
Citation: Raman, M.G.; Carlos, E.F.;

Sankaran, S. Optimization and

Evaluation of Sensor Angles for

Precise Assessment of Architectural

Traits in Peach Trees. Sensors 2022, 22,

4619. https://doi.org/10.3390/

s22124619

Academic Editor: Aboelmagd

Noureldin

Received: 11 May 2022

Accepted: 14 June 2022

Published: 18 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimization and Evaluation of Sensor Angles for Precise
Assessment of Architectural Traits in Peach Trees
Mugilan Govindasamy Raman 1, Eduardo Fermino Carlos 1,2 and Sindhuja Sankaran 1,*

1 Department of Biological System Engineering, Washington State University, Pullman, WA 99164, USA;
m.govindasamyraman@wsu.edu (M.G.R.); eduardo.carlos@wsu.edu (E.F.C.)

2 Laboratory of Biotechnology, AMG, IDR-IAPAR-EMATER-Agronomic Institute of Paraná,
Londrina-PR 86001-970, Brazil

* Correspondence: sindhuja.sankaran@wsu.edu; Tel.: +1-509-335-8828

Abstract: Fruit industries play a significant role in many aspects of global food security. They
provide recognized vitamins, antioxidants, and other nutritional supplements packed in fresh fruits
and other processed commodities such as juices, jams, pies, and other products. However, many
fruit crops including peaches (Prunus persica (L.) Batsch) are perennial trees requiring dedicated
orchard management. The architectural and morphological traits of peach trees, notably tree height,
canopy area, and canopy crown volume, help to determine yield potential and precise orchard
management. Thus, the use of unmanned aerial vehicles (UAVs) coupled with RGB sensors can play
an important role in the high-throughput acquisition of data for evaluating architectural traits. One of
the main factors that define data quality are sensor imaging angles, which are important for extracting
architectural characteristics from the trees. In this study, the goal was to optimize the sensor imaging
angles to extract the precise architectural trait information by evaluating the integration of nadir and
oblique images. A UAV integrated with an RGB imaging sensor at three different angles (90◦, 65◦,
and 45◦) and a 3D light detection and ranging (LiDAR) system was used to acquire images of peach
trees located at the Washington State University’s Tukey Horticultural Orchard, Pullman, WA, USA.
A total of four approaches, comprising the use of 2D data (from UAV) and 3D point cloud (from UAV
and LiDAR), were utilized to segment and measure the individual tree height and canopy crown
volume. Overall, the features extracted from the images acquired at 45◦ and integrated nadir and
oblique images showed a strong correlation with the ground reference tree height data, while the
latter was highly correlated with canopy crown volume. Thus, selection of the sensor angle during
UAV flight is critical for improving the accuracy of extracting architectural traits and may be useful
for further precision orchard management.

Keywords: unmanned aerial vehicle; 3D point cloud; tree height; canopy crown volume; nadir;
oblique images

1. Introduction

The challenges of a global growing population, simultaneously dealing with unre-
solved rural poverty in developing areas and the need for better worldwide resource
management, have encouraged public awareness in search for healthier and more sus-
tainable practices in crop production. Among them, the methods for achieving higher
productivity have been a constant issue in food security forums. Although yield is a result
of intrinsic genetics and all conditions given to a plant during the cultivation cycle, precise
monitoring of those conditions may lead to better management and higher yields.

For fruit crops, management is also critical, in many cases requiring additional atten-
tion for perennial trees. Incorrect management may add years in corrective practices, and
thus accurate ongoing monitoring is very important. Fruit crops, including peach trees
(Prunus persica (L.) Batsch), can be cultivated under different agricultural conditions. In

Sensors 2022, 22, 4619. https://doi.org/10.3390/s22124619 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124619
https://doi.org/10.3390/s22124619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22124619
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124619?type=check_update&version=1


Sensors 2022, 22, 4619 2 of 15

any tree, the canopy is the part exposed to sunlight, and external conditions affect the
overall photosynthesis and respiration levels. Thus, it is important to access tree canopy
conditions at the right time for better decision-making in orchard management, as well as
further actions such as fertilization, spraying, irrigation, pruning, and others [1–3]. The
architectural features of an orchard include the tree height, canopy area, and crown volume.
They provide vital information about tree conditions and help to design precise inputs for
fruit production [4].

Traditional orchard practices have provided low degree of information about tree
canopies and have led to various problems, including excessive use of chemicals and
water [5–7] and imprecise overall management. In addition, conventional measurement
methods of architectural tree canopy parameters such as height, diameter, area, and volume
of crown are laborious and expensive when a high accuracy is required over a larger area [4].
In the present scenario, modern orchard management will be enabled by precise informa-
tion, which will provide better opportunities to growers to make decisions based on actual
data. Thus, there is an urgent need to enhance sensing tools to measure crucial architectural
canopy information to strengthen modern and precise orchard management [2].

Remote sensing is widely employed in applications of precision agriculture in orchard
management [8]. The main strength of these techniques is to obtain information on large
areas at different levels of precision in which different goals can be achieved [9]. Remote
sensing platforms such as satellite systems, high and low altitude aircrafts, and unmanned
aerial vehicles (UAVs) provide features with different spatial–temporal resolution, surface
coverage, and costs. The space-borne satellite system is a promising tool and is generally
focused on the long-term monitoring and surveillance of larger areas [10]. Although
potentially useful, satellite observations have limited spatial and temporal resolutions and
may give a heterogeneous structure of canopy features, leading to difficult evaluations [11].
High and low altitude aircrafts provide a better resolution and deeper level of detail, but
usually come with higher preparation efforts regarding flight planning and operational
costs [12]. UAVs are small platforms with a low operational cost and higher spatial and
temporal resolutions, and are capable of monitoring site-specific areas [13]. Comparing
different platforms, a large-area orchard for canopy measurement can be fulfilled through
the joint use of UAVs and visual imaging technology [14]. This measurement provides
scientific and reliable information for decision-making and brings greater significance to
the development of precision orchards [2].

UAVs along with imaging systems can provide data for the digital reconstruction of
individual trees in an orchard by computing 3D point clouds, large area orthomosaics, and
digital surface and terrain models, providing a basis for orchard canopy measurement. A
significant number of studies have been conducted using UAV-integrated sensing systems
for precision agriculture and smart farming applications, such as for estimation of the leaf
area density and chlorophyll content [15–21]. Most UAV observations are usually carried
out at nadir, where the sensor/camera axis capturing the images is along the vertical
direction. The type of image acquisition at nadir is suitable for 2D mapping, but it may
not be suitable for 3D mapping and modeling [22]. Oblique images are utilized in the
reconstruction of 3D models and achieve better accuracy in terms of both the number of
point clouds and measurements [23].

The tree row volume (TRV), total leaf area, and canopy cover were estimated for
grapevine and apple orchards using the aerial photogrammetry method with different
combinations of sensor angles and flight altitudes (15–60 m flight altitude, 65 and 75◦

angles) [24]. The measured TRV showed strong a relationship between aerial and ground
measurements at the lowest ground sampling distance (GSD) for the grapevines (R2 = 0.77
at 0.45 cm pixel−1) and apple canopies (R2 = 0.82 at 0.90 cm pixel−1), whereas increasing
the GSD resulted in a weaker relationship for both canopies. Overall, the aerial flight
mission with a double grid mission and sensor inclination angle of 65◦ provided accurate
measurements and had greater significance in the development of site-specific higher
quality and precise canopy vigor maps [24]. A ground-based 2D and UAV-based 3D
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model was also used to evaluate the critical architectural traits of apple trees [25]. The
extracted traits, such as DBS (box-counting fractal dimension), middle branch angle, number
of branches, trunk basal diameter, and tree volume, were compared with the ground
reference datasets associated with the three training systems (spindle, V-trellis, and bi-axis),
two rootstocks, and two pruning methods in the apple trees. The results indicated that
DBS showed significantly higher values (associated with tree architecture complexity) for
spindles training system than the V-trellis training system, and also showed a correlation
between the ground and TRV features (total fruit per unit area and trunk area) [25].

In another study, apple orchard canopy parameters such as height and volume based
on voxel grid and convex hull techniques were estimated using 3D light detection and
ranging (LiDAR) [26]. The 3D point cloud estimated height and volume for apple trees
showed a strong correlation with the manually measured height (r = 0.84) and volume
(r = 0.81) [26]. Many studies such as ones described above [24] have collected UAS-RGB
imagery at either nadir or oblique angles not lower than 65◦ and at altitude more than 30 m
to measure the tree architectural traits. Most of the research focused on finding the best
parameters for flight mission to capture, extract, and achieve the maximum accuracy of
the ground measurements. Apparently, no study has yet explored the integration of data
collected at different angles combined with low altitude, especially for evaluating the tree
architectural traits. However, the reconstruction of high-resolution topography of quarries
was performed by combining the nadir and off-nadir imagery, and better accuracies were
achieved in the 3D reconstruction of surfaces [27].

Therefore, the overall goal of this study was to digitally reconstruct the architectural
traits in peach trees for precise orchard assessment through the optimization and integration
of sensor angles using an UAV platform integrated with RGB imagery and a LiDAR ground-
based sensing approach.

2. Materials and Materials
2.1. Study Area and Ground Reference Data

The study was carried out at the Washington State University’s Tukey Horticultural
Orchard (46◦43′52.88′′ N, 117◦8′29.09′′ W), Pullman, WA, USA. Two rows of peach trees
(Prunus persica (L.) Batsch) were selected for this study, from which 20 trees were analyzed.
Data collection was performed with a UAV integrated with both an RGB camera and a
LiDAR system. Similarly, the ground reference data corresponding to the individual tree
height, as well as the longitudinal and transversal width data, were manually collected
using a measurement scale.

2.2. UAV Imagery and LiDAR Data Acquisition

The photogrammetry analysis of the UAV data was used for extracting the architectural
traits of the peach trees in the orchard. The UAV system (Model: Phantom 4 Pro, SZ DJI
Technology Co. Ltd., Shenzhen, China) equipped with RGB camera (SZ DJI Technology
Co. Ltd., Shenzhen, China; 20 Megapixel, 84◦ field of view) was operated using the
Pix4Dcapture ground control station. Pix4Dcapture enables planning the flight missions
and flight parameters for UAV systems. A total of three missions were set up based on the
parameters using the Pix4Dcapture ground control station, including the boundary of the
study area, flight path planning, altitude of the flight, speed, and forward and side overlap
conditions (Figure 1). All of the three missions were carried out under no cloud conditions.
The parameters were the same for all of the three missions except the angle of the sensor
inclination (Table 1).

A 3D LiDAR (VLP 16, Velodyne LiDAR, San Jose, CA, USA) system was also used to
generate the 3D point cloud of individual trees at ground level. The range of the sensor
is 100 m, which produces up to ~600,000 points/s and can acquire a 360◦ horizontal field
view at a distance of 1 m away from a tree, and it has a 30◦ vertical field of view [26]. The
acquired 3D point cloud was saved as .pcap format (Packet Capture) and was visualized
using the dedicated software, “Veloview”.
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Pix4Dmapper (Pix4D Mapper, version 4.3.31, Pix4D, Laussane, Switzerland) to generate 
the 3D point clouds, digital surface model (DSM), digital terrain model (DTM), and ortho-
mosaic images for each individual flight mission. Each mission was processed separately 
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key points, computing match points, calibration, and matching and point-cloud densifi-
cation based on the Geotagged information (longitude, latitude, and altitude) of the 

Figure 1. (a) Graphical representation of UAV image acquisition for each flight mission at each sensor
angle (nadir and oblique angles) and (b) different tile points for three different imaging angles. The
blue points indicate the GPS positions from the UAV (initial camera position) and the green points
are the calibrated positions extracted using the Pix4Dmapper.

Table 1. Summary of parameters used for UAV flight.

Mission Type Altitude Sensor Inclination GSD (cm/Pixel) Flight Speed Overlap (Forward/Side)

1 Double
grid 15 m

90◦ 0.29
2.5 m/s 80%2 65◦ 0.37

3 45◦ 0.81

2.3. Preprocessing of UAV Images and 3D LiDAR Data

After the image acquisition, the stereo-paired images were stitched using a Pix4Dmapper
(Pix4D Mapper, version 4.3.31, Pix4D, Laussane, Switzerland) to generate the 3D point
clouds, digital surface model (DSM), digital terrain model (DTM), and orthomosaic images
for each individual flight mission. Each mission was processed separately and processed
in combination with all of the stereo-paired images acquired from three missions. The
pre-processing of UAV datasets using Pix4Dmapper includes computing key points, com-
puting match points, calibration, and matching and point-cloud densification based on the
Geotagged information (longitude, latitude, and altitude) of the waypoints. The 3D point
cloud (.las format), DSM, DTM, and orthomosaic images for each individual angle and
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one for the integrated angles (with GSD of 0.40 cm/pixel) were generated for extraction
of the architectural features of the individual trees. The integrated dataset can be created
by setting the input images as the images acquired at different angles in the Pix4Dmapper
software. The .las format 3D point cloud was converted to .csv format using Cloud Com-
pare software to calculate the canopy information. The 3D LiDAR point cloud visualization
software, Veloview, which has the capability of analyzing and measuring the 3D point
clouds, were used to visualize the live 3D point cloud scenes, allowing the user to select
the frame and export it into .csv format.

2.4. Extraction of Architectural Features

This study focused on measuring tree height and canopy crown volume using 2D
images and 3D point cloud. The 2D canopy height model utilizing DTM from Pix4D
(directly acquired from the software (technique 1, referred to as T1) and DTM (technique 2,
referred to as T2) using point sampling from DSM (similar to that reported in [28]) for
the individual sensor angle and integrated angle images were generated and used for
measuring the tree height and canopy crown volume (Figure 2). In addition, UAV-based
point cloud data and LiDAR point cloud data were also used to extract similar features.
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Figure 2. The methodology utilized in this study to extract the canopy architectural traits from the
individual trees using UAV and LiDAR data.

2.4.1. Height and Volume Estimation from 2D Datasets

A geospatial processing platform, ArcMap 10.7 (Environmental Systems Research
Institute, Redlands, CA, USA), was used to estimate the canopy height model (CHM) by
subtracting the digital terrain model (DTM) from the digital surface model (DSM). DSM
uses the Earth’s surface including all objects (tree, weeds, trellis, etc.) on it, whereas DTM
uses the Earth’s surface without any objects (soil surface as a baseline). In this study, two
techniques were used to generate the canopy height model—one was DTM generated from
Pix4D (T1 approach) and the other was generated by the point sampling tool using ArcMap
10.7 (T2 approach).

Using ArcMap 10.7, DTM using the point sampling method was created by plotting
random points at the ground surface and extracting the terrain data associated with the
points. The extracted point data were interpolated (inverse distance weighing method) to
generate a DTM raster. The CHM from both techniques was then reclassified to extract the
tree from the other features. The extracted tree canopy area was defined into three shapes,



Sensors 2022, 22, 4619 6 of 15

namely polygon, bounding box, and circle (Figure 3). The tree height data were extracted as
the maximum height from CHM within the individual tree canopy area within the defined
shape using zonal statistics. Similarly, the volume (V) of the tree canopy crown was defined
by setting up the tree height as 0.80 times that of the maximum tree height, such that the
tree canopy height (excluding the tree trunk height) was used for measuring the volume
(square or circular pyramid) using Equations (1) and (2) for the polygon/bounding box
and circle boundary area, respectively. The ratio of the canopy height with respect to the
maximum tree height was finalized based on the manual measurements.

V =
1
3
(A× H) (1)

V = πr2 × H
3

(2)

where A is the area of the polygon or bounding box, r is the radius of the circle, and H is
the maximum height of the tree.
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Figure 3. Individual tree boundary (polygon, bounding box, and circle) used to extract the tree height
and canopy crown volume.

2.4.2. Height and Volume Estimation from UAV-Based 3D Point Cloud

The .csv files converted from CloudCompare software (http://www.cloudcompare.
org/ (accessed on 12 September 2021) were utilized for the tree height and canopy crown
volume measurements. Using MATLAB software (R2016a, MathWorks Inc., Natick, MA,
USA), a semi-automated algorithm was developed for processing the data to extract the
architectural traits. The processing steps included the following: defining the matrix,
rotating the point cloud using affine transformation to rectify the angular bias, followed by
filtering unwanted 3D points. The individual trees were segmented by the boundary point,
which was defined manually using the latitude (X) and longitude (Y) extent to segment
the individual trees. Finally, the architectural traits of each tree from the 3D point cloud,
including the height, were computed by subtracting the maximum Z value and minimum Z
value (H = Zmax − Zmin), and the volume (using voxel grid technique for the canopy crown
only) was measured using a tetramesh function in MATLAB. The tetramesh function creates
3D tetrahedral shape across the boundary of the canopy crown by connecting the extent of
the matrix. This measurement (canopy crown volume) was evaluated by comparing the
extracted data with the manual measurements.

2.4.3. Height and Volume Estimation from LiDAR System-Based 3D Point Cloud

The .pcap files were converted into .csv format using CloudCompare software. The
data processing and extraction of tree height and canopy crown volume were performed
using MATLAB (R2016a, MathWorks Inc., Natick, MA, USA). The background noise and
ground points were eliminated prior to measuring the tree height and canopy crown
volume. The acquired point cloud had an angle bias, which was corrected by affine

http://www.cloudcompare.org/
http://www.cloudcompare.org/
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transformation, and background noises were filtered by down sampling the point cloud.
The individual trees were segmented by providing the width and length of the individual
trees as the threshold. The tree height was measured by subtracting the minimum Z
value from the maximum Z value (topmost level of the tree). The canopy crown volume
was estimated using the voxel grid technique and the canopy crown alone was taken for
estimation of the canopy crown volume instead of the whole tree. The voxel grid technique
created the boundary that fit around the structure of the crown and measured the volume
of the canopy crown.

2.5. Statistical Analysis

The Pearson’s correlation analysis was performed in R program (Version 4.1.1) to
analyze the correlation coefficient at three levels of significance (5%, 1%, and 0.1%) be-
tween the ground reference data and the estimated tree height and canopy crown volume
measurement under each scenario (individual and integrated nadir and oblique angles).
As one tree in the second row was large, the data from this tree were eliminated so as to
reduce its effect on the correlation results (n = 19). The data from each technique, including
the ground reference data (manual measurements) were presented as a violin box plot
to visualize the variation between the measurements for both the tree height and canopy
crown volume. In the violin box plot, the median is represented as red dot, and the box
ends represent the interquartile distance between the first and third quartile, and with the
upper and lower values in the ends of the violin tips.

3. Results
3.1. UAV Data Analysis
3.1.1. Tree Segmentation

A total of three UAV missions were conducted at three different sensor angle inclina-
tions (90◦, 45◦, and 65◦) to capture the stereo paired images. The obtained images were
processed individually using images at each angle using photogrammetric software and
were also processed by integrating the nadir (90◦) and oblique angle (65◦ and 45◦) images.
The data types generated were DTM, DSM, orthomosaic, and 3D point cloud for each
condition (45◦, 65◦, 90◦, and integrated data). Using ArcMap 10.7, the orthomosaic imagery
was used to identify the 19 peach trees and to segment the trees by creating the boundary
for each tree as a shape file (.shp) for the 2D data analyses (Figure 4a). The 3D point cloud
was segmented using the latitude–longitude extent of the individual trees (Figure 4b,c).
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Figure 4. (a) Boundary representing the individual peach trees for segmentation, (b) 3D point cloud,
and (c) 3D point cloud of an individual tree after segmentation.

3.1.2. Tree Height Estimation

The tree height was estimated from both the CHM and 3D point cloud data, generated
for each of the sensor inclination angles and integrated datasets. Concerning the CHM
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approach, two data sources (T1 from Pix4D Mapper and T2 from the point sampling
approach) were evaluated (Figure 5). A separate polygon of the individual tree boundary
was created to capture canopy area, in addition to the bounding box and circle for the tree
boundary using the canopy height model. The tree height was estimated using both CHMs
(generated using T1 and T2 approaches) from the polygon, bounding box, and circular
canopy area.
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Figure 5. Canopy height model generated using the T1 (Pix4D) and T2 (point sampling) approaches.

The maximum tree height based on the polygon, bounding box, and circular canopy
area did not change for both the T1 and T2 datasets. The manually measured peach tree
height (ground reference data) ranged from 2.13 to 3.05 m, with a median of 2.70 m. In both
T1-based and T2-based tree height estimations (Figures 6 and 7), among the datasets, the
tree height from image acquired at 45◦ and the integrated nadir and oblique images showed
the similar trend and high correlation with the ground reference data. The correlation
coefficient of the T1-based tree height estimation with ground reference data was slightly
higher than the T2-based tree height.
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Figure 6. (a) Violin box plot showing the tree height range (m) and the (b) correlation matrix showing
the correlation between the ground reference data and estimated T1-based tree height at individual
angles (45◦, 65◦, and 90◦) and the integration of nadir and oblique images. Significant probability
level: * 0.05, ** 0.01, and *** 0.001.

In the 3D point cloud dataset, similar to the T1- and T2-based approaches, the tree
height from the data acquired at the angle of 45◦ and the integrated nadir and oblique
images were closely associated with the ground reference data, than with the data acquired
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at 65◦ and 90◦ (Figure 8). The tree height from the integrated datasets was also highly
correlated to the 45◦ datasets (r ≥ 0.92) in all three approaches (T1, T2, and points cloud).
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Figure 7. (a) Violin box plot showing the tree height range (m) and (b) correlation matrix showing
the correlation between the ground reference data and estimated T2-based tree height at individual
angles (45◦, 65◦, and 90◦) and the integration of nadir and oblique images. Significant probability
level: * 0.05, ** 0.01, and *** 0.001.
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Figure 8. (a) Violin box plot showing the tree height range (m) and (b) correlation matrix showing
the correlation between the ground reference data and UAV point cloud-based estimated tree height
at individual angles (45◦, 65◦, and 90◦) and the integration of nadir and oblique images. Significant
probability level: ** 0.01, and *** 0.001.

Among all of the three techniques (T1, T2, and point cloud), the data extracted from the
45◦ and integrated nadir and oblique datasets showed a higher correlation and significant
p-value. Comparing the T1, T2, and point cloud-based approaches, the correlation with
ground reference data was marginally higher in the T1-based approach (45◦ and integrated
datasets), while the median tree height was closest to the ground reference data in the 45◦

dataset. The slope in most cases (T1, T2, and point cloud, 45◦ and integrated datasets) was
close to one (Figure 9). Given the efforts in data acquisition, processing, and analysis, a
45◦ sensor inclination angle may be beneficial. Overall, for orchard peach trees, a higher
accuracy tree height can be estimated at a 45◦ sensor inclination angle.



Sensors 2022, 22, 4619 10 of 15
Sensors 2022, 22, x FOR PEER REVIEW 10 of 15 
 

 

  

(a) 

  
(b) 

Figure 9. Relationship between the ground reference data and estimated tree height (a) and volume 

(b) acquired at 45° and the integrated nadir and oblique datasets using T1 (circular), T2 (polygon), 

and point cloud datasets, respectively. 

Figure 9. Relationship between the ground reference data and estimated tree height (a) and vol-
ume (b) acquired at 45◦ and the integrated nadir and oblique datasets using T1 (circular), T2 (polygon),
and point cloud datasets, respectively.



Sensors 2022, 22, 4619 11 of 15

3.1.3. Canopy Crown Volume Estimation

In the T1- and T2-based approaches, the volume of the canopy crown was measured
using the canopy height (excluding trunk length) instead of the whole tree height for the
polygon, bounding box, and circular canopy area (Figures 10 and 11). Only 45◦ and the
integrated datasets were analyzed, as these datasets resulted in the most accurate results for
the tree height estimation. Among the volume extracted from the polygon, bounding box,
and circle-shaped canopy area from 45◦ and the integrated datasets, using the circular and
bounding box area with the integrated dataset showed a higher similarity to the ground
reference data than the polygon-shaped canopy areas for the T1-based approach. However,
the polygon showed similar relationship to the ground reference data with both datasets
(45◦ and integrated) for the T2-based approach. The best results (high correlation with
ground reference data) were from the volume of the canopy crown extracted from the
integrated nadir and oblique images dataset (especially with circular canopy area) with the
T1-based approach.
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Figure 10. (a) Violin box plot showing the canopy crown volume range (m) and the (b) correlation
matrix showing correlation between ground reference data and estimated volume with a 45◦ sensor
angle dataset using T1, T2, and point cloud (PC) UAV-based approaches with canopy area estimated
using polygon, box, and circular canopy area. Significant probability level: * 0.05, ** 0.01, and
*** 0.001.
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Figure 11. (a) Violin box plot showing the canopy crown volume range (m) and the (b) correlation
matrix showing the correlation between ground the reference data and estimated volume with the
integrated sensor angle dataset using the T1, T2, and point cloud (PC) UAV-based approaches with
canopy area estimated using the polygon, box and circular canopy area. Significant probability level:
* 0.05, ** 0.01, and *** 0.001.
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In the 3D point cloud dataset, the volume was extracted by delineating the canopy
crown from the tree height by providing the threshold for each tree and measuring the
volume of the boundary as the voxel grid (Figure 12). The 3D point cloud-based canopy
crown volume showed the highest correlation to the ground reference data with the 45◦

dataset, followed by the integrated nadir and oblique images dataset. The lower correlation
for the T1- and T2-based approaches could be associated with the un-matching ground
reference data [26]. Among the three techniques (T1, T2, and 3D point cloud), the T1-based
approach with integrated nadir and oblique datasets showed the strongest relationship
with ground reference data.
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Figure 12. (a,b) Tree canopy crown delineation and (c) voxel grid model creating the boundary to
measure the volume of the canopy crown.

3.2. LiDAR Data Analysis

In addition to the UAV data, the LiDAR data from 17 trees were acquired to measure
the tree height and canopy crown volume (Figure 13). The canopy crown volume was
estimated using the voxel grid technique. The estimated tree height (r = 0.98/R2 = 0.96)
and canopy crown volume (r = 0.87 and R2 = 0.77) showed a high and strong correlation
with the ground reference data (Figure 14).
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Figure 13. Visualization of a representative peach tree 3D data captured using the 3D LiDAR system.
The color scale refers to height (z) data in m above sea level.

The comparison of the estimated tree height from UAV data for 17 trees with LiDAR
data indicated that with all datasets, the correlations coefficients were similar to those with
the ground reference data. This could be because of the strong correlation between the
ground reference and the LiDAR-based tree height data. However, similar results were not
observed for the canopy crown volume. The canopy crown volume (from integrated and
45◦ datasets) extracted from the UAV data were not as highly correlated with the LiDAR
data compared with the ground reference data. This could be the result from the nature
of the ground reference data measurements, where the UAV data could be more directly
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related to the ground reference data than the LiDAR data. Further evaluation on these
aspects needs to be performed.
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Figure 14. Relationship between the ground reference data with the estimated tree height (a) and tree
volume (b) data acquired using the point cloud dataset from the LiDAR system.

4. Discussions

In recent years, researchers have utilized sensor-based technology coupled with UAV
systems in various applications for monitoring and decision-making in orchard manage-
ment [29]. UAV sensing techniques have been used to extract the architectural traits in tree
crops, such as canopy height, volume, and other structures [30,31]. This study focused on
the importance and need for optimizing flight and sensor parameters in the extraction of
architectural traits such as tree height and canopy crown volume. In general, UAV flight
variables such as flight altitude, image overlap, flying direction, flying speed, and solar
elevation and azimuth affect the image quality [32].

In this study, three UAV missions at different sensor inclination angles (45◦, 65◦,
and 90◦) and the integration of all the angles (nadir and oblique) to extract the accurate
measurement of the architectural traits of the individual trees was assessed using three
different techniques. The results showed that the features extracted from the images
collected at a sensor inclination of 45◦ and the integration of nadir and oblique images
exhibited a similar correlation with the ground reference data and measurement results,
followed by angles of 65◦ and 90◦. Similar research findings showed that the images
acquired at oblique angles improved the 3D reconstruction of the forest canopy. The results
showed that the oblique images increased the understory point density and accuracy of the
canopy crown percentage and the tree height increased by 33% and 50%, respectively [33].

In the tree height measurements, all UAV-based approaches (T1, T2, and point cloud)
showed similar results with 45◦ and the integrated datasets. The best accuracy was found
for those derived from LiDAR data, although the results from the UAV-based approaches
were decent with a slope close to one. Regarding the canopy crown volume, Pix4D derived
DTM showed a strong correlation with the ground reference data with the integrated nadir
and oblique datasets. Overall, the approach of collecting oblique images and integrating
datasets for measuring architectural traits can improve precision. The most significant
improvements were found when including the oblique imagery for canopy representa-
tion [34]. The 3D LiDAR point cloud also showed a strong relationship with the ground
reference data.

5. Conclusions

High-resolution RGB imagery acquired at different nadir and obliques images were
processed and orthomosaic, DSM, DTM, 3D UAV point cloud, and LiDAR point cloud
datasets were generated to measure the peach tree height and canopy crown volume. The
study evaluated the tree height and canopy crown volume estimation accuracy at each angle
and the integrated nadir and oblique imagery datasets. The results were validated, with



Sensors 2022, 22, 4619 14 of 15

statistical analysis performed to compare the extracted features to the ground reference
data (manual measurements). Overall, the images acquired at 45◦ and the integrated
nadir and oblique images yielded accurate tree height estimations using all three UAV-
based approaches (T1, T2, and point cloud), with the integrated dataset proving useful in
extracting the accurate canopy crown volume. The 3D LiDAR point cloud also showed
a very high correlation in terms of tree height and canopy crown volume. The change
in sensor inclination angles and the integration of multiple angular datasets did affect
the measurement accuracy. Nevertheless, further studies are recommended to assess the
change in flying altitude with respect to different sensor inclination angles to study the
effect on the accuracy of the estimation of tree canopy attributes.
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