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Abstract: Modern metabolomics platforms are able to identify many drug-related metabolites in
blood samples. Applied to population-based biobank studies, the detection of drug metabolites can
then be used as a proxy for medication use or serve as a validation tool for questionnaire-based
health assessments. However, it is not clear how well detection of drug metabolites in blood samples
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matches information on self-reported medication provided by study participants. Here, we curate
updates

free-text responses to a drug-usage questionnaire from 6000 participants of the Qatar Biobank (QBB)
Citation: Suhre, K.; Stephan, N.;

Zaghlool, S.; Triggle, C.R.;
Robinson, R.J.; Evans, AM.;
Halama, A. Matching Drug

using standardized WHO Anatomical Therapeutic Chemical (ATC) Classification System codes and
compare the occurrence of these ATC terms to the detection of drug-related metabolites in matching
blood plasma samples from 2807 QBB participants for which we collected non-targeted metabolomics
data. We found that the detection of 22 drug-related metabolites significantly associated with the
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with non-targeted metabolomics was observed, with self-reported drugs and their metabolites being
detected in a same blood sample in 79.4% of the cases. On the other hand, only 29.5% of detected
drug metabolites matched to self-reported medication. Possible explanations for differences include

metabo12030249 under-reporting of over-the-counter medications from the study participants, such as paracetamol,

N misannotation of low abundance metabolites, such as metformin, and inability of the current methods
Academic Editor: Hunter N.

B. Moseley to detect them. Taken together, our study provides a broad real-world view of what to expect from
large non-targeted metabolomics measurements in population-based biobank studies and indicates
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areas where further improvements can be made.
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Population-based and epidemiological biobank studies provide essential information
about the health of the general population and are key resources for research into disease
etiology and comorbidities [1-4]. There are numerous large biobank projects around the
globe, including in Europe, North America, Australia, China, Japan, Korea and Qatar [5-9]
that gather biological samples, clinical data, basic laboratory test results, along with imaging
data and questionaries. These data sets are primarily obtained from volunteers without
conditions of the Creative Commons ANy specific health-related inclusion/exclusion criteria [10]. Further insights into disease
Attribution (CC BY) license (https://  €tiologies and comorbidities are derived from these samples as a result of technological
creativecommons.org/ licenses /by / advancement and the introduction of the -omics sciences (genomics, transcriptomics,
4.0/). proteomics, metabolomics), along with large electronic databases that are capable of storing
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and managing the large data sets associated with the subject information into widely
accessible population-based biobanks [11,12].

Statistics on the use of prescription drugs and over-the-counter medication reflect
actual patient behavior in disease management. They can even provide insights into the
genetic bases of complex diseases, as shown in a recent genome-wide association study
on medication use in UK Biobank [13]. However, information on medication use, diet
and lifestyle is generally obtained from questionnaires, which may be inaccurate due
to multiple factors, including communication issues, unclear wording or too extensive
questionaries [14]. Such biases may substantially affect the analysis of the actual drug
exposure which can result in false estimation of used medication and their effects [15,16].
A previous study, assessing the concordance between the information on medication use
derived in parallel from questionnaires and from pharmacy database records reported good
concordance for medication used to treat chronic disorders, such as cardiovascular disease,
type 2 diabetes (T2D) and hypothyroidism, but poor concordance for medication used over
shorter periods of time [17]. Therefore, validation of questionnaire-derived medication
data is critical for accurate analysis.

In this context, non-targeted metabolomics, designed for the broad characterization
of ideally all relevant small molecules in a biological sample, can help to answer the
question of how well self-reported and blood-detected drug uses match. Indeed, a pilot
study conducted on 83 subjects deployed metabolomics to test whether questionnaire-
derived medication use could be verified using metabolomics readouts from urine [18]. The
study showed that molecular evidence for many classes of medication could be obtained
from urine metabolic profiles. Nevertheless, some of the drugs, predominantly those
extensively metabolized and excreted by the liver (omeprazole, rabeprazole, atorvastatin,
and simvastatin), were not captured by the metabolomics analyses of urine. However, the
potential of untargeted metabolic profiling applied in the plasma samples as a strategy
for the verification of the questionary-derived data on the medication usage has not been
previously explored.

Here, we analyze self-reported drug use from 6000 participants of the Qatar Biobank
(QBB) [9,19] together with non-targeted metabolomics measurements made on 2807 match-
ing blood plasma samples. We curate and annotate the self-reported drug use data using
ATC terms and ask how self-reported QBB drug use compares with top self-reported drug
use in the UK Biobank (UKB). We then analyze the metabolomics data to ask (1) how
well self-reported drug use is reflected in blood detected metabolites, (2) which drugs
are potentially under-reported by study participants, that is, only detected in blood, and
(3) which drugs are not detected using the currently available metabolomics platforms,
that is, only self-reported by the participants? We discuss relevant examples in more detail,
including the use of paracetamol, metformin, statins, and psychoactive drugs.

2. Results
2.1. Demographics

Qatar Biobank is a population-based cohort study in Qatar [9,19]. In this analysis, we
had access to data obtained from 6000 subjects of Qatari nationality. Overall, the analyzed
cohort is relatively young compared with other biobanks, with an average participant age
of ~40 years (Table 1). Most of the participants were aged between 25 and 54 years and
only ~2% of participants were older than 65 years (Figure 1a). A total of 56% of the study
participants were female. The average BMI was 28.9 kg/m? and the average HbAlc was
5.7%. In total, 17% of the subjects self-reported to have been diagnosed with diabetes, 30%
of the participants reported to be treated for high cholesterol level, 16% for high blood
pressure, and 10% reported to be regular smokers.
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Table 1. Demographics of the 6000 QBB participants who were included in this study. Except for
HbAlc and BM], all information is self-reported using questionnaires dispensed at baseline.

Variable Value(s)
Mean age in years (s.d.) 39.7 (12.8)
Female (%) 3412 (56.9%)
Mean BMI in kg/m? (s.d.) 28.9 (6.2)
Mean HbAlc % (s.d.) 5.7 (1.26)
Diagnosed with diabetes (%) 1041 (17.4%)
Treated for diabetes with tablets (%) 717 (12.0%)
Treated for diabetes with insulin (%) 286 (4.8%)
Treated for high cholesterol (%) 1829 (30.5%)
Treated for high cholesterol with tablets (%) 815 (13.6%)
Treated for high blood pressure (%) 966 (16.1%)
Treated for high blood pressure with tablets (%) 652 (10.9%)
Regular smoker (%) 602 (10.0%)
Reported at least one over-the-counter or prescription drug (%) 3086 (51.4%)
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Figure 1. Histogram of the 6000 QBB participants included in this study, presented by sex and age
(a); fraction of male (blue), female (pink), and all (black) QBB participants who self-reported using at
least one over-the-counter or prescription drug, stratified by age (b).

2.2. Self-Reported Medication in QBB

Free-text responses of 6000 study participants of QBB to the question “Are you taking
any over-the-counter medication or prescription medicines regularly? For example, daily,
weekly, monthly or every few months—such as depot injections?” were analyzed. In
total, 3086 participants (51.4%) provided at least one affirmative answer. The frequency of
medication use increased linearly from ~25% at age 20 years to ~100% at age 70 years, with
females reporting more medication use than men (Figure 1b). Space for up to 30 free-text
answers was provided by the electronic questionnaire. The largest number of registered
entries was seventeen, indicating that likely no medication use was omitted by participants
due to lack of space to respond. In total, 7757 individual entries were recorded, covering
3450 distinct text items. The responses provided by the participants were in free-text format
and varied in detail, ranging from “unspecified medication for disease X” to “specific
drug brand, dose, and frequency of usage”. The responses occasionally contained spelling
errors or abbreviations. Information on dosage and frequency of medication use were only
provided sparsely and non-systematically and were, therefore, not further included in the
annotation and analysis.
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In a first step, all unique entries were manually annotated with an active molecule
name. Where possible, these were then matched to a Drugbank [20,21] entry (e.g.,
“Aspirin” -> “acetylsalicylic acid” -> Drugbank identifier “DB00945”). Spelling errors were
corrected where possible, leaving only 75 of the 3450 answer codes (2.2%) as “not anno-
tated”. The most frequently reported drugs among the 7757 individual response items
were metformin (N = 533), levothyroxine (N = 492), acetylsalicylic acid (aspirin) (N = 309),
atorvastatin (N = 234), and insulin (N = 224). The most frequently mentioned supplements
were vitamin D (N = 1029), multivitamin preparations (N = 462), iron (N = 223), calcium
(N =169), omega-3 fatty acids (N = 165) and vitamin B (N = 155). In cases where only
a general indication for the drug was provided, the active molecule was annotated as
“unspecified [indication]” (e.g., “unspecified hypertension”), leading to 68 unspecified types
of indications that cover 1224 of all responses (15.8%). The most frequent unspecified
indications were “unspecified dyslipidemia” (N = 278), “unspecified hypertension” (N = 259)
and “unspecified diabetes” (N = 153).

Links to the WHO Anatomical Therapeutic Chemical (ATC) Classification System pro-
vided by Drugbank were then used to assign ATC codes to all entries that had a Drugbank
identifier. Note that an active molecule can have multiple ATC codes assigned [22]. Drugs
that are composed of multiple active molecules were split into multiple entries and treated
as distinct items (e.g., “Exforge” -> “amlodipine and valsartan”). In total, 433 unique molecule
names were annotated. Of these, 298 molecules had a Drugbank identifier, and 272 of these
also had an ATC code (Table 2 and Figure 2). Supplementary Table S1 provides individual
counts for all annotated molecules and ATC codes.

Table 2. Number of self-reported medication by ATC anatomical main group, based on responses of
6000 QBB participants, whereof 3086 reported to take at least one kind of medication.

ID Anatomical Main Group N1
Al ALIMENTARY TRACT AND METABOLISM 1422
B BLOOD AND BLOOD FORMING ORGANS 628
C CARDIOVASCULAR SYSTEM 815
D DERMATOLOGICALS 84
G GENITO URINARY SYSTEM AND SEX HORMONES 411
H SYSTEMIC HORMONAL PREPARATIONS, EXCL. SEX HORMONES AND INSULINS 515
J ANTIINFECTIVES FOR SYSTEMIC USE 16
L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 104
M MUSCULO-SKELETAL SYSTEM 633
N NERVOUS SYSTEM 450
P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 10
R RESPIRATORY SYSTEM 161
S SENSORY ORGANS 132
\% VARIOUS 14

! Note that an active drug molecule can have multiple ATC codes assigned to it.

Using the ATC coding system, we then analyzed the use of specific drug classes by
age and sex (Figure 3). The most frequently reported medication in QBB were “drugs used
in diabetes” (A10) and “lipid modifying agents” (C10). Over 40% of individuals aged 55 and
above reported taking either or both types of these drugs. More female participants used
“drugs used in diabetes”, whereas more males took “lipid modifying agents”. “Thyroid therapy”
(HO3) was predominant in females, reported by some subjects already at a young age of
18-24 years (~5%) and its usage increased with the age with 20% of females reported using
such drugs at the age of 55 years and above. “Vitamins” (Al1l) and “antianemic preparations”
(B03) were also predominantly reported by female study participants.
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Figure 2. Counts of drugs taken by 6000 QBB participants, ordered by ATC therapeutic subgroup.
Subgroups with over 100 counts are: A10:DRUGS USED IN DIABETES (795), C10:LIPID MODI-
FYING AGENTS (700), HO3: THYROID THERAPY (495), M01:ANTIINFLAMMATORY AND AN-
TIRHEUMATIC PRODUCTS (488), A11:VITAMINS (430), C07:BETA BLOCKING AGENTS (430),
C09:AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM (363), B0O1: ANTITHROMBOTIC
AGENTS (350), N02:ANALGESICS (341), A01:STOMATOLOGICAL PREPARATIONS (321),
G01:GYNECOLOGICAL ANTIINFECTIVES AND ANTISEPTICS (312), B03:ANTIANEMIC PREPA-
RATIONS (285), A02:DRUGS FOR ACID RELATED DISORDERS (239), M05:DRUGS FOR TREAT-
MENT OF BONE DISEASES (174), S01:OPHTHALMOLOGICALS (132). See Supplementary Table S1
for all subgroup definitions and all counts.

A10 - DRUGS USED IN DIABETES C10 - LIPID MODIFYING AGENTS HO3 - THYROID THERAPY
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Figure 3. Cont.
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Figure 3. Frequencies (by age and sex group) of the twelve most frequently reported drug classes
(ATC code level 2) by age and sex; percentages of males (cyan) and females (red) who reported at
least one drug of the indicated classes in their respective age group, computed based on the responses
of 6000 participants of QBB.

2.3. Comparison of Self-Reported Drug Use in QBB and UK Biobank

To evaluate the consistency of self-reported medication in QBB with what is observed
in other population studies, we used UK Biobank data. The average age of the UKB
participants at recruitment (56.5 yrs, s.d. = 8 yrs) was fifteen years higher than that of
the QBB participant, whereas the average BMI (27.3, s.d. = 4.8) and the proportion of
female participants (54.4%) in UKB was comparable to QBB. Despite their older age, only
5.3% of the UKB participants were diagnosed with diabetes, compared with 17.4% in QBB.
Medication use in UKB was obtained via a verbal interview with a trained nurse (see
methods). 372,854 out of 500,000 participants (74.6%) in UKB reported taking at least one
medication item (Supplementary Table S2), which is substantially higher than in QBB
(51.4%) but nevertheless in agreement with the observed increase in medication use with
age (Figure 1b).

The most frequently reported items in UKB were paracetamol (N = 102,058), aspirin
(N =72,926), ibuprofen (N = 67,388), simvastatin (N = 64,538), omeprazole (N = 35,724),
bendroflumethiazide (N = 30,052), ramipril (N = 27,363), amlodipine (N = 26,198), levothy-
roxine (N = 24,081), and atorvastatin (N = 21,516). Among the dietary supplements the
most frequently reported items in UKB were glucosamine products (N = 34,219), cod liver
oil capsules (N = 29,961), omega-3/fish oil supplements (N = 19,877), and multivitamin
supplements (N = 16,504). It is noteworthy that the three most frequently reported medica-
tions in UKB were analgesics (paracetamol, aspirin, and ibuprofen), whereas only a small
fraction of QBB participants reported their use. Other frequently reported medications in
UKB were the anti-dyslipidemia drugs simvastatin and atorvastatin, as well as drugs used
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to control high blood pressure, including bendroflumethiazide, ramipril, and amlodipine.
In contrast to QBB, metformin and other blood glucose controlling agents were not among
the most frequently reported drugs in UKB.

Overall, there were substantial differences in self-reported medication use between
UKB and QBB. These may in part be due to differences in demographics (older participants
taking more medication), lifestyle (e.g., use of vitamin supplements) and disease prevalence
(i.e., diabetes rates), but there also appears to be a reporting bias for some of the over-the-
counter drugs (e.g., only 28 of the 6000 QBB participants report using paracetamol, whereas
1in 5 UKB participants do). It may, therefore, be of interest to evaluate the self-reported use
of these medications with blood detection, as we shall investigate in the following section.

2.4. Linking Drug Metabolites Detected in Blood and Self-Reported Medication

For independent validation of the questionnaire-derived medication use, samples of
3000 QBB participants were analyzed on the non-targeted HD4 metabolomics platform of
Metabolon Inc. (Morrisville, NC, USA) that is operated by the Anti-Doping Laboratory—
Qatar. For 2807 of these samples, we had access to matching questionnaire data. In total,
semi-quantitative levels of 1159 metabolites were reported; of these, 119 were annotated as
drugs and assigned by Metabolon to 13 different drug categories (Supplementary Table S3).
In 80% of the blood samples at least one drug metabolite related to the category “anal-
gesics/anesthetics” was detected (see methods), 46.5% of the blood samples contained at
least one molecule related to drugs targeting “metabolic processes”, and 22.3% of the samples
contained at least one metabolite related to “drugs used to treat cardiovascular problems”.

We investigated the overlap between self-reported medication use and the detection of
drug-related metabolites in the participants” blood samples in a hypothesis free approach
by testing all possible 2 x 2 tables constituted by the counts of “detected” (yes/no) versus
“self-reported” (yes/no) drug molecules for significant deviation from the null using a Fisher
exact test. We accounted for multiple testing by the number of tested metabolites (N = 119)
times the number of self-reported medication items (N = 394), yielding a conservative
Bonferroni level of significance of p < 1.1 x 10~ (Supplementary Table S4).

In total, 82 metabolite-drug pairs showed a significant overlap between self-reported
drug usage and blood-detected metabolites at this level of significance. Multiple metabolites
can associate with the same drug (e.g., multiple detected acetaminophen metabolites
associated with paracetamol usage) and multiple drugs that are used to treat a single
underlying condition (e.g., self-reported metformin use with drugs used to treat diabetes
comorbidities). To avoid confounding or counting the same medication multiple times,
we applied a stringent mutual-best-hit criterion, meaning that we considered only the
single strongest associations for each self-reported medication and for each detected drug
metabolite, respectively, and this only if they were their mutual strongest association. We
found 22 such mutual-best-hit matches that reached Bonferroni significance (Table 3). In all
22 cases, the self-reported medication and the detected drug metabolite were identical or
biochemically related (e.g., self-reported use of atorvastatin associated with detection of o-
hydroxyatorvastatin in blood). When including mutual-best-hits up to nominal significance
(p-value < 0.05), we found 59 self-reported medication-detected drug metabolite pairs
(Supplementary Table S4), many of which were biochemically related or identical (e.g.,
ibuprofen, tramadol, verapamil, tamoxifen).
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Table 3. Self-reported medication (N self) and drug metabolites detected in blood (N blood); The
total number of samples in this analysis was N = 2807. Included are all mutual best-hits with Bonferroni-
significant associations (Fisher test, p-value < 0.05/N-self-reported /N-detected = 0.05/394/119 = 1.1 x 107°).
All pairwise associations that reached nominal significance (p < 0.05) are in Supplementary Table S4.

Self-Reported

Metabolite Detected N p-Value Self Blood

Medication Self in Blood Blood (Fisher) Only Only Both
metformin 220 metformin 846 8.7 x 1072 17 643 203
atorvastatin 90 o-hydroxyatorvastatin 110 3.1 x 10770 27 47 63
valsartan 40 valsartan 171 7.0 x 10740 2 133 38
losartan 24 losartan 27 3.7 x 10738 5 8 19
gliclazide 47 gliclazide 468 6.2 x 10730 4 425 43
indapamide 15 indapamide 34 9.2 x 1072 2 21 13
warfarin 9 10-hydroxywarfarin 13 24 x 1073 0 4 9
atenolol 18 atenolol 140 48 x 1072 1 123 17
acetylsalicylic acid 111 salicyluric 1292 25 x 1072 13 1194 98

glucuronide

escitalopram 10 citalopram/escitalopram 31 5.4 x 1072 0 21 10
esomeprazole 26 omeprazole 67 74 x 10721 10 51 16
glimepiride 18 glimepiride 25 1.7 x 10717 8 15 10
topiramate 7 topiramate 20 2.9 x 10716 0 13 7
pantoprazole 12 pantoprazole 88 40 x 10712 3 79 9
celecoxib 18 celecoxib 58 1.5 x 10711 9 49 9
pregabalin 7 pregabalin 16 6.3 x 10711 2 1 5
fexofenadine 12 fexofenadine 57 7.2 x 10710 5 50 7
perindopril 12 perindopril 14 1.1 x 107° 7 9 5
pioglitazone 5 hydroxypioglitazone 23 1.7 x 1078 1 19 4
acetaminophen 17 Z-methoxyacetaminophen 419 21 %10 4 406 13

glucuronide

montelukast 5 montelukast 26 29 x 1078 1 22 4
repaglinide 2 repaglinide 3 7.6 x 1077 0 1 2

Metabolites of undetermined biochemical identity (unknowns) may correspond to
drug metabolites and can potentially be identified by their association with self-reported
medication. To identify possible cases, we repeated the analysis by including all unknows
with >50% missing values (N = 40) (see Supplementary Table S5). All associations be-
tween named metabolites and self-reported medication remained unchanged. In total,
6 unknowns had associations that were significant after correcting for 394 self-reported
medications times 40 unknowns (p < 3.2 x 107°). A total of 5 of these unknowns were
associated with “metformin”, “unspecified hypertension”, and “vitamin d” and might be
confounded by indication rather than constitute metabolites of the associated medication.
One molecule (X — 17348) was associated with esomeprazole (14 out of 26 self-reported
esomeprazole users had X — 17348 detected in their blood, whereas X — 17348 was detected
in total in only 11.6% of the samples, p-value = 1.6 x 107, Fisher test).

Among the 22 mutual-best-hits that were significant at a conservative Bonferroni level
of significance, in all these cases the number of self-reported medications was lower than
the number of matching drug metabolites detected in blood. The average fraction of cases
in which a matching drug metabolite was both, self-reported and detected in blood was
26.7%. The average fraction of self-reported-only cases was 7.4% and that of detected-only
cases was 65.8%. If a drug had been self-reported by a study participant, it was also
detected in that participant’s blood sample in 79.4% of the cases. On the other hand, if a
drug metabolite had been detected in a blood sample, the corresponding study participant
reported taking the matching medication in only 29.5% of the cases. Thus, there is a good
recall of self-reported medication using non-targeted metabolomics. On the other hand, a
large amount of detection of drug metabolites without a matching self-reported medication
also occurred. We investigate relevant examples of these cases in the following section.
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2.5. Agreement between Questionnaire-Based and Metabolomics-Derived Treatment of
Hypertension, Dyslipidemia, and Diabetes

Because questionnaire-derived medication usage data can be prone to biases, we
investigated the concordance between drug metabolites detected in blood, the participant
self-reported medication, and in addition responses regarding the treatment of frequent
disorders with tablets. Note that the latter were addressed in an independent part of the
QBB questionnaire and allowed us to cross-validate the consistency of the questionnaire
responses within QBB. We focused on hypertension, dyslipidemia, and diabetes because
these disorders were reported by a large fraction of the QBB participants.

While investigating the overlap between 255 participants reporting to be treated with
tablets for hypertension, 322 participants for whom self-reported drugs were identified as
those prescribed for hypertension, and 536 participants in whom the hypertension drug
molecules were detected, we found overlap between 21% of subjects (Figure 4a). For around
13% of subjects, a lack in concordance between the response to the question “Hypertension
treated with tablets” and self-reported medication record was found. In 50% of the cases
where a hypertensive drug was detected, there was no positive response to the general
question, nor mention of a specific medication. Conversely, 19% of those subjects who
reported taking hypertensive medication, either by name or as a general response, showed
no detectable level of any associated drug.

The patterns found for dyslipidemia were similar showing a lack of concordance
between the two questionnaire-derived (“self-reported medication” versus “treatment
with tablets”) items in 19% of the subjects (Figure 3). For 46% of the subjects reporting
dyslipidemia drug intake, the drug molecule or one its metabolites were not detected. The
patterns found for diabetes were slightly different; for around 70% of the subjects, the signal
for an antidiabetic drug was detected but not reported in the questionnaire, and in only 5%
of subjects was the intake of diabetes medications reported but not detected (Figure 3).

To further investigate potential under- or over-detections, we focused on the following
pertinent examples: (1) the analgesic acetaminophen, (2) psychoactive medications, and
(3) the diabetes drug metformin.

2.6. Paracetamol and Psychoactive Drugs as Examples of Under-Reported Medications

Acetaminophen, available under the brand name paracetamol, is a frequently used
analgesic drug that is sold over the counter without prescription. Only 17 out of 2807 QBB
participants (or 28 out of 6000) self-reported taking this drug, whereas over one fifth of
the UKB participants reported using it (Supplementary Table S2). Nine acetaminophen
metabolites have been detected jointly in blood samples of 310 QBB participants (Table 4
& Figure 5). These nine molecules were detected in two of Metabolon’s platforms, eight
were measured in LC/MS negative mode and one in LC/MS positive mode. The chro-
matographic retention characteristics and the molecular masses differ widely across the
detected molecules. Taken together, these observations suggest that these are true positive
detections, and that acetaminophen is likely a drug that has been under-reported, where at
least 310 QBB participants were taking the drug.
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hypertension treated with tablets 67 hypertension medication reported dyslipidemia treated with tablets 1 50 dyslipidemia medication reported
13 55 48 58
163 148
12 37 9 46
347 97
hypertension drugs detected dyslipidemia drugs detected
Hypertension Dyslipidemia

(a) (b)

diabetes treated with tablets 12 diabetes medication reported
4 44
224
10 67
852

diabetes drugs detected

Diabetes
(c)

Figure 4. Overlap between individuals who gave an affirmative answer to the question of whether
they were treated for a given disorder with tablets (green), who self-reported the use of at least one
medication with an indication for the given disorder (orange), and who provided a blood sample
with at least one metabolite of a drug with an indication for the given disorder detected (blue); the
given disorders were hypertension (a), dyslipidemia (b), and diabetes (c).



Metabolites 2022, 12, 249

11 of 19

Table 4. Nine metabolites of the drug paracetamol (acetaminophen) were individually detected in
between 370 and 1102 of the 2807 blood samples, with a joint detection of all nine metabolites in 310
samples. LC/MS characteristics of the detected molecules are provided together with the biochemical
detoxification pathway in which the respective molecules are involved (see text).

N Detected N Overlap LC/MS Retention

Biochemical (% of 2807) (% of 17) Mode Index Mass Pathway
4'acet;rﬂ$‘e’r’he“ 1102 (39.3%) 16 (98.5%) Neg 1792 230.01287 SULT
4-acetamidophenyl 938 (33.4%) 16 (98.2%) Neg 1400 326.08814 UGT
glucuronide
4-acetamidophenol 708 (25.2%) 15 (97.6%) Neg 2173.7 150.05605 Paracetamol
S-(methylthio) = 659 (55 105) 14 (97.3%) Neg 2265 276.00059 CYP/SULT
acetaminophen sulfate
Z'hydroxg’licfi?m"phe“ 575 (20.5%) 14 (97.1%) Neg 1674 246.00778 SULT
Z‘methoxyacet‘".m“f’phe“ 419 (14.9%) 13 (96.0%) Neg 1633 356.0987 UGT
glucuronide
Z'methongl‘ffz::rf‘m‘)phe“ 411 (14.6%) 12 (95.9%) Neg 1949 260.02343 SULT
3-(N-acetyl-L-cystein-Seyl) 570 13500y 19 (95.5%) Neg 2094 311.07072 CYP
acetaminophen
3-(cystein-S-yl) 414 (14.7%) 11 (96.0%) Pos Early 2420 271.07471 CYP

acetaminophen *

Biochemical name followed by *’ indicates a com-pound that has not been officially confirmed based on a
standard, but that Metabolon is confident in its identity.

INTERESTINGLY, the non-targeted metabolomics data covers the complete acetaminophen
metabolic pathway [23]. Acetaminophen can be eliminated from the human body via three
general detoxification pathways: (1) sulfation involving SULT gene products, (2) glu-
curonidation by UGT gene products, and (3) reduction by glutathione using CYP gene
products. We detected the active compound (4-acetamidophenol) and eight of its metabo-
lites that together involve molecules related to all three of these detoxification pathways
(Table 4 and Figure 4), that is, 4-acetaminophen sulfate, 2-hydroxyacetaminophen sulfate,
and 2-methoxyacetaminophen sulfate related to sulfation (SULT), 2-methoxyacetaminophen
glucuronide and 4-acetamidophenyl glucuronide for glucuronidation (UGT), and 3-(N-
acetyl-L-cystein-S-yl) acetaminophen and 3-(cystein-S-yl)acetaminophen reflecting the
conversion of acetaminophen to reactive intermediates that can then bind to the cysteine
thiol of a glutathione molecule (CPY), plus 3-(methylthio)acetaminophen sulfate which is
related to two pathways (SULT and CYP) (Figure 4). Interestingly, N-acetyl-cysteine (NAC)
has been reported as an effective antidote for acetaminophen overdosing (when adminis-
tered early). The primary therapeutic effect of NAC is replenishment of glutathione [24].
The detection of 3-(cystein-S-yl)acetaminophen in blood samples from generally healthy
study participants suggests that this pathway may also constitute a detoxification route
that is taken normally by the human body. As a side-insight to the general objective of
this study, this example illustrates how non-targeted metabolomics can map-out complete
drug-detoxification pathways, suggesting potential future applications to studies of drug
action and pharmacogenomics.
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3-(methylthio)-AC sulfate*

234

40

2-hydroxy-AC sulfate*

3-(cystein-S-yl)-AC* 4--AC sulfate
= 0 526
65
0 165 0
2-methoxy-AC sulfate* 3-(methylthio)-AC sulfate
41 1
324 0 0 g
0
2 1 0
0 0
0
4

3-(N-acetyl-L-cystein-S-yl) -AC

CYP pathway-related metaboluites

4-acetamidophenol

58

UGT pathway-related and AC itself

SULT pathway-related metabolites

(a) (b)
phenylgl 3-(cystein-S-yl)-AC*
23 35
1 L 9
. 4-acetamidophenol 4--AC sulfate
2-methoxy-AC glucuronide’ 47 0 1 0 P
238 412 7 281

N 357

2 254

0 292
9

AC and most frequent from CYP, SULT, UGT
(o) (d)

Figure 5. Overlap between acetaminophen metabolites detected in blood. Venn diagrams for the nine
acetaminophen (AC) metabolites detected in this study, grouped by metabolites specific to the CYP,
SULT, and UGT pathways, resp. (a—c), and for the most frequently detected metabolite from each
pathway (d); all nine AC metabolites were detected together in 310 (11.0%) samples, and at least one
AC metabolite was detected in 1255 (44.7%) samples.

A second class of medication that was detected but appears to be under-reported in
the QBB population are psychoactive drugs. Metabolites of the antidepressant citalopram,
a selective serotonin reuptake inhibitor (SSRI), were detected in over twenty samples
(citalopram propionate*, citalopram/escitalopram, desmethylcitalopram®*, Nget = 34, 31,
21), but only twelve individuals (0.4%) reported taking citalopram, compared with 1.9%
in UKB. Fluoxetine, another SSRI, was detected 14 times, but only reported three times
(two of the three self-reports overlap with detections), compared with 1.4% in UKB. A
metabolite of fluoxetine metabolism, norfluoxetine was detected 16 times. Unreported
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but detected anti-depressants include duloxetine (Nget = 5) and its metabolites 4-hydroxy
duloxetine glucuronide* (N4 = 4) and 5-hydroxy-6-methoxy duloxetine sulfate* (Nget = 4),
midazolam (Nge; = 4), mirtazapine (Nget = 2), and imipramine (Nget = 2). The substantially
higher self-reporting of psychoactive drugs in UKB suggests that these metabolites are at
least in part true positive detections and represent under reported medications in QBB.

2.7. Metformin as an Example of a Drug Susceptible to False Positive Detection

Metformin is a frequently used first-line drug used in diabetes care. For 92.3% of
participants who reported taking metformin, the molecule was also detected in their blood
samples (203 out of 220). However, in 76.0% of the cases where metformin was detected
in a blood sample, the study participants did not report taking it (643 out of 846). As
metformin is a prescription drug, the likelihood of study participants not reporting it
is much lower than in the case of acetaminophen. Some cases of under-reporting may
be due to participants only reporting taking “diabetes medication” without specifying the
actual drug. It has also been reported that individuals at high risk of diabetes (e.g., obesity,
high HbAlc) may be taking metformin in Qatar without an actual diabetes diagnosis or
prescription. However, although these factors may explain some of the false positive cases,
they are unlikely to account for their majority. To investigate this further, we restricted
the samples to two groups, one that is very unlikely to take metformin (BMI < 25 kg/m?,
HbAlc < 5.7%, no diagnosis of diabetes, no self-reported diabetes medication) and one
that self-reported taking metformin. We then compared the quantitative metabolomics
read-outs for metformin (batch-normalized ion counts) between both groups (Figure 6).
The difference of the average log2-scaled metformin levels in blood between both groups
was highly significant (p < 1071°). The much lower levels of metformin found in the group
of individuals that most likely did not take metformin suggest that these are due to false
positive identifications or experimental artifacts. We investigated a possible carry-over
as a source for the false positive samples using blanks and information on successively
measured samples using confidential process information from Metabolon, but could not
find any significant evidence of this phenomenon.

50- ]
40-

30- ]

count

20~

10-

-10 5 0 5
log2(metformin)

Figure 6. Histogram of metformin counts (batch-corrected, log-scaled, relative units) in individuals
who self-reported using metformin (blue) and individuals who were unlikely to use metformin (red);
Of 571 individuals who are unlikely to take metformin, 431 (75.5%) have no metformin detected in
their blood samples, whereas 140 (24.5%) do; of the 220 individuals who self-report using metformin,
203 (92.3%) have metformin detected in their blood and only 17 (7.7%) do not.
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3. Discussion

Our study describes the potential of non-targeted metabolomics in the assessment
of questionary-derived data on medication use. In this analysis we found evidence of
the under-reporting of drugs within the QBB participants, as it is a likely the case in ac-
etaminophen and psychoactive drug usage. The under-reporting of medication has many
potential possible sources. It is possible that cultural biases and norms influence the com-
fort level of participants disclosing their complete medication list. This is potentially the
underlying cause in the drastic but presumed under-reporting of psychoactive medica-
tions within the QBB population as compared with UKB. Under-reporting is also likely
exacerbated by the prevalence of certain drugs, such as acetaminophen. Acetaminophen is
present in many different formulations including common cold and flu medications, which
could mean that the participant(s) simply did not know that acetaminophen was present
in the over-the-counter medicine they used. It should also be noted that the differences
in the reporting of pain-killer usage may be due to differences in the interpretation of the
questions posed by QBB and UKB, i.e., what the individual study participants may consider
as a “medication”.

In contrast, we also found evidence of false positive detection of select drugs as
shown by metformin. There are various technical method-specific issues which can lead
to over-detection of drugs in samples during untargeted metabolomic analysis, especially
of large sample sets as encountered in this study. Data generated from large sample sets
are susceptible to increased variability because of the day-to-day changes in instrument
performance including differences in instrument sensitivity, chromatographic drift of
compounds, and varying levels of process contribution or chromatographic carry-over that
occur over time. The challenge with this study was also related to the size of the study.
Process blank levels differ from run to run as different consumable lots are used over time.
Based on the rate of presumed false positives in this study and a closer look at the data it
appears that a stricter overall requirement of experimental area counts over process blank
area counts is required to account for the more variable process blank levels over time
in the future. These issues likely contributed to the increased false positive detection of
metformin in this study.

Unlike many biochemicals which can be expected to be found in most, if not all,
samples, drugs are inherently present in only a fraction of all the samples in a population
study. A careful balance must be struck between the ability to detect drugs (sensitivity),
which is required to account for drug dosing and clearance rates, and the avoidance of false
positives. Several approaches can be utilized to reduce the false positive rate and increase
confidence in the presence of a particular drug. The presence of primary or secondary
metabolites of the active substance is a strong indicator that the drug is present, and that
the detection is valid in any given sample. Unfortunately, some drugs, including metformin
discussed here, do not lend themselves to this form of further scrutiny as it is cleared
from the body without modification. Another approach is to require detection of a drug
by multiple analytical methods from the same sample. As many untargeted methods
employ multiple LC-MS methods for the analysis of each sample the detection of the drug
on multiple arms greatly increases the confidence in the presence of the drug. Lastly, a
requirement of a high-quality fragmentation spectra match for the potential drug in each
sample, rather than in a preponderance of aligned peaks or in the aligned peak in a technical
replicate only, provides an elevated level of confidence in the presence of the drug without
the need to use other identifications as a part of the analysis. Considering the observed
and presumed false positive rate of metformin detection, the data could be re-interrogated
using the above noted additional scrutiny to reduce false positives.

In balance with more stringent criteria to reduce false positives is the likely reciprocal
increase in false negatives. The clearance rate of drugs coupled with the time from dosing
to collection and the dosage-to-weight ratio can mean that the compound falls below the
limit of detection of the method, particularly when more stringent criteria are used. Under-
reporting of drugs can be mitigated using a robust library built from authentic standards of
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known drugs, as well as their known metabolites. This increases the ability to detect some
drugs for a period after initial dosing as they are metabolized by the body over time.

Finally, an in our opinion unlikely general explanation for our observations, but
possibly still relevant to individual cases, is the presence of certain molecules in the drinking
water. A very recent global study on the presence of pharmaceutical pollutants in river
waters reported numerous of the metabolites that we find under-reported here, including
metformin and acetaminophen [25].

In the end, both human and technical factors were at play and will likely continue
to play a role in the noted discrepancies between the reporting and detection of drug
metabolites (Table 5). As always, in both instances, it is important to identify which factors
can be better controlled, such as the human factors of memory and honesty by taking
a careful medical history and accurate collation of the self-reporting data, and for the
technical issues the careful analysis and interpretation of the obtained data and further
improvement of detection and metabolite annotation methods. Large biobank studies can
play a major role in this process.

Table 5. Possible reasons for the apparent under- and over-detection of drug metabolites.

Drug Metabolite Possible Reason Example
Non- identification The metabolite is not Metabolites of unknown identity,
in the platform library X - 17348 with esomeprazole
Non-detection The metabolite is not captured Rosuvastatin, reported by
by the current LC/MS protocol 141/6000 participants, but not detected

Under-detection

Over-detection
Over-detection

Over-detection

Ubiquitous

Blood levels below level of detection (metabolite

half-life, timing of sampling) Atorvastatin
Medication is taken, but not reported Painkillers, anti-depressants
Carry-over from other samples Not observed
Misidentification of other molecules .
. . Metformin
(overlapping signals)
Metabolite is endogenous, supplementation by Levothyroxine,

medication cannot be determined by

presence/absence of detection reported by 492/6000 participants

4. Materials and Methods
4.1. Qatar Biobank

QBB is a population study including Qatari nationals and long-term residents (>15 years
living in Qatar) aged 18 years and above [9,19]. Information on drug use was collected
using a nurse-administered questionnaire using the formulation “Are you taking any over-
the-counter medication or prescription medicines regularly? For example, daily, weekly, monthly or
every few months—such as depot injections?” (QBB item NQ_A25). Up to 30 free text entries
were allowed.

4.2. Drugbank and ATC Annotation

The vocabulary of DrugBank Release Version 5.1.6, which is released under a Cre-
ative Common’s CCO International License, was downloaded (https://www.drugbank.ca/
releases/latest#open-data, accessed on 25 April 2020). ATC annotation was retrieved using
the DrugBank annotation.

4.3. Non-Targeted Metabolomics Measurements

In total, 3000 EDTA blood plasma aliquots were analyzed using a non-targeted
metabolomics platform from that has been implemented by Metabolon Inc. (Morrisville,
NC, USA) at the Anti-Doping Laboratory—Qatar (ADLQ) in collaboration with Weill Cornell
Medicine-Qatar (WCM-Q), Hamad Medical Corporation (HMC), and Qatar Biomedical Re-
search Institute (QBRI). Instrumentation, protocols, quality control processes and metabolite
annotations were identical to those implemented in Durham and previously described [26].
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Briefly, samples were prepared using the automated MicroLab STAR system from Hamilton
Company. Several recovery standards were added prior to the first step in the extraction
process for QC purposes. To remove protein, dissociate small molecules bound to protein
or trapped in the precipitated protein matrix, and to recover chemically diverse metabolites,
proteins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills
GenoGrinder 2000) followed by centrifugation. The resulting extract was divided into five
fractions: four for analysis and one sample was reserved for backup. Samples were placed
briefly on a TurboVap (Zymark) to remove the organic solvent. The sample extracts were
stored overnight under nitrogen before preparation for analysis.

Three LC-MS systems, consisting of a Waters ACQUITY ultra-performance liquid
chromatography (UPLC) unit and a Thermo Scientific Q-Exactive high resolution/accurate
mass spectrometer, interfaced with a heated electrospray ionization (HESI-II) source and
Orbitrap mass analyzer operated at 35,000 mass resolution were used. One LC/MS sys-
tem used acidic positive ion conditions with a C18 column and ran two methods, one
chromatographically optimized for more hydrophilic compounds and the other for more
hydrophobic compounds. The second LC/MS system used a method optimized for basic
negative ions and a separate dedicated C18 column. The third LS/MS system used negative
ionization following elution from a HILIC column. Details of the methods are described in
the QC report provided by Metabolon (Supplementary Text).

All measurements were performed on a fee-for-service basis, ordered and funded by
the Qatar Biobank (QBB). In total, 1018 samples of a non-related clinical study (not analyzed
here) were run together with the 3000 samples of QBB. The 4018 samples were randomized
onto 112 run days with a capacity of 36 samples per day, accounting for sex, age, body
mass index, diabetes state, prevalent hypertension, and HbA1c% in such a way that none
of these parameters associated with run day. Raw data were transferred to Metabolon
and annotated using their proprietary in-house software. Briefly, Metabolon’s biochemical
identifications is based on three criteria: retention index within a narrow RI window of the
proposed identification, accurate mass match to the library +/— 10 ppm, and the MS/MS
forward and reverse scores between the experimental data and authentic standards. The
MS/MS scores are based on a comparison of the ions present in the experimental spectrum
to the ions present in the library spectrum. More than 3300 commercially available purified
standard compounds have been acquired and registered into LIMS for analysis on all plat-
forms for determination of their analytical characteristics. Additional mass spectral entries
have been created for structurally unnamed biochemicals, which have been identified by
virtue of their recurrent nature (both chromatographic and mass spectral). Library matches
for each compound were checked for each sample and corrected if necessary.

Cases of limited confidence in the biochemical annotation or existence of multiple
isomers is indicated as follows: biochemical name followed by “*’ indicates a compound that
has not been officially confirmed based on a standard, but that Metabolon is confident in
its identity. Biochemical name followed by **’ indicates a compound for which a standard
is not available, but Metabolon is reasonably confident in its identity, or the information
provided. Biochemical name followed by ‘(#)’, where # is a number, indicates a compound
that is a structural isomer of another compound in the Metabolon spectral library. For
example, a steroid that may be sulfated at one of several positions that are indistinguishable
by the mass spectrometry data or a diacylglycerol for which more than one stereospecific
molecule exists.

Peaks were quantified using area-under-the-curve. Data normalization was performed
in run-day blocks by registering the medians to equal one and normalizing each data point
proportionately.

Instrument variability was determined by calculating the median relative standard
deviation (RSD) for the internal standards that were added to each sample prior to injection
into the mass spectrometers. The overall RSD for instrument variability based on internal
standards was 12% and the total process variability determined using endogenous metabo-
lites detected in reference sample was 16% and met Metabolon’s acceptance criteria. The
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provided dataset comprised a total of 1159 biochemicals, 937 compounds of known identity
(named biochemicals) and 222 unidentified compounds, marked by “X-”, followed by a
numeric identifier and designated “unknown” in this manuscript.

4.4. Peak Detection Criteria

For a peak to be “detected”, it must meet defined criteria for signal to noise ratio,
minimum peak area, mass tolerance, and peak width by a proprietary integration and peak
picking algorithm. Peaks meeting these criteria are subjected to further review addressing
parameters such as peak area above process (water) blanks, consistency of chromatographic
retention, and overall peak shape. Any inconsistencies in peak peaking including baselining,
peak splitting and peak integration inconsistencies are also corrected during this QC stage.
At this stage, the peak has been both detected, but also approved based on meeting defined
QC parameters. In the instance of this manuscript, the dominant factor in whether a
peak was both detected and approved was related to assessment of the peak areas in
experimental samples to the peak areas within the process blanks (diH2O taken through
the entire process). This analysis is in place to allow the removal of any artifacts related
to the preparation of the samples such as artifacts that may arise from lab consumables or
solvents and include plasticizers and releasing agents. Any experimental peak with a peak
area of less than 3X the process blanks is excluded /rejected from the analyses.

4.5. UK Biobank Medication

UK Biobank medication data (Supplementary Table S2) was downloaded form a
publicly available website (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20003,
accessed on 27 April 2020, counts of participants/items last updated 10 January 2020).
This data set contains 1,380,303 items of data covering 372,854 participants. 3735 different
medications were reported to have been taken by at least one UKB participant, most
frequently mentioned was paracetamol (102,058), aspirin (72,926), ibuprofen (67,388), and
simvastatin (64,358). Details on the assessment can be found on the UK Biobank web page
for category 100075 (Medications—Verbal interview—UK Biobank Assessment Centre). We
used information from Supplementary Table S1 of [13] to link medication-use items in UK
Biobank to drug names.

4.6. Statistical Analysis

All statistical analyses were conducted using R (version 4.1.0 and above, https:/ /cran.
r-project.org/bin/windows/base/old/4.1.0/ accessed on 13 February 2022) and Rstudio
(version 1.4.1717 and above, https://docs.rstudio.com/ide/server-pro/1.4.1717-2 /r-versions-1.
html accessed on 13 February 2022).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12030249/s1, Table S1: Self-reported drug count in QBB, Table S2: Self-reported
drug count in UKB, Table S3: List of drug metabolites detected on the Metabolon platform, Table
S4: Overlap between self-reported and blood-detected drug metabolites, Table S5: as Table S4, but
including in addition metabolites of unknown identity.
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