs,
their specialized constant regions bearing very long hinge
regions.10 However, the specific mechanisms of sdAb antigen
recognition (e.g., the tertiary structures and physicochemical
properties of sdAb:antigen interfaces, which may differ funda-
mentally from those of conventional antibody:antigen interfaces)
remain unclear, although several studies have suggested protein
cleft recognition as a general function for both VHHs

11 and
VNARs.

12 Over time, the idea that sdAbs can target ‘cryptic’
epitopes (so-called because they are inaccessible to conventional
antibodies, either for steric reasons or due to their fundamental
antigenic properties) has become entrenched, and although sev-
eral case studies have supported it, its generality and implications
are questionable. Several excellent recent reviews and opinion
pieces have alluded to the nature of sdAb paratopes and their
interactions with antigens, but have either not been rigorous in
their approach or have incompletely addressed the topic, analyz-
ing the properties of sdAb paratopes only, with no comparison to
those of conventional antibodies.13–17 Thus, the aim of this review
was to comprehensively investigate whether and how sdAb:anti-
gen interactions differ from conventional antibody:antigen

CONTACT Kevin A. Henry Ph.D. kevin.henry@nrc-cnrc.gc.ca Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex
Drive, Ottawa, ON K1A 0R6, Canada
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kmab.

MABS
2018, VOL. 10, NO. 6, 815–826
https://doi.org/10.1080/19420862.2018.1489633

© 2018 The Author(s). Published with license by Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com/kmab
https://crossmark.crossref.org/dialog/?doi=10.1080/19420862.2018.1489633&domain=pdf&date_stamp=2018-09-13


interactions, and to assess whether VHHs and VNARs share any
similarities in this respect despite their evolutionary divergence.
The answer to this question has direct relevance for the ‘drug-
gable’ target space available to sdAbs vs. conventional antibodies.

Single-domain antibodies directed against folded
proteins

As with conventional antibodies, the bulk of sdAbs studied
have been directed against folded proteins. Certain regions
and epitopes on folded proteins are inherently more immu-
nogenic than others, a concept known as immunodominance.
The immunological mechanisms underlying B-cell immuno-
dominance are poorly understood, and patterns of immuno-
dominance probably are not completely conserved across
species.29

The first indication that sdAbs might preferentially target
different sets of epitopes compared with conventional antibodies
came from studies of anti-enzyme sdAbs (Table 1).
Conventional antibodies can act as enzyme inhibitors, most
commonly by inducing allosteric conformational changes or by
sterically blocking substrate access to the active site.65 It was
recognized from early structural studies of anti-lysozyme
VHHs6 and VNARs

7 that these molecules interacted with the
enzyme in unusual fashion, probing deeply into its active site
using extended complementarity-determining region (CDR)3
loops. These results were later replicated independently using
additional VHs,

51 VHHs11,47,48 and VNARs
12 directed against the

active site of lysozyme, as well as with active site-binding VHHs
against α-amylase,31,32 carbonic anhydrase,32 and urokinase.62,63

Inhibition of α-amylase was achieved by one VHH through
penetration of the active site cleft with its CDR2 loop,31

3

Conventional IgG

CH2

CH3

CH1

VH

VL

CL

Camelid heavy 
chain-only IgG

VHH

Shark immunoglobulin 
new antigen receptor

CH2

CH3

C4

C5

CH2

CH3

C2

C3

C1

VNAR

CH2

CH

Figure 1. Domain structures of camelid heavy chain-only IgG, shark immunoglobulin new antigen receptor (IgNAR) and conventional vertebrate tetrameric IgG. The
variable domain(s) of each antibody molecule are shown in yellow and the antigen-combining site is indicated by a red box.

Box 1. Immunogenetics of sdAbs

VHHs, the variable domains of camelid heavy chain-only antibodies, are recombined during B-cell development from a unique set of germline V genes and
common D and J genes (shared with the VH domains of conventional tetrameric antibodies) located within the igh locus on chromosome 4.8 Most camelid
VHH and VH genes

18 are homologous to human IGHV3-family genes (~75–90% identity) and encode distinctive solubilizing residues in FR2 (Phe/Tyr42, Glu49,
Arg50 and Gly 52 using IMGT numbering; these positions map to the VH:VL interface in conventional antibodies), although functional VHHs lacking this
consensus have been isolated.19,20 Some camelid V genes may ‘promiscuously’ recombine with both heavy chain-only and conventional antibody constant
region genes.19 VHH domains bear unusually long CDR3 loops in comparison with human and murine conventional antibodies,21,22 probably reflecting
increased non-templated nucleotide addition, although this may be a feature of only a subset of VHHs;

21 in some VHHs, the long CDR3 loop serves a dual
purpose, folding over the former VL interface as well as interacting with cognate antigen. The rearranged VHH exon is thought to undergo elevated rates of
somatic hypermutation of both CDRs and FRs (e.g., FR1-encoding sequences immediately flanking CDR1;23–25 FR2-encoding sequences which may play a role
in structuring the CDR3 loop;20,25 FR3-encoding sequences that form a β-turn which can make contact with antigen, sometimes called CDR424). VHHs may
also acquire somatic insertions and deletions at higher rates than conventional antibodies,24 and may under some circumstances undergo secondary
rearrangement events using a cryptic recombination signal sequence in FR3.24 Some VHH genes encode non-canonical disulfide linkages formed between
cysteine residue pairs (CDR1-CDR3, FR2-CDR3, CDR2-CDR3 or CDR3-CDR3; see Box 2).

VNARs, the variable domains of cartilaginous fish Ig new antigen receptors, share sequence homology with T-cell receptor and Ig light chain genes4 and may be
descended from Ig-superfamily cell-surface receptors.26 Compared with Ig VH domains, VNARs lack two β strands (C’ and C’’) and consequently CDR2 is absent,
although loops connecting the C-D and D-E strands (HV2 and HV4, respectively) can make contact with antigen. During B-cell development, VNAR domains
are rearranged from a small number of loci (perhaps only three) distinct from those encoding other types of Ig molecules detectable in serum (IgM, IgW).
Each locus contains one V gene, two or three D genes and one J gene and thus primary repertoire diversity is almost entirely CDR3-based:4 since VNAR CDR3
loops are formed through either three or four independent rearrangement events, these tend to be long.27 Unlike the VH domains of IgMs and IgWs, VNARs
accrue somatic hypermutations upon encounter with antigen primarily in CDR1 and CDR3 but also in HV2 and HV4.27,28
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demonstrating that CDR3-centric binding is not the only
mechanism of competitive enzyme inhibition by sdAbs.
Competitive inhibition of these enzymes by conventional anti-
bodies targeting their active sites has not been described despite
intensive study, especially of murine antibodies against lyso-
zyme. Naturally-occurring competitive inhibitors of protease
enzymes are convex, and this appears to be a difficult geometry
for the paratopes of conventional antibodies to achieve (see
below): even in cases of near-true competitive inhibition, con-
ventional antibodies use a flat or concave VH/VL interface to
bind protruding regions on enzymes and partially insert one or
more CDRs into the active site cleft in a non-substrate-like
manner.66,67 This hypothesis is supported by experiments
using purified polyclonal immunoglobulin (Ig)Gs from
enzyme-immunized dromedaries showing that competitive

inhibition was a feature of heavy chain-only IgGs, but not of
conventional IgGs.11,32 It remains unclear why immunization
with some enzymes yields mostly sdAbs with planar paratopes
and bind outside the active site, achieving allosteric or no inhibi-
tion, although tolerance mechanisms may play a role.

A second line of evidence clearly supporting distinct specifi-
cities of sdAbs vs. conventional antibodies can be found in studies
of sdAbs against pathogenic microorganisms. Stijlemans et al.68

hypothesized that the ability of a dromedary VHH, cAb-An33, to
target a cryptic glycopeptide epitope conserved across all variant
surface glycoprotein classes of Trypanosoma bruceiwas due to the
VHH’s small size as well as, potentially, the nature of this epitope.
This hypothesis was supported by the inability of rabbit and
dromedary polyclonal conventional antibodies as well as a ~90-
kDa lectin to access this site. Henderson et al.69 suggested that
recognition of a conserved hydrophobic cleft on Plasmodium
AMA1 by a VNAR (12Y-2 and its affinity-matured variants)
reflected a novel binding mode; although the epitope of a murine
conventional antibody (1F9) substantially overlapped that ofVNAR

12Y-2, 1F9 binding depended to a greater degree on polymorphic
loop residues surrounding the hydrophobic trough. Likewise,
Ditlev et al.70 attributed the binding of a panel of alpaca VHHs to
multiple domains of themalarial VAR2CSAprotein to an inherent
ability of VHHs to recognize subdominant epitopes, although
limited understanding of the human conventional antibody
response against VAR2CSA as well as irreproducibility of these
reactivity patterns by llama VHHs

71 complicated this assessment.
Probably the clearest examples of epitopes that are more

favorable for binding by sdAbs than conventional antibodies
can be found in the envelope glycoprotein trimer of HIV-1:
heterologous cross-strain neutralization is extraordinarily dif-
ficult to achieve by conventional antibodies, requiring months
of chronic infection and multiple rounds of somatic mutation
and selection, yet cross-neutralizing camelid heavy chain-only
antibodies directed against the CD4-binding site72-75 and
CD4-induced sites76-78 can be easily elicited by routine immu-
nizations with recombinant protein antigens. Similar exam-
ples can be found for other viral pathogens. Serotype cross-
neutralizing antibodies targeting the CD155-binding ‘canyon’
of the poliovirus capsid are rarely produced by the murine or
human humoral immune systems,79,80 but are apparently
common in llama heavy-chain only responses.81 Likewise,
VHHs targeting the HBGA-binding pocket of norovirus VP1
neutralized a broad range of genotypes,82 while larger con-
ventional antibodies also made contact with antigenically
variable residues surrounding the HBGA pocket and were
thus strain-specific.83

Finally, compared with conventional antibodies, sdAbs
have been implied to have privileged access to recessed sites
on membrane proteins,84 such as ion channels and G protein-
coupled receptors (GPCRs). While this is an intriguing
hypothesis, it has yet to be substantiated by any data.
Camelid VHHs generated against the Kv1.3 ion channel tar-
geted extracellular loops, not the channel cavity,85 and the
epitopes of VHHs against the P2X7 ion channel were not
defined.86 Similarly, camelid VHHs developed as potential
therapeutics against the chemokine receptors CXCR4,84

CXCR787 and ChemR23,88 as well as VHHs used as crystal-
lization chaperones for several GPCRs, channels and

Table 1. Single-domain antibodies as enzyme inhibitors.

Enzyme Type of
sdAb(s)

Inhibition Mechanism(s)
of Inhibition

Reference(s)

Aldolase VHH ND NA 30

α-amylase VHHs +/- Competitive1,
allosteric1, NA

31,32

ART2.2 VHHs +/- ND, NA 33

Aurora-A kinase VNAR + Allosteric1 34

β-lactamase VHHs +/- Allosteric2,3, NA 35

VHHs +/- ND, NA 36

Botulinum toxin VHHs +/- Steric exclusion
of substrate1

37

VHHs +/- Competitive2, NA 38

Carbonic anhydrase VHHs +/- Competitive2, NA 32,39

CD38 VHHs ND NA 40

VHHs +/- Allosteric2, NA 41

CDT binary toxin VHHs + ND 42

DHFR VHH + Allosteric1,3 43

Furin VHHs +/- Steric exclusion
of substrate1,3,
NA

44,45

Lysozyme VHHs + Competitive1,2 11

VHH + Competitive1 6,46

VHH + Competitive2 47

VHHs + Competitive1 48

VHH ND NA4 49

VHH ND NA4 50

VNAR + Competitive1 7

VNAR + Competitive1 12

VHs +, ND Competitive1,2,
NA

51

NOR VHHs +/- ND, NA 52

HCV NS3 protease VHs +/- Competitive3, NA 53

PglK flippase VHHs +/- Allosteric1, NA 54

Ricin toxin A VHHs ND NA 55

RNase A VHH + Steric exclusion
of substrate1

56

SBE-A VHHs +/- ND, NA 57

TAFI VHHs +/- Competitive2, NA 58

VHHs +/- ND, NA 59

Trans-sialidase VHHs +/- Competitive2, NA 60

Urease VHH + ND 61

Urokinase VHHs + Competitive1,
allosteric1

62

VHHs + Competitive1,2 63

VHHs +/- Allosteric2, NA 64

1Mechanism inferred from antibody:enzyme X-ray co-crystal structures.
2Specificity for active site or non-active site regions demonstrated through
epitope mapping experiments.

3Mechanism inferred from studies of enzyme kinetics.
4Inhibition was not assessed, but structural studies showed that the antibody did
not target the active site.

Abbreviations used: ART2.2, ecto-ADP-ribosyltransferase 2.2; CDT, Clostridium
difficile transferase; DHFR, dihydrofolate reductase; HCV NS3, hepatitis C virus
non-structural protein 3; NA, not applicable; ND, not determined; NOR, nitric
oxide reductase; SBE-A, starch branching enzyme A.
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transporters,89–95 all appear to bind solvent-exposed extracel-
lular or intracellular loops of these receptors in a manner
similar to conventional antibodies and their fragments. By
contrast, a synthetic CXCR4-binding “i-body” engineered
from an Ig-like NCAM domain was found to penetrate deep
into the receptor’s ligand-binding pocket to occupy a truly
cryptic, partially transmembrane epitope.96 Thus, there is at
least some reason to believe that the small size of sdAbs may
grant them access to recessed regions on pores and channels,
although experimental evidence is still lacking.

Overall, the evidence is compelling that camelid VHHs, at least,
can interact with recessed epitopes on proteins that are poorly
available for binding by conventional antibodies. Additional
examples of binding to recessed epitopes on proteins (clefts, cav-
ities, crevices or grooves) can be found for sdAbs against lactococ-
cal siphophage,97 Plasmodium falciparum MTIP,98 epidermal
growth factor receptor,99 and respiratory syncytial virus fusion
protein,100 although in these cases it is less clear that these sites
are inaccessible to conventional antibodies.While it is possible that
VNARsmay share similar cleft-binding proclivities, such claims are
based on very limited published data (three structures7,12,69).
Moreover, it should be noted that there are many examples (not
covered in this review) of partial or complete overlap between the
epitopes of sdAbs and conventional antibodies, and thus the
degree to which sdAbs bind cryptic epitopes vs. conventional
antibody-accessible epitopes, as well as whether the magnitude of
this difference exceeds more general species-to-species reactivity
differences of conventional antibodies, remain unknown.

Single-domain antibodies direct against linear
protein epitopes

It is generally recognized that the majority of conventional
antibodies raised against folded proteins are directed against
conformational epitopes (≥90%101), although this may depend
to some extent on the nature of the antigen. Several authors
have suggested that VHHs, at least, are even less likely than
conventional antibodies to bind linear peptides with high
affinity.102,103 Although this is a plausible hypothesis based
on the typical structures of sdAb paratopes (see below), it has
not yet been substantiated by any data. Moreover, the rela-
tively large number of studies reporting sdAb reactivity by
western blotting suggests that sdAbs directed against contin-
uous epitopes are probably not vanishingly rare.

Single-domain antibody paratope structures

The paratopes of conventional antibodies directed against
folded proteins tend to be flat or concave;104 convex binding
sites are difficult to achieve, at least by murine and human
conventional antibodies, although synthetic conventional
antibodies can be engineered to adopt such geometries.105

By contrast, sdAb paratopes can clearly adopt both flat106,107

and convex11 topologies, although possibly only inefficiently
adopt concave ones. The CDR1 and CDR2 loops of VHHs
depart from the typical canonical structures of conventional
antibodies (Figure 2A), potentially through somatic mutation
since germline human VH and camelid VHH repertoires
appear to have similar canonical structures.18 Only a handful

of VNARs have been crystallized, and several showed a struc-
tural class of CDR1 (H1-13–9) that is more common in VHHs
than in conventional antibodies, although others had CDR1
canonical structures closer to those of VL domains. The CDR3
length distributions of both VHHs and VNARs (Figure 2B) are
broader than those of conventional antibodies and biased
towards longer lengths; the long CDR loops of sdAbs may
be structurally constrained by non-canonical disulfide lin-
kages (see Box 2). Despite potentially elevated somatic muta-
tion rates (at least of VHHs), the paratopes of VHHs, VNARs
and conventional antibodies have similar amino acid con-
tents, all being enriched for Gly, Ser and Tyr, and their
CDR sequences bear no obvious patterns of sequence homol-
ogy (Figure 2C, D). Both VHH and VNAR paratopes have
smaller molecular surface areas and smaller diameters than
conventional antibodies (Figure 2E, F). However, sdAb para-
topes as a group are not more globally extended than those of
conventional antibodies, as reflected by the maximum intera-
tomic distance between the tips and the bases of any CDR
loop (Figure 2G).

Single-domain antibody:antigen interactions

The footprints of sdAbs on antigens are smaller than those of
conventional antibodies, given that the paratopes of the for-
mer molecules are roughly half the size of the latter ones.
Using only three CDR loops (two CDR loops and potentially
two HV loops for VNARs), sdAbs can bury similar solvent-
accessible surface areas on proteins compared with conven-
tional antibodies (Figure 3A). This is made possible by a
number of molecular contacts (hydrogen bonds, salt bridges)
that is slightly lower for sdAbs than in conventional antibo-
dies, but higher on a per-chain basis (Figure 3B, 3C).
Moreover, the surface complementarity of sdAb:protein inter-
faces is on the high end for antibody:antigen interactions
(Figure 3D). Thus, sdAbs and conventional antibodies bind
protein antigens through similar types of non-covalent inter-
actions, but these are more concentrated in the smaller para-
topes of sdAbs.

Single-domain antibodies directed against small
molecules

The dominant mechanism by which conventional antibodies
interact with haptens, small-molecule lipids and oligosacchar-
ides is by forming a binding pocket at the interface between
the VH and VL domains, typically involving the bases of the
CDR-H3 and CDR-L3 loops.113–115 Similarly, conventional
antibodies tend to accommodate short linear peptides and
nucleic acid polymers within grooves formed from both
heavy- and light-chain CDRs.104 Four studies have reported
structures of camelid VHHs in complex with haptens and
peptides (Table 2); the recognition mechanism of all but one
(a methotrexate-specific VHH with a non-canonical binding
site involving framework region (FR)3 residues located below
CDR1113) was basically similar to that of conventional anti-
bodies, with the hapten-binding pocket formed from two or
more CDRs and extending in some instances into the former
VL interface. Notably, three of these VHHs have non-
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Fig 2. Properties of sdAb vs. conventional antibody paratopes. (A) Structural classification of CDR1 and CDR2 according to PyIgClassify.108 (B) CDR3 length
distributions. (C) Amino acid compositions of conventional antibody (VH domain) and sdAb paratopes. For VHHs, sequences of CDR1, CDR2 and CDR3 (Honegger-
Plückthun numbering) were used and for VNARs, sequences of CDR1 and CDR3 only were used. (D) Relatedness of conventional antibody (VH domain) and sdAb CDR3
sequences. The phylogenetic tree was produced using neighbor-joining methods in ClustalW2 and the cladogram was visualized using iTOL109 with CDR3s colored
according to species origin as in part B. (E) Molecular surface areas of conventional antibody (VH:VL) and sdAb paratopes. Areas were calculated for merged CDR
sequences (Honegger-Plückthun numbering) using PyMol. (F) Diameters of conventional antibody (VH:VL) and sdAb paratopes. Diameters were calculated as the
maximum interatomic distance between any two FR-CDR boundary residues (Honegger-Plückthun numbering). (G) Extension of conventional antibody (VH:VL) and
sdAb paratopes. Extension was calculated as the maximum interatomic distance between the CDR base (first or last residue according to Honegger-Plückthun
numbering) and the CDR tip. The CDR(H)3 loop is shown in blue. In parts (E) – (G), boxplot lines represent medians, the box boundaries represent quartiles and the
box whiskers represent ranges. Red dots indicate sdAbs targeting cryptic epitopes discussed in the main text. Data are representative of all complete antibody
structures available in the Protein Data Bank and indexed in PyIgClassify as of January 2018.
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canonical structures of either CDR1 or CDR2 that have not
been observed in structures of other VHHs and may not be
germline-encoded.

Multiple studies have reported the isolation of hapten-
specific VHHs without investigating their structures,119

although several also reported weaker and inconsistent
serum heavy chain-only IgG titers compared with conven-
tional IgG titers against the hapten. No studies have reported
hapten-specific VNARs, and only one study has described a
carbohydrate-specific VHH directed against Neisseira menin-
gitidis lipopolysaccharide;120 at least two camelid VHHs have
been described that bind to glycopeptide epitopes.68,76 No
sdAbs of any type have been described that convincingly
bind lipids or nucleic acids. Together, the consensus of the
data is that it is probably difficult, but not impossible, for
sdAb paratopes to accommodate haptens and that three CDRs
are sufficient to form the binding pockets and grooves
required for such interactions, although potential involvement
of solubility-enhancing FR2 residues at the former VL inter-
face in pocket formation may impose restrictions on hapten-
binding specificities.

Synthetic single-domain antibodies and non-
antibody scaffolds

Fully synthetic sdAbs, derived from VHHs, VNARs or from rare
human and murine VH and VL domains that remain stable and
soluble outside the context of the natural VH:VL pairing, can be
engineered to bind antigens using in vitro methods (e.g., phage
display). More recently, technologies have been developed for
generating semi-synthetic sdAbs using engineered cell lines
capable of inducible V(D)J recombination121 and transgenic
mice bearing either hybrid llama-human or fully human igh
loci;122 in both cases, a limited set of VH, D and JH genes (some
of which are in non-germline configurations to promote auton-
omous folding) are rearranged in a foreign cellular or in vivo
system. Limited numbers of synthetic sdAbs have been
described and fewer still have been studied structurally in
complex with antigens. Nevertheless, the available data suggests
that some synthetic sdAbs have cleft-binding properties akin to
those of VHHs and VNARs

51 while others employ unusual
mechanisms to interact with planar protein epitopes (e.g., dra-
matic CDR3 restructuring of a MDM4-specific VH domain to
accommodate packing against a hydrophobic helix;123

significant involvement of FRs in binding of VHs to vascular
endothelial growth factor124,125 and CD40126 using distinct
mechanisms). Even less is known regarding the paratope struc-
tures and binding modes of non-Ig-based antibodies such as
variable lymphocyte receptors127 and non-antibody scaffolds
(based on monomeric non-Ig domains such as fibronectin
type III and SRC homology 3 domains), and their synthetic
origin may imply that they follow no general patterns. If so,
restrictions on the binding specificities of naturally-occurring
sdAbs may not equally affect synthetic sdAbs and non-antibody
scaffolds, although fundamental structural constraints on the
amino acid sequences that can be tolerated by stable Ig folds
would still apply.

Conclusions and perspectives

Recent work on unusual antibodies produced by unortho-
dox model organisms (e.g., cows, chickens) has spurred
renewed interest in the comparative immunology of anti-
body responses. Some ‘cryptic’ regions on proteins (e.g.,
enzyme active sites, recessed regions of viral glycopro-
teins) are clearly more accessible to sdAbs than to con-
ventional antibodies. More generally, we surmise that the
major advantage of sdAb recognition is the ability to
target conserved cleft and pocket regions (typically bind-
ing sites) on hypervariable pathogens without making
ancillary contact with the easily mutable perimeters of
these sites. Why and how pathogen selection produced
two evolutionarily-unrelated sdAb systems in sharks and
camelids, but not in other organisms, remains to be clar-
ified. In the case of sdAbs, privileged access is conferred
by their compact paratope diameters (in the absence of a
paired VL domain) rather than any global difference in
paratope shape or structure. Similar non-covalent interac-
tions mediate the binding of conventional antibodies and
sdAbs, although these are more efficiently concentrated in
the compact paratopes of sdAbs to produce high-affinity
interactions. Although it is likely that sdAb paratopes have
difficulty adopting concave geometries and recognizing
small molecules, it remains unclear whether such paratope
restrictions disfavor interaction with certain types of pro-
tein epitopes as well.

Future studies will need to rigorously assess the degree
of separation and overlap in the protein epitope space

Box 2. Non-canonical disulfide linkages of sdAbs

Some but not all camelid VHHs bear paired cysteine residues, resulting in formation of a second intradomain disulfide linkage in addition to the conserved
Cys23-Cys104 linkage (IMGT numbering) present in all Ig domains. Non-canonical disulfide linkages most commonly bridge Cys residues in CDR1 and
CDR3,20,21,24 but can also link FR2 and CDR3,21,22 CDR2 and CDR3,23 or two positions within the CDR3 loop.19 The Cys residues in CDR1 are encoded by
germline VHH genes that are frequently used in the repertoires of dromedary camels, and B cells using these genes presumably acquire a partner Cys during
receptor rearrangement. Two hypotheses have been invoked to explain the presence of non-canonical disulfide linkages in VHH domains: they may impart
greater stability to the VHH fold and/or restrict the conformational flexibility of long CDR3 loops, potentially minimizing entropic penalties for antigen
binding. However, mutagenesis studies have showed that Cys residues forming non-canonical disulfide linkages can be replaced with a spectrum of other
residues with only modest impairment of antigen binding affinity and thermal stability.110

Most cartilaginous fish VNARs bear an additional non-canonical disulfide linkage spanning either FR2-CDR3 (type I) or CDR1-CDR3 (types II and III16). In addition,
type I VNARs also bear a CDR3-FR4 disulfide linkage and, sometimes, an intra-CDR3 disulfide linkage (three or four intradomain disulfide linkages in total27). A
minority of VNARs (type IV) bear only the single canonical disulfide linkage. As for VHHs, most VNAR Cys residues in CDR1, FR2 and FR4 are probably encoded in
the germline and non-canonical disulfide linkages are formed during primary repertoire development4,27,28

Although the precise roles of non-canonical disulfide linkages in sdAb structure and function remain unclear, these linkages very likely influence sdAb paratope
structure, since patterns of antigen-driven somatic hypermutation appear to vary depending on their presence and location.27
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targeted by sdAbs vs. conventional antibodies, and to
explore whether sdAb-accessible (and inaccessible) epi-
topes can be predicted in silico. Basic studies of the immu-
nological functions of conventional vs. heavy chain-only
antibodies in host defense (e.g., neutralization; opsoniza-
tion; antibody-dependent cell-mediated cytotoxicity and
complement-dependent cytotoxicity) would also be highly
valuable. Given the apparent sufficiency of sdAb paratopes
to mediate high-affinity interactions with proteins, both
the evolutionary forces responsible for shaping the more
complex paired VH:VL antibody system in vertebrates, as
well as the overall functions of light chains, are open
questions.
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Figure 3. Properties of sdAb:antigen and conventional antibody:antigen interfaces. (A) Change in solvent-accessible surface area on proteins upon binding by
conventional antibodies or sdAbs. (B) Number of hydrogen bonds and (C) number of salt bridges in conventional antibody:antigen and sdAb:antigen interfaces. (D)
Shape complementarity index of conventional antibody:protein and sdAb:protein interfaces. Results in parts (A) – (C) were calculated using the PISA server, and in
part (D) using the SC algorithm implemented in CCP4. Boxplot lines represent medians, the box boundaries represent quartiles and the box whiskers represent
ranges. Red lines indicate the means and standard deviations for conventional antibodies.111,112 Data are representative of all complete antibody:antigen co-crystal
structures available in the Protein Data Bank and indexed in PyIgClassify as of January 2018.

Table 2. Structural features of anti-hapten sdAb paratopes.

Antigen sdAb Type CDR3
Length (aa)

CDR1/2 Canonical
Structures

Paratope
MSA (Å2)

Paratope
Diameter (Å)

CDR Loop Extension (Å) Reference

Reactive Red 6 VHH 17 H1-13–1, H2-15–1 4380 14.7 17.8 (CDR1), 22.8 (CDR2), 22.3 (CDR3) 116

Reactive Red 1 VHH 18 H1-16–1, H2-10–2 4242 15.0 21.8 (CDR1), 22.3 (CDR2), 22.9 (CDR3) 117

Methotrexate VHH 17 H1-13–11, H2-10–2 3866 14.7 22.4 (CDR1), 17.6 (CDR2), 21.0 (CDR3) 113

DYEPEA peptide VHH 18 H1-13–11, H2-11-* 3698 14.8 16.3 (CDR1), 16.6 (CDR2), 21.8 (CDR3) 118
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HV hypervariable
Ig immunoglobulin
sdAb single-domain antibody
VH variable heavy chain domain of conventional antibody
VHH variable heavy chain domain of camelid heavy chain-only

antibody
VL variable light chain domain of conventional antibody
VNAR variable domain of shark immunoglobulin new antigen

receptor.
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