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Abstract: The adaptive immune response is necessary for the development of protective immunity
against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically
heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health
and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the
infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses,
is inconsistently protective against diverse viral strains. The immunological mechanisms by which
primary and memory protection are generated and used are not well understood. Here, we summarize
current knowledge regarding cellular and humoral components of the adaptive immune response to
PRRSV infection that mediate primary and memory immune protection against viruses.
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1. Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV) is the most severe enemy of porcine
health and wellbeing. The highly mutable, enveloped, RNA virus was discovered nearly 30 years ago
but, while extensive research has been carried out and many vaccines have been developed, there is
still no reproducible immunological intervention that develops a broadly protective immune response
against virulent PRRSV.

PRRS disease was first described on farms in North Carolina in the USA at the end of the 1980s.
Outbreaks were marked by reproductive losses, post-weaning pneumonia, and increased mortality in
growing pigs. Initial efforts to identify an etiological agent responsible for the new disease syndrome
were unsuccessful, leading to the disease being temporarily designated mystery swine disease (MSD)
in North America. Koch’s postulates for MSD were fulfilled in 1991 with a previously unidentified
RNA virus discovered in Europe, named Lelystad virus [1,2]. The discovery was quickly followed by
isolation of the virus, initially referred to as swine infertility and respiratory syndrome virus or SIRS
virus, in North America [3].

The name PRRSV was introduced in 1992 and encompasses PRRSV-1 (genotypes first isolated in
Europe) and PRRSV-2 (genotypes first isolated in North America) [4,5]. Today, both virus types are
globally distributed, with PRRSV-1 viruses predominantly in Europe and PRRSV-2 viruses largely
in North America, Asia and South America [6]. Recent discovery of multiple arteriviral nucleotide
sequences in nonhuman primates has led to a reclassification of PRRSV as two distinct viruses, PRRSV-1
and PRRSV-2 [7]. Here, we use the generic PRRSV to refer broadly to both viruses when evidence
indicates that are equivalent, and the specific PRRSV-1 and PRRSV-2 is used when a distinction is
desired. The reasoning is based on the many similarities of the two viruses in fine details of genome
structure and organization, transcriptional strategy, host preference, clinical signs of disease, and
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anti-viral immunity [7–11]. In particular, chimeric PRRSV consisting of PRRSV-1 open reading frames
(ORFs) 2–5 in a background of PRRSV-2 are fully viable, showing as well that the molecular signals for
transcription and translation are preserved [12].

PRRSV has a positive-sense, single-stranded RNA genome of approximately 15 kb designated to
the Arteriviridae family. The virus encodes at least 10 functional ORFs. ORF1a and 1b encode two large
polyproteins which are cleaved into 14 non-structural proteins [13]. There are eight known structural
proteins encoded by ORF2a, ORF2b, ORF3–7 and ORF5a [14–16]. PRRSV is one of the most rapidly
mutating RNA viruses known, with considerable genetic variation within both PRRSV-1 and PRRSV-2,
based on ORF5 phylogenetic analysis [10,17]. This impressive genetic diversity makes the development
of a broadly protective immune response to vaccination difficult to achieve. After infection, the virus
can endure and replicate in the host, depending on immune status and PRRSV strain, for a period of at
least 150 days [18]. Therefore, contrary to being labeled repeatedly as a persistent pathogen, animals are
capable of eventually clearing PRRSV. However, the components of the immune system responsible for
the development of sterilizing immunity are not completely understood or have yet to be discovered.
Here, we will discuss several aspects of PRRSV antigen-specific and protective immunity which have
yet to be elucidated while focusing on potential areas of further investigation. Readers interested in
additional reviews of PRRSV literature related to immunity are directed to the following articles [11,19].

2. The Targets of Infection

PRRSV infects cells of the macrophage/monocyte lineage, including dendritic cells [20–23].
Permissive cells express Cluster of Differentiation (CD)163, a hemoglobin-haptoglobin scavenger,
which is the necessary receptor for PRRSV infection and replication [24–26]. Macrophages and dendritic
cells are common members of the mononuclear phagocyte system that plays a varied, and important,
role in many aspects of tissue remodeling, development, immunity and immunopathology [27].
Classically designated as part of the innate immune system, these leukocytes are critical for the
development of a productive adaptive immune response. Macrophages and, particularly, dendritic
cells take up and present antigen to T cells and B cells, thus initiating an adaptive immune response
against the presented antigen [28,29]. If a pathogen is able to infect and destroy, manipulate, or maintain
itself within macrophages or dendritic cells, it then has the potential to modulate the immune response
into a favorable situation for its own replication and survival.

Therefore, many pathogens employ strategies for macrophage infection as a way to make
the host more amenable to infection. Recent research into Mycobacterium tuberculosis (Mtb) has
shown that, after phagocytosis, the bacterium arrests phagosome maturation and intra-phagosome
lipolysis resulting in Mtb survival and an increased supply of nutrients for growth [30,31]. Human
immunodeficiency virus (HIV) infects macrophages to establish reservoirs within the host for the
chronic stage of the disease when CD4+ T cells are largely depleted and neutralizing antibodies may
be present [32–34]. Leishmania major is a protozoan which infects phagocytes to subvert the immune
system. The parasite expresses glycoprotein (gp)63, a multifaceted surface-expressed pathogenicity
factor that is responsible for preventing antigen presentation and killing by natural killer (NK)
cells [35–37]. Indeed, there are many more examples of burdensome pathogens which target phagocytic
cells, especially macrophages and dendritic cells, in an attempt to gain a foothold within the immune
system and allow for unchecked survival and replication [38–40]. PRRSV is one of these pathogens.

The ability of PRRSV to subvert the immune system has not been investigated as extensively as
more prominent pathogens of humans, such as HIV. PRRSV has been shown to inhibit the production,
or the downstream effects, of type 1 interferons, particularly interferon (IFN)-α, on intracellular
signaling [41–48]. Interestingly, multiple PRRSV proteins (nonstructural protein (nsp) 1, nsp2, nsp4,
nsp5, nsp11 and nucleocapsid) have been reported to possess interferon inhibiting abilities.

In addition, a number of in vivo experiments have reproduced earlier in vitro findings showing
that interferon-α is inhibited during the early stages of PRRSV infection [47,49,50]. While the impact
of type 1 interferon suppression is likely to create a favorable environment for the virus to replicate
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and survive in phagocytic cells, it is still unclear what effect, if any, suppression of type 1 interferon
activity has on the adaptive immune response to infection [51]. Future investigations could clarify the
relative contributions of viral proteins on modulation of interferon production and their impacts on
viral growth, survival, and the subsequent development of the adaptive immune response.

Apart from interfering with interferon expression, PRRSV has also displayed the in vitro ability
to subvert the immune system by spreading from cell to cell. Recent work has uncovered the ability of
the virus to spread infectious viral RNA, several replicases, and certain structural proteins between
cells via intercellular nanotubules [52,53]. While this activity theoretically allows for PRRSV to avoid
neutralizing antibodies, the presence and significance of this mechanism in PRRSV pathogenesis has
yet to be fully elucidated. Future studies are needed to determine if this process operates in naturally
permissive macrophages and dendritic cells, if it can be interrupted, for example by intracellular
antibodies, and what effect it might have on viral propagation [54,55].

Vaccines depend upon innate immune stimulation to promote effective adaptive immune response
to antigen, resulting in production of antibodies and cytotoxic T cell responses. The ability of a pathogen
to successfully infect and replicate within innate immune cells makes the development of a protective
immune response more difficult. As a result, the generation of effective vaccines against pathogens
that target immune cells is fraught with challenges. Extensive variation in viral genetics, primary
immune responses, and cross-protection indicates that much remains to be learned about cellular
pathogenesis in order to arrive at better immunological solutions.

3. Immunosuppression

Immunosuppression refers to suppression of the immune system and its ability to fight infection.
HIV and infectious bursal disease virus are examples of viral infections that destroy entire lymphoid
cell populations that ablate or disable adaptive immune responses. Lymphoproliferative cancers
block cellular differentiation and deprive the body of mature, effector lymphocytes, thus causing
immunosuppression in a different manner. PRRSV does neither; infection does not lead to severe
lymphoid depletion or ablation, and it does not interfere profoundly with lymphocyte differentiation
or maturation. Leukocyte perturbations in lymphoid tissues are associated with PRRSV infection,
suggesting that adaptive immunity might be weakened, though not destroyed [56–61].

The immune system also maintains peripheral tolerance to self and commensal bacteria
through immunosuppressive mechanisms that include regulatory T cells (Tregs), characterized as
CD4+CD25+Forkhead box p3 (Foxp3)+ T lymphocytes [62]. Treg suppressive properties were discovered
when thymectomized or Treg-depleted mice succumbed to autoimmune reactions [63,64]. Tregs
suppress effector and effector memory T cell proliferation by cytokine deprivation leading to polyclonal
apoptosis, and by suppression of antigen presenting cells by cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) and other mechanisms [62]. Studies in PRRSV infections give an ambiguous
picture about the role of Tregs. PRRSV-2 strains are reported to induce a strong Treg response which
included transforming growth factor (TGF)β-1 secretion in vitro as well as in vivo [65,66]. Other studies
did not show Treg responses to infection with either PRRSV-1 or PRRSV-2 [67,68]. Interleukin-10 (IL-10),
an immunosuppressive cytokine expressed by various cell types including Tregs, was induced by
PRRSV-2 vaccination in weaned pigs in one study, but was not induced in weaned or adult pigs in
another study [69]. Additional in vitro and in vivo studies reported IL-10 mRNA transcription and
cytokine production after PRRSV infection [70–72]. However, kinetic analysis in serum of viremic
pigs of various ages showed that elevated IL-10 levels were primarily a function of age and were not
associated with infection status [69]. The only exception was in weaned pigs infected with a virulent
virus, in which a transient increase was associated with viral pathogenesis [69].

On balance, the immunological evidence for PRRSV inducing a state of immunosuppression
does not appear to be compelling. Secondary infections following PRRS disease outbreak in swine
herds, suggesting a reduced ability to fight infection, is an alternative indicator of immunosuppression.
An early study showed concurrent pulmonary bacterial infections in 58% of 221 PRRS cases [73].
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However, the study did not determine if bacterial infections were present before the PRRS outbreaks.
The immunosuppression question also was addressed in more controlled settings using dual infection
models with PRRSV and various bacterial species. A summary of published literature in 2003 showed
no predisposition to bacterial disease in 8 of 15 coinfection models, three ambiguous outcomes, and four
cases in which severity of disease was increased [74]. More recent studies found a positive association
between PRRSV infection and replication of porcine circovirus 2 (PCV2) or swine influenza virus [75,76].

It is possible that bacterial infections in swine herds increase following PRRS outbreaks due
an increased burden of viral infection on host resilience to pathogen burden. Subclinical viral
and bacterial infections are common, with PCV2, Salmonella enterica, Haemophilus parasuis, various
Mycoplasma species, Leptospira, and Escherichia coli being examples. Control of infection is maintained
by a combination of immune resistance to microbial replication and tissue tolerance to damage.
In a coinfection model of influenza virus and Legionella pneumophila, it was clearly demonstrated
that L. pneumophila infection was subclinical in healthy mice, but was lethal in the presence of
influenza virus [77]. Overwhelming disease was due to loss of tissue resilience, since the bacterial
load was unchanged [77]. This model might account for mortalities observed in experimental
swine following PRRSV exposure [78]. Given the variable results of PRRSV coinfection models
in swine and an alternative mechanism for increased disease in PRRSV-infected herds, generalized
immunosuppression does not appear to be a key feature of PRRSV pathogenesis.

PRRSV, like many viruses, has developed countermeasures to host immune responses that
enable it to survive and replicate for extended periods of time before the infection is resolved.
PRRSV modulation of intracellular antiviral defense mechanisms has been reviewed extensively [79].
The effects of PRRSV infection on adaptive immune response, i.e., antigen-specific T cell, B cell,
and antibody responses, are less well characterized. The antiviral response of T cells to PRRSV,
examined primarily by the IFNγ enzyme-linked immunospot (ELISPOT), appears to develop slowly
over a period of weeks, and is not associated with changes in viral loads in blood or in infected lung and
lymphoid tissues [80,81]. Peripheral blood mononuclear cells (PBMC) from young, weaned pigs show
limited IFNγ responses even when stimulated by phytohemagluttinin, which might account for the low
anti-PRRSV responsiveness after re-stimulation in vitro [69]. However, PBMC from growing pigs and
mature sows, which showed higher levels of IFNγ sensitivity, still showed limited responsiveness [69].
These findings indicate that PRRSV may interfere with specific cell-mediated immunity, but more
direct evidence is needed for a fuller understanding.

By contrast, the interaction of PRRSV with pigs does not appear to retard or attenuate the
development of humoral immunity or B cell differentiation. Induction of antibody responses to PRRSV
proteins, both structural and non-structural, occurred in the same time frame as antibody responses to
keyhole limpet hemocyanin (KLH), an irrelevant protein antigen [51]. The antibody response to KLH
was also the same in the presence or absence of PRRSV infection [51]. Similarly, PRRSV infection did
not inhibit cellular or humoral immune protection in response to pseudorabies virus vaccination [82].
Thus, the adaptive B cell response is not delayed or suppressed by PRRSV.

An extended viremia and prolonged survival in lymphoid tissues is characteristic of PRRSV infection.
These features show that PRRSV has mechanisms of immune avoidance that are not present in viruses
such as influenza virus and foot and mouth disease virus, in which sterilizing immunity is achieved
within 10–14 days. It appears from the findings of field observations and experimental investigations
that some type of PRRSV-specific T cell interference is present, whereas specific B cell inhibition or
a generalized state of immunosuppression are not immunological hallmarks of PRRSV infection.

4. Antibody Response

4.1. Neutralizing Antibody Response

The antibody response to PRRSV typically dominates discussions of PRRSV immunity,
as neutralizing antibodies are the crucial component of immune-mediated protection against most
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viral infections [83,84]. As a result, shortly after the identification of PRRSV as the causative agent of
Mystery Swine Disease, there was a strong push to identify the presence and dynamic response of
neutralizing antibodies against PRRSV and then to characterize their specificity for PRRSV variants.
Early work suggested that neutralizing antibodies against homologous PRRSV could be found
as early as 9–11 days after inoculation [85]. However, this was likely the non-affinity matured
immunoglobulin (Ig)M response, as anti-swine IgM ablated the previously observed neutralizing
activity. Subsequent research showed that the high affinity neutralizing IgG response, detected at
around 28–42 days post-inoculation, is specific for the inoculating virus with partial neutralizing
activity against heterologous viruses [86–90].

Following the identification of PRRSV neutralizing antibodies, the effectiveness of immunoglobulins
in protecting against infection was evaluated with passive transfer studies. These experiments
displayed the effectiveness of neutralizing antibodies at preventing clinical infection and disease against
homologous challenge [91,92]. However, these studies also showed that immune protection can be
quite limited, especially between PRRSV-1 and PRRSV-2 [93]. Within PRRSV-1 or PRRSV-2, protection
against homologous inoculation is consistently solid, whereas protection against heterologous challenge
is variable for unclear reasons [93–95]. However, genetic similarity, based primarily on ORF5 sequence
comparisons, shows no relationship with degree of protection [96]. These results appeared to explain
the potential field problem, in which vaccinated or live virus inoculated animals become infected with
a variant PRRSV genetically different enough from the inoculating strain to evade the immune system,
propagate, and then cause disease. Hence, ever since the mutability, antigenic variability, and resultant
immunological elusiveness of PRRSV were first appreciated, a broadly neutralizing antibody response to
PRRSV has been coveted by immunologists and practitioners [97].

Recent research shows that there are animals capable of developing a broadly neutralizing
antibody response to genetically disparate viruses [9,98]. However, this immune capability has only
been found in a proportion of animals in groups of similar genetics age, sex, and exposure history [9].
The seemingly random ability of some animals to develop broadly neutralizing antibodies suggests
that the inherent variation of the adaptive immune response may play a role in conferring broadly
neutralizing capabilities to certain animals. Investigations into this ability are needed at the lymphocyte
level and while the obvious target is the B cell, T cells cannot be overlooked, as the induction of
a humoral immune response requires antigen-specific T cell driven help [99,100]. Therefore, animals
able to develop a strong neutralizing antibody response would require both B cells and T cells that are
capable of recognizing neutralizing epitopes.

The conditions needed to achieve cross-neutralizing antibody production are not known, but may
involve multiple exposures to the same or different virus isolates. Sows with high titered, broadly
neutralizing antibodies were found in herds with multiple exposures to virulent field viruses [9].
In an experimental study, cross-neutralization was reported in animals exposed first to a PRRSV
vaccine strain followed by homologous or heterologous virus challenge [86]. However, the majority
of data analyzed were below the neutralization assay cutoff. Duration of viremia, up to 42 days,
was linked with increased breadth of neutralizing antibodies following a single viral infection [101].
However, since cross-neutralization activity and titer data were not presented, it was not possible to
further interpret the results. The animals were not subsequently challenged, so it is not known if the
cross-neutralizing activity in serum was predictive of protection. Other studies showed that significant
neutralizing antibody responses are not commonly observed during viremic infection of young pigs,
as well as in adult sows [69,102–104].

Recently, vaccinology research in HIV has shown that sequential immunizations, tailored
for specific stages of the immune response, may be useful for inducing broadly neutralizing
antibodies [105–107]. The approach is based on the finding that early immune responses to HIV
resulted in neutralizing antibodies against the circulating virus which quickly led to immune escape of
the virus and the ineffectiveness of generated antibodies. The antibody-resistant virus then stimulated
a secondary antibody response which again selected for antibody resistant virus. This virus-antibody
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hide and seek continued, eventually resulting in the selection of several neutralization targets of
the virus as well as the generation of broadly neutralizing antibodies [108–110]. Cloning of the
antibodies showed that somatic mutations are generally necessary for antibody neutralizing capabilities
against HIV-1 [111,112]. These findings have shown that the B cell response of the host adapts in the
germinal center as the virus evolves, suggesting that tailored sequential immunization could lead to
the development of a broadly neutralizing antibody response [113].

The consistent generation of a broadly neutralizing antibody response to PRRSV on the herd
level has evaded the swine health industry since the emergence of PRRSV. There are multiple
proposed mechanisms by which PRRSV may evade or inhibit the development, or the effectiveness,
of a neutralizing antibody response, such as glycan shielding of envelope glycoprotein (GP)3
or GP5 [114,115], the existence of decoy epitopes in GP5 [116], lymphocyte dysregulation [79],
and inhibition of the innate immune response [117]. Comprehension of defense mechanisms employed
by PRRSV makes the development of a broadly neutralizing immune response appear to be a daunting
task. However, as previously shown, some animals are capable of developing such a response. Simply,
the key to adapting the immune phenomenon of some animals to a vaccine capable of inducing broadly
protective immunity in many animals lies in identifying conserved epitopes on surface proteins which
are necessary for infection.

While the purported targets of neutralization have been extensively discussed in recent reviews,
it is worth noting that several epitopes on the membrane (M) protein, GP5, GP2, GP3, and GP4, have
been shown, or implicated, to harbor neutralizing activity [114,116,118–124]. However, knocking
out only CD163 in the pig is sufficient to render animals non-susceptible to PRRSV infection and
replication [24,25,125]. It is proposed that following endocytosis, CD163 associates with the virus
within the endosome, resulting in uncoating of the virus and the release of the viral genome into the
cellular cytoplasm [126]. Since CD163 is necessary for viral infection and replication, the logical next
step is to identify the conserved regions of viral surface proteins, most likely the minor glycoproteins
(GP2, GP3, and GP4), that interact with CD163 [124,127].

4.2. Non-Neutralizing Antibody Response

Traditionally, the non-neutralizing antibody response to PRRSV has been considered useful
only for its ability to identify if an animal had been exposed and seroconverted to virus. Indeed,
there are many structural and non-structural proteins of PRRSV which make this possible through their
ability to induce a robust humoral immune response [15,80,102]. However, recent research on other
pathogens has shown that non-neutralizing antibodies may play a much larger role in immunity than
was previously appreciated [128–131]. Alternative antibody functions, such as antibody dependent
cell-mediated cytotoxicity (ADCC), antibody-dependent complement-mediated cytotoxicity (CDC),
and antibody-dependent complement-mediated virolysis may be important in the clearance of virus
and virally infected cells from an animal. To our knowledge, there are only two published papers
investigating non-neutralizing antibody functions in the context of PRRSV infection [59,132]. Both of
these in vitro studies utilized a PRRSV-1 virus and failed to find an effect of ADCC and CDC on
infected cells. However, experiments focused on PRRSV-2 viruses with extended time points beyond
12 h are warranted. A more extensive review of non-neutralizing antibody functions can be found in
the cited review [133].

5. The B Cell Response

If antibodies are the most important effectors of the immune system against viral infection,
then B cells that make the antibodies are the most important cells. Previous research on the interaction
between PRRSV and the porcine B cell is contradictory. It has recently been suggested that PRRSV
infection results in lymphocyte apoptosis and immune impairment [61]. Several sources have shown
that PRRSV largely or exclusively induces a specific humoral response to infection [51,134]. Other
studies report that PRRSV infection results primarily in polyclonal B cell activation leading to
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hypergammaglobulinemia and the development of immune complexes [135–138]. The majority
of work describing infection leading to polyclonal activation and hypergammaglobulinemia was
performed in germ-free isolator piglets. This model is very effective for comparing B cell and
antibody repertoire development in the fetus, as the germ-free status of the pigs removes many
of the variables present when experiments are performed on conventionally reared animals [139].
However, these animals are deprived of the microflora and maternal antibodies to which conventional
animals are exposed. As a result, the translation of immunological outcomes observed in isolator pigs
to conventional pigs must be performed with caution. Studies in mice show that the immune systems
of specific-pathogen free laboratory mice are similar to neonatal human immune systems, whereas
feral mice displayed immune systems more comparable to adult humans. Effectively, the immune
systems of germ-free animals may not display “normal” immune system phenotypes due to the lack
of exposure to microflora [140,141].

The development of protective humoral immunity, after vaccination or exposure to a pathogen,
is dependent upon two lines of defense. The first immune defense is secreted antibodies, first from
short-lived and then from long-lived, plasma cells residing somewhere in the body (Figure 1). The second
line of defense is memory B cells (Figure 1). Memory cells are sentinels against reinfection which are
activated upon antigen recognition to proliferate and differentiate into antibody secreting plasma cells,
thus rapidly boosting circulating antibody titers with high affinity class switched antibodies [142].
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Figure 1. Development of systemic humoral immunity. Naive B cells move through the B cell follicles
of the secondary lymphoid organs searching for antigens specific for their B cell receptors (BCR, surface
immunoglobulin). Upon antigen recognition, the BCR is endocytosed, the antigen is degraded and
then presented on the surface of the cell via Major Histocompatibility Complex (MHC)II. The B cell
then migrates to the periphery of the B cell follicle searching for a Cluster of Differentiation (CD)4+ T
cell specific for the same antigen. Upon T cell recognition of the MHCII presented antigen, the T cell
stimulates the B cell by cytokine driven proliferation. The B cell proliferates and differentiates, some
cells become immunoglobulin (Ig)M producing plasma cells, and other cells migrate into the B cell
follicle where, with the help of cytokines from CD4+ follicular helper T cells and follicular dendritic
cells, a germinal center is formed. In the germinal center, B cells proliferate and undergo somatic
hypermutation and isotype switching. Affinity matured B cells then leave the germinal center as either
IgG+ plasma cells or IgG+ memory cells. These cells constitute the first two lines of defense against
reinfection: (1) affinity matured antibodies produced by plasma cells; and (2) memory cells which
boost antibody titers upon antigen recognition. For an in depth review of this process based on data
in humans and mice, please refer to Taylor et al. [143]. APRIL: a proliferation-inducing ligand; BAFF:
B-cell-activating factor of the TNF family; IL: interleukin.
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Currently, there is scant research on the memory B cell response to PRRSV. Strong memory
responses have been shown against nsp2, nsp7, N, and the 3′ end of GP5 [51,144]. The specific memory
B cells are abundant in tonsil, lymph nodes draining the lungs and reproductive tract, and spleen.
Unfortunately, there are many questions about the porcine memory response to PRRSV which have
yet to be answered, including if memory cell kinetics closely mimic antibody kinetics, the response of
PRRSV-specific memory pools upon homologous or heterologous viral challenge, and the importance
of these cells in conferring protection against challenge. The development of sensitive and specific
reagents, such as B cell tetramers, is a first step in being able to answer these critical questions.
Additionally, it is possible that the key to understanding the broadly neutralizing response to PRRSV
lies within circulating or lymphoid organ resident memory B cells. The potential to investigate
these cells for identification of heavy and light chain antibody sequences is reviewed in Rahe and
Murtaugh [133].

Plasma Cells

Plasma cells are terminally differentiated B cells responsible for making antibodies. Apart from the
immature plasmablast, two types of plasma cells have been defined in the mouse and human [145,146].
Short-lived plasma cells quickly boost antibody titers while long-lived plasma cells maintain circulating
antibody titers in the face of continual antibody degradation. Mulupuri et al. identified PRRSV-specific
plasma cells in several secondary lymphoid organs, such as the spleen, tonsil, sternal lymph node,
and inguinal lymph node [51]. Interestingly, no PRRSV-specific or KLH-specific plasma cells were
found in the bone marrow of immune pigs [51]. This was surprising, as the bone marrow has been
long considered as the reservoir for long-lived plasma cells in both mice and humans [147–149]. It then
begs the question, do pigs have long-lived plasma cells and, if so, where do they reside? Mulupuri
et al. found PRRSV and KLH specific plasma cells in secondary lymphoid organs 120 days after
inoculation [51]. However, these cells may not be “long lived” as the prolonged viremia of PRRSV
may result in a somewhat continuous stimulation of memory B cells resulting in the appearance of this
plasma cell population in secondary lymphoid organs.

It seems unlikely that pigs do not have long lived plasma cells, as the half-life of porcine antibodies
in serum is, on average, approximately nine days [150,151]. Therefore, without long lived plasma
cells, pigs would quickly lose humoral protection as antibody titers waned. The identification
of the anatomic location as well as the understanding of mechanisms for inducing a strong long
lived plasma cell response may be important for future vaccine design as well as comprehending
host–pathogen interactions.

6. T Cell Response

Interestingly, even though neutralizing antibodies have historically garnered the majority
of attention in PRRSV immunology, it is well-known that pigs readily control infection in the
absence of neutralizing antibodies. Furthermore, viremia is reported in the presence of neutralizing
antibodies [152,153]. Therefore, there must be other facets of the immune system which effectively
function to control infection and eliminate PRRSV from the host. While some of this activity may be
attributed to non-neutralizing functions of antibodies, the T cell response to infection demands further
investigation. A recent PRRS immunity review summarized previous research on functional T cell
subsets, and PRRSV epitope targets, as well as gaps in T cell immunity [11]. Here, we provide context
for the understanding of novel results that have not been comprehensively reviewed.

Early research on the T cell response to PRRSV identified a large, transient decrease in the
CD4+/CD8+ T cell ratio early, usually within the first week, in the course of infection [154]. The change
in this ratio could have been due to a temporary loss of CD4+ cells through apoptosis or to an increase
in CD8+ cells due to antigen-specific proliferation [154]. The importance of these findings for clearance
of PRRSV or protection from infection were not known at the time, and other explanations, such as
fluxes in cell populations between spleen, other lymphoid tissues, and blood could not be discounted.
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Experiments to address the helper T cell type 1/helper T cell type 2 (Th1/Th2) paradigm in the
pig showed that PRRSV induced a strong Th1 response, as expected, identified in vivo by an increased
expression of Th1-specification factor Tbx21(T-bet) in CD4+ cells [155]. However, the finding is at odds
with previously reports indicating that PRRSV infection results in the production of IL-10, a cytokine
classically associated with a Th2 phenotype. Similarly, monocyte-derived dendritic cells (Mo-DCs)
infected with PRRSV down regulate swine leukocyte antigen (SLA)-I, SLA-II, CD40 and CD80 as
well as promote IL-10 secretion over IL-12 secretion [156]. Delineation of the Th1/Th2 response to
PRRSV, elucidation of Th1/Th2-specific cytokine markers in swine, as well as identifying associated
cytokine responses of dendritic cells within secondary lymphoid organs where T cell proliferation and
differentiation is most likely to occur, would help to resolve these outstanding questions [157].

The Th17 cell has classically been identified, in mouse and human, as playing an important
role in extracellular bacterial immunity through the production of the pro-inflammatory cytokines,
IL-17A, IL-17F, and IL-22 [158,159]. IL-17 producing Th17 cells are known to exist in the pig [160].
The importance of this T cell subset in the context of PRRSV infection has recently been investigated.
A strain of Chinese highly pathogenic PRRSV (HP-PRRSV) appeared to suppress Th17 cells in the
peripheral blood and lungs of pigs, resulting in an increased susceptibility to secondary bacterial
infections [56]. Remarkably, the effect was PRRSV strain-specific, as a non-HP PRRSV strain failed
to elicit the same response. Future research into the T cell response to PRRSV, especially with T cell
tetramers and functional ELISPOTs, will be essential for the characterization of both CD4+ and CD8+

antigen specific T cells. Understanding how antigen-specific T cells interact with both infected and
uninfected antigen presenting macrophages and dendritic cells will be helpful for advancing the field
of PRRSV immunity.

7. Natural Killer Cell Response

The natural killer cell is an innate lymphoid cell which can have a profound impact on adaptive
immunity, but is also able to induce an early and rapid innate response against pathogens through
a variety of mechanisms. NK cells produce cytokines, such as IFNγ, show cytotoxic activity against
infected cells not expressing MHCI, can induce dendritic cell maturation, and effect the destruction
of infected cells in ADCC [161]. However, NK cells may deploy even more extensive and important
functions in porcine immunity than are currently realized.

An early clue that NK cells were involved in innate responses to PRRSV was a sharp peak in
serum IFNγ shortly after infection [162]. The acute response was attributed to NK cells, as the result
was deemed too early for a T cell response, and suggested that decreased viral burdens in the lung
prior to humoral or T cell responses could be due to the function of NK cells. However, it is known that
porcine macrophages are also capable of producing IFNγ in the presence of PRRSV infection [163,164].
Furthermore, PRRSV appears to suppress the NK cell response without significantly affecting NK cell
numbers [165–168]. The cause of this suppression has yet to be determined, although viral proteins,
rather than soluble factors from cells, may be responsible [59]. Potential roles of additional NK cell
functions, such as ADCC, in PRRSV immunity are poorly understood [133].

8. Conclusions

PRRSV has tormented the health and wellbeing of swine worldwide since its discovery in the late
1980s. Unfortunately, after almost 30 years of research into the porcine immune response to PRRSV,
there is still no effective means for inducing a broadly protective immune response at the herd level.
The reasons for this failure are not completely known, but presumably include mechanisms by which
the virus subverts the immune system. The ability of the virus to rapidly mutate while not losing
fitness challenges the host immune system to keep pace. At the same time, infection of macrophages,
a key player in immunoregulation, challenges both innate and adaptive immune cell mobilization
as well as induction of a coordinated response that is needed for effective control and elimination of
the virus.



Viruses 2017, 9, 148 10 of 19

Fortunately, foundational advances in the understanding of viral pathogenesis and immunity are
enabling more informative investigations. The identification of CD163 as the necessary and sufficient
receptor for infection supports the implications of broadly neutralizing antibodies that a conserved
target is present on all PRRSV. Understanding how PRRSV surface glycoproteins interact with CD163
should lead to the identification of conserved epitopes which are necessary for infection. If, as appears
to be the case, there is only one conserved way into the cell, then there must be a conserved viral
sequence, or structure, which enables viral entry. Furthermore, the knowledge that pigs eventually
develop sterilizing immunity, if given enough time, supports the concept that conserved epitopes
exist on the virus. Therefore, the study of mature animals, which have cleared the virus, may provide
the key to understanding how the immune system eventually gets the upper hand on the virus and
cures infection.

Even with seminal advances in several aspects of the study of PRRSV, there remains much to
be understood and clarified. Currently, the published literature presents conflicting views on many
aspects of PRRSV adaptive immunity, especially related to T and B cell responses and the production,
or inhibition, of cytokines in the face of infection. The continued development of antigen-specific
reagents, of high sensitivity and specificity, is needed for understanding how the host responds to
PRRSV infection. Furthermore, it is important that future PRRSV studies focus on the relevant host
animal, the conventional pig. While the study of this outbred animal species is perhaps challenging
at times, it affords the ability to study the host–pathogen interaction in the only species in which the
virus naturally interacts. Additionally, knowledge gained about the immunology of conventional pigs
will accelerate immunological elucidation of other pig–pathogen interactions.

In conclusion, PRRSV continues to be the most burdensome pathogen of pigs worldwide, due to
its propensity for immune evasion and manipulation. However, the continued study of the porcine
immune response to infection, with improved reagents and methods, will illuminate those aspects of
the host–pathogen interaction that are now hidden. It is through these discoveries that the complex
question that is PRRSV will finally be answered.
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