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In this study, we have examined the bacterial community composition of the laboratory

cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment

using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and

downstream bioinformatics tools. Overall, the gut and tank water was dominated by

Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and

Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as

dominant, with order Campylobacterales at the highest relative abundance (>95%).

However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut

digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria,

from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with

genus Arcobacter occurring at a moderate level. At the class level, the tank water

was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-

Dimensional Scaling analysis showed that the microbial community of the gut tissue

clustered together, as did the pharynx tissue to the feed. The gut digesta and egested

fecal pellets showed a similarity relationship to the tank water. Further analysis of

Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37

unique types across the 10 samples, where Oligotype 1 was primarily represented in the

gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum

sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that

although distinct microbial communities are evident across multiple components of the

sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial

communities of the gut with the sea urchin L. variegatus culture environment.
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Introduction

Recent advancements in the discovery of gut microbial
communities in the animal kingdom has offered a glimpse
into the supportive role of various microbial taxa in growth,
development, metabolism, and digestive physiology of the host,
as well as protection from predators, and adaptive fitness to the
environment they inhabit (Shin et al., 2011; Gomez et al., 2012;
Nguyen and Clarke, 2012; Guinane and Cotter, 2013; Kostic et al.,
2013; Heintz and Mair, 2014). Conventional microbiological
culture-based methods, and more recently the advent of
the culture-independent NextGen sequencing approach, has
enhanced our capability to understand the gut microbial
composition of many animals with the highest coverage, and
in particular, a number of invertebrates such as Crustacea,
Mollusca, and some Echinodermata (Harris, 1993; King et al.,
2012; Gerdts et al., 2013; Kostic et al., 2013; Chauhan et al.,
2014). Besides determining the microbial community profile
of these invertebrates, the predictive roles of various microbial
taxa in both the digestive health of the host, as well as the
ecological importance of those bacteria to the host’s community
has been proposed. Among many ecologically and commercially
important invertebrates, the sea urchin has received attention for
its importance in the seafood industry (Muraoka, 1990; Andrew
et al., 2002), as a model organism for developmental biology
(McClay, 2011), and its role in nutrient cycling effecting the
community structure and dynamics in the ecosystem they inhabit
(Sauchyn and Scheibling, 2009a,b; Sauchyn et al., 2011). Yet,
relatively little attention has been given to the sea urchin gut
microbial ecology, and the potential role of those microbes in
host health and other facets of its natural community (Becker
et al., 2007, 2008, 2009; Lawrence et al., 2013).

Lasker and Giese (1954) first proposed a role of microbiota
in nutrient digestion and absorption in sea urchins (Lasker
and Giese, 1954), and in fact, most of the previous microbial
analysis work on the sea urchin has focused on a generalized
role of microbes in digestive support (Lawrence et al., 2013), or
in disease progression (Becker et al., 2007, 2008, 2009). Later
examinations would suggest involvement of the sea urchin gut
egesta bacteria in nutrient transfer among trophic levels in their
communities (Sauchyn and Scheibling, 2009a,b). Nevertheless,
as the microbial ecosystems of the sea urchin gut continue to
foretell a relationship between the microbial community and
nutrient intake, determining the bacterial composition within the
gut of the sea urchin fed a formulated diet in an aquaculture
environment would provide valuable insights into sea urchin
digestive physiology and health.

The variegated sea urchin, Lytechinus variegatus is often found
in nearshore seagrass communities in the Gulf of Mexico, and
consumes a wide variety of plant and animal material (Watts
et al., 2013). In the laboratory culture environment, L. variegatus
can process formulated diets containing macronutrients from a
variety of sources (Hammer et al., 2012). Since gut microbiota has
previously been implicated in the digestive process of sea urchins
(Lasker and Giese, 1954; Fong and Mann, 1980; Sawabe et al.,
1995), understanding themicrobial composition of the sea urchin
digestive system may elucidate the role of the gut microbiome

in conferring host health through formulated diet. In this study,
we describe the microbiome composition in the lumen of the
digestive tract and gut digesta, along with egested fecal pellets,
feeds, and the culture environment with high taxonomic coverage
using a culture-independent method of NextGen sequencing
technology and bioinformatics tools. The results from this study
will help establish the microbial population that is conferred onto
the sea urchin through the aquaculture conditions, as well as the
trends of distribution and selective enrichment of the microbial
community associated with the sea urchin, L. variegatus.

Materials and Methods

Collection and Culture of L. variegatus
Adult sea urchins were collected on April 2013, from Port Saint
Joseph, Florida (29.80◦ N 85.36◦ W), and transported in seawater
to a recirculating salt water system within the laboratory at the
University of Alabama at Birmingham. Water conditions were
maintained at 22 ± 2◦C, with a pH of 8.2 ± 0.2 and a salinity
of 32 ± 1 ppt. using synthetic sea salt (Instant Ocean; Spectrum
Brands, Inc., Blacksburg, VA) added to treated municipal water.
Prior to use, municipal water was filtered by 5 micron sediment,
charcoal, and reverse osmosis membranes, followed by an ion
exchange resin, with the final addition of Instant Ocean sea salts
to achieve the desired salinity of 32 ppt. Water was replaced in
the recirculating seawater culture system at a rate of ca. 5% water
exchange per day.Water quality wasmaintained using a dolomite
mechanical gravel filter, followed by biological filtration using
Bioballs biological media (Foster and Smith, Inc., Rhinelander,
WI), and UV sterilization of water exiting the recirculating filter.
The sea urchins were fed a formulated feed (Hammer et al., 2006)
ad libitum, consisting of a relative percentage of 6% lipid, 28%
protein, and 36% carbohydrate, once every 24–48 h for a 6 month
period prior to analysis.

Sample and DNA Preparation
Two laboratory-cultivated sea urchins were used for the study
(UR1 d = 50mm, wet wt = 60.3 g, and UR2 d = 49mm, wet
wt = 63.2 g during the time described in the previous section).
Sample collection from each sea urchin began 22 ± 1 h after
feeding. Prior to dissection, the sea urchins were relocated to
a temporary container containing sterile (autoclaved at 121◦C
for 20min at 103.42 kPa) sea water, from which the egested
fecal pellets from each sea urchin were collected. After fecal
pellet collection, the sea urchins were then removed from the
water and dissected immediately. Briefly, an incision was made
with sterilized scissors into the test surrounding the peristomial
membrane, and a dissection was performed circumnavigating
the mouth. The peristomial membrane, along with the nested
mouth (the Aristotle’s lantern) (Sodergren et al., 2006), was lifted
from the sea urchin, while still maintaining the integrity of the
digestive tract (Watts et al., 2013).

The pharynx enclosed by the lantern was separated from the
digestive tract, collected intact, and rinsed with autoclaved sea
water. The remaining segment of the digestive tract (gut tissue),
which included the esophagus, stomach, and intestine (Holland,
2013), was then removed from the sea urchin. The gut was rinsed
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with autoclaved sea water, and voided of gut food pellets by
gentle shaking. The gut tissue was collected separately from the
gut food pellets and both were rinsed with autoclaved sea water.
The microbiota obtained from the seawater within the closed
recirculating system where the sea urchins were maintained
was collected via vacuum filtration through Millipore 0.22µm
filtration paper (EMD Millipore Corporation, Danvers, MA),
and feeds were collected from the stock sea urchin food source
(Hammer et al., 2006). All samples were divided into 3 separate
sub-samples, flash frozen in liquid nitrogen, and preserved at
−80◦C until used for DNA purification and preparation for
sequencing of the 16S rRNA gene. Food samples and whole filter
paper containing water system microbes were also divided into
three subsamples, frozen in liquid nitrogen, and preserved at
−80◦C until used.

Metacommunity DNA Purification and
Generation of 16S rRNA Amplicon Library
Microbial community DNA was isolated using the Fecal DNA
isolation kit from Zymo Research (Irvine, CA; catalog # D6010)
following the manufacturer’s instructions. Once the sample DNA
was prepared, PCR was used with unique bar coded primers to
amplify the hyper variable region 4 (V4) of the 16S rRNA gene, to
create an amplicon library from metacommunity DNA samples
(Kozich et al., 2013; Kumar et al., 2014). The oligonucleotide
primers used for the PCR amplification of the V4 region of the
16S rRNA gene were as follows: Forward primer V4: 5′-AATGAT
ACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGC
CAGCMGCCGCGGTAA-3′; and Reverse primer V4: 5′-CAA
GAGAAGACGGCATACGAGATNNNNNNAGTCAGTCAGC
CGGACTACHVGGGTWTCTAAT-3′ (Eurofins Genomics,
Inc., Huntsville, AL) (Kumar et al., 2014). The individual PCR
reactions were set up as follows: 10µL of 5X Reaction Buffer;
1.5µL (200µM) of each of the dNTPs; 2µL (1.5µM) of each
of the oligonucleotide primers; 1.5µL (5 U) of the “LongAmp”
enzyme kit (New England Biolabs, Ipswich, MA; cat # E5200S);
30µL (2–5 ng/µl) of the template DNA; and 3µL of sterile H2O
to a total reaction volume of 50µL. The PCR cycling parameters
were as follows: initial denature 94◦C for 1min; 32 cycles of
amplification in which each cycle consisted of 94◦C for 30 s, 50◦C
for 1min, 65◦C for 1min; followed by final extension of 65◦C for
3min; then a final hold at 4◦C. Following PCR amplification of
the targeted gene, the entire PCR reaction was electrophoresed
on a 1.0% (w/v) Tris-borate-EDTA/agarose gel. The PCR product
(approximately 380 bp predicted product size) was visualized
by UV illumination. The amplified DNA band was excised
with a sterile scalpel, and purified from the agarose matrix
using QIAquick Gel Extraction Kit according to manufacturer’s
instructions (Qiagen, Inc., Venlo, Limburg; cat # 28704).

Nextgen Sequencing and Bioinformatics Tools
The PCR products were sequenced using the NextGen
sequencing Illumina MiSeq™ platform (Caporaso et al.,
2012; Kozich et al., 2013; Kumar et al., 2014). We used a 250
bp paired-end kit from Illumina for the microbiome analysis.
The samples were first quantified using Pico Green dye (Life
Technologies, Grand Island, NY), adjusted to a concentration of

4 nM, then used for sequencing on the Illumina MiSeq (Kumar
et al., 2014). The raw sequence data was then de-multiplexed and
converted to FASTQ format (http://maq.sourceforge.net/fastq.
shtml). The FASTQ files were subjected to quality assessment
using FASTQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), prior to merging and trimming of the raw
sequence data, which was followed by quality filtering using
the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).
Since the overlap between the paired reads from each 16S
fragment was approximately 245 bases, the overlapping paired
end regions were merged to generate a single high quality
read, using the “fastq_mergepairs” module of USEARCH
(Edgar, 2010). Read pairs with an overlap of less than 50 bases
or with mismatches (>20) in the overlapping region were
discarded. The sequences were again checked for quality using
FASTQC, which was followed by chimeric filtering using the
“identify_chimeric_seqs.py” module of USEARCH (Edgar,
2010). The remainder of the steps were performed with the
Quantitative Insights into Microbial Ecology microbiome
analysis package (QIIME, v1.7.0) (http://qiime.org/) (Lozupone
et al., 2007; Caporaso et al., 2010b; Navas-Molina et al., 2013;
Kumar et al., 2014). Sequences were grouped into Operational
Taxonomic Units (OTUs) using the clustering program UCLUST
at a similarity threshold of 97% (Edgar, 2010). The Ribosomal
Database Program (RDP) classifier was used to make taxonomic
assignments (to the species level wherever possible) for all OTUs
at a confidence threshold of 80% (0.8) (Wang et al., 2007).
The RDP classifier (http://rdp.cme.msu.edu/) was trained using
the Greengenes (v13.8) 16S rRNA database (http://greengenes.
lbl.gov/cgi-bin/nph-index.cgi) (McDonald et al., 2011). The
resulting OTU table included all OTUs, their taxonomic
identification and abundance information. Additionally, OTUs
whose average abundance was less than 0.0005% were filtered
out. Remaining OTUs were then grouped together to summarize
taxon abundance at different hierarchical levels of taxonomic
classification (e.g. phylum, class, order, family, and genus).
These taxonomy tables were also used to generate stacked
column bar charts of taxon abundance using Microsoft Excel
software (Microsoft, Seattle, WA). Multiple sequence alignment
of OTUs was performed with PyNAST (Caporaso et al., 2010a).
Subsampling was performed using the “single_rarefaction.py”
module of QIIME (v1.7.0), to account for variation in read
depth across samples, (Gotelli and Colwell, 2011), at an even
sampling depth of 77,194 reads per sample. The subsampled
OTU table was used for downstream Beta and Alpha diversity
analyses. A heatmap with the top 25 most highly abundant (>1%
in any sample) taxa at the order level was generated using the
“heatmap.2” function in R package (available at http://CRAN.
R-project.org/package=gplots). The raw sequence files from this
study are deposited in the NCBI SRA (http://www.ncbi.nlm.nih.
gov/sra), under the accession number SRP062365.

Oligotyping of the V4 Hypervariable Region of the
Campylobacterales 16S rRNA Gene
Oligotyping utilizes informative nucleotide variations between
similarly clustered reads to designate an oligotype identity
(Eren et al., 2013, 2014; Schmidt et al., 2014). After assignment
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of taxonomy for the total 1,137,478 quality reads, 296,777
sequences from the 10 samples were aligned using MUSCLE,
which was implemented in MEGA software (Tamura et al.,
2013). The aligned sequences were then used for oligotyping
(Eren et al., 2013). After the initial Shannon entropy analysis,
29 variable sites were identified for oligotyping. The parameters
required that each oligotype must (1) appear in at least one
sample and (2) have a minimum abundance of 100 sequences
for each unique oligotype. After elimination of oligotypes not
meeting these parameters, 275,566 reads (92.85%) were retained.
Each oligotype representative sequence was aligned to the NCBI
non-redundant (nr) database using BLAST (http://blast.ncbi.
nlm.nih.gov/Blast.cgi).

Statistical Analyses of Bacterial Diversity
The alpha diversity (diversity within the samples) of the sea
urchin microbiome and the culture environment was determined
using QIIME (v1.7.0). The alpha-diversity was estimated using
observed OTUs, Shannon diversity index (Shannon, 1948; Hill
et al., 2003; Marcon et al., 2014), and Simpson diversity index
(Simpson, 1949; Hill et al., 2003). In order to estimate the beta
diversity (differences between the samples), the OTUs of the
bacterial communities were analyzed using Primer-6 analytical
software (Primer-E Ltd., PlymouthMarine Laboratory, Plymouth
U.K., v6.1.2) (www.primer-e.com). Discrete OTU counts per
sample were standardized, and then transformed to the square
root values (Clarke and Gorley, 2001). Multidimensional scale
plots (Kruskal and Wish, 1978; Clarke, 1993; Clarke and Gorley,
2001), were generated according to Bray–Curtis similarity values
(Bray and Curtis, 1957; Clarke and Gorley, 2001).

Results

Total Illumina Sequence Reads, Quality Trimming,
and OTU Designation
A total of 1,481,476 raw sequence reads of the V4 segment of
the 16S rRNA gene from 10 samples of the two sea urchin (UR1
and UR2) gastrointestinal tracts, feeds, and tank water, were
generated on an Illumina Miseq sequencing platform (Table 1).
The sea urchin microbiome samples consisted of the gut tissues,
pharynx tissues, gut digesta, and egested fecal pellets. After high
stringent quality-based trimming, 1,137,478 quality sequence
reads were used for further bioinformatics analyses. Within these
reads, 181,169 sequences clustered into 609 OTUs from the gut
tissue; 221,150 sequences clustered into 2,455 OTUs from the
pharynx tissue; 219,512 sequences clustered into 926 OTUs from
the egested fecal pellets; 204,048 sequences clustered into 1,562
OTUs from the gut digesta; 164,930 sequences clustered into
1,654 distinct OTUs from the sea urchin feed; and lastly 146,669
reads clustered into 1,511 OTUs from the tank water (Table 1).
All OTUs were clustered at a 97% sequence similarity from the
trimmed sequences of the respective samples using UCLUST
(Edgar, 2010; Koo et al., 2014).

Microbial Diversity across Different Samples
The relative abundances of taxa identified to the most resolvable
taxa (phylum, class, order, family, and genus) across all 10

TABLE 1 | Sample statistics following NextGen sequencing and the

diversity values, as determined by QIIME (v1.7.0), are listed.

Sample Raw

Sequences

Trimmed

Sequences

OTUs

Identified

Shannon Simpson

Tank water 181,387 146,669 1511 6.51 0.95

Sea urchin

feed

205,651 164,930 1654 5.68 0.93

UR1 Pharynx

tissue

138,911 97,670 1190 6.21 0.95

UR2 Pharynx

tissue

180,891 123,480 1265 6.16 0.96

UR1 Gut tissue 90,693 77,194 188 0.17 0.02

UR2 Gut tissue 127,431 103,975 421 0.56 0.09

UR1 Gut

digesta

120,424 100,073 861 3.87 0.76

UR2 Gut

digesta

176,771 103,975 701 3.39 0.78

UR1 Egested

fecal pellet

128,082 110,922 384 2.79 0.65

UR2 Egested

fecal pellet

131,235 108,590 542 3.71 0.81

Included are the number of raw sequences, trimmed sequences, and unique OTUs.

Shannon and Simpson diversity indices are also presented. UR1, sea urchin 1; UR2, sea

urchin 2.

samples are elaborated in Figure 1. In the gut tissue samples
of the sea urchins, microorganisms belonging to phylum
Proteobacteria represented the highest relative abundance.
Further analysis revealed class Epsilonproteobacteria to be
dominant, and from within this class, order Campylobacterales
was the most abundant taxon. Resolution to the genus level could
not be achieved in the gut tissue samples. The pharynx tissue of
the sea urchins was also dominated by Proteobacteria, and at the
class level, Alpha-, Beta-, Epsilon-, and Gammaproteobacteria
were presented. Arcobacter, Mycoplana, and Vibrio appeared
as the highly represented genera from phylum Proteobacteria.
Phylum Firmicutes was represented by a high relative abundance
of the genera Bacillus and Allobaculum.

The gut digesta consisted mainly of bacteria belonging
to phylum Proteobacteria, with class Gammaproteobacteria
being distinguishably elevated. The dominant genera were
Agarivorans, Arcobacter, Shewanella, and Vibrio, all of which
belonging to phylum Proteobacteria. The bacterial composition
in the egested fecal pellets consisted of many of the same
taxa observed in the gut digesta. In the egested fecal pellets,
Proteobacteria accounted for the highest abundance, and at
the class level, Gammaproteobacteria was dominant. At the
genus level,Agarivorans,Arcobacter, Shewanella, andVibriowere
detected as dominant taxa.

The microbiota of the sea urchin feed consisted of phylum
Proteobacteria, as well as Firmicutes at the highest abundance.
Classes Alpha- and Betaproteobacteria were dominant in the
feed, and at the genus level, Agrobacterium, Acinetobacter,
Limnohabitans, and Mycoplana were observed. From phylum
Firmicutes, order Lactobacillales dominated in the feed, and
at the genus level, Lactobacillus, Lactococcus, Leuconostoc, and
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FIGURE 1 | Stacked column bar graph depicting the relative abundances and distribution of the most highly abundant resolved taxa across the 10

samples of this study. The gut microbiome consisted mainly of Phylum Proteobacteria, whereas the sea urchin feed was dominated by both Firmicutes and

Proteobacteria. At the highest resolution, order Campylobacterales was determined to be the most abundant taxa in the gut tissue. In the gut digesta and egested

fecal pellets, Vibrio, Arcobacter, and Agarivorans were observed. Relative abundances were performed through QIIME (v1.7.0), and graphs were generated using

Microsoft Excel software (Microsoft, Seattle, WA). UR1, sea urchin 1; UR2, sea urchin 2.

Streptococcus were observed. The microbial composition of the
tank water was found to be more diverse as compared to the
other samples. Of the represented phyla, Proteobacteria was
found to be dominant, followed by Chloroflexi, and to a lesser
extent Bacteroidetes. Classes Gamma- and Alphaproteobacteria
were dominant, and at the order level, Alteromonadales and
Vibrionales were represented at relatively high abundances.
In addition, significant abundances of genera Arcobacter,
Agarivorans, Shewanella, Pseudoalteromonas, and Vibrio were
identified within phylum Proteobacteria. For all samples, the
taxonomic groups identified at the genus level have been
elaborated in Supplementary Table 1.

Differentiation of Distinct Taxa using Oligotyping
Methods and Blast
Oligotyping analysis of those sequences corresponding to order
Campylobacterales in the 10 samples of this study revealed 37

different oligotypes (Figure 2; UR1, sea urchin 1, UR2, sea urchin
2). Of these oligotypes, 21 were found in the UR1 and 11 in
the UR2 gut tissues; 21 in the UR1 and 30 in the UR2 pharynx
tissues; 17 in the UR1 and 26 in the UR2 gut digesta; 18 in the
UR1 and 17 in UR2 egested fecal pellets. The tank water and feed
contained 18 and 6 oligotypes, respectively. Of all the identified
oligotypes, Oligotype 1 was found to be overrepresented in the
gut tissues of the sea urchins, with a relative abundance of 92.7%
for UR1 and 91% for UR2. This oligotype was detected in the
tank water at 0.3%, and the sea urchin feed at 22.8% (Figure 2).
Across all samples, Oligotype 2 (which ranged from 8.5% to
88.36%) and Oligotype 3 (2.3% to 60%) were highly abundant,
except for the gut tissues (Figure 2). A MEGABLAST search
of the representative sequence of Oligotype 1 displayed a close
match to an uncultured Arcobacter sp. clone (Identity: 91%, E-
value: 1.82E–87), Arcobacter bivalviorum (Identity: 91%, E-value:
2.00e–89), Sulfuricurvum sp. (Identity: 90%, E-value: 4.00E–86),
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FIGURE 2 | Oligotype distributions for the 10 samples used in this study. The relative abundance of each oligotype within the total Campylobacterales diversity

for each sample is presented in stacked column bar graphs (bottom), and the proportion of the relative abundance of total Campylobacterales within all bacterial

diversity for each sample is shown with light gray bars (top). Oligotyping analyses were performed using the open-source pipeline for oligotyping, available at http://

oligotyping.org. The stacked column bar graphs were generated using Microsoft Excel software (Microsoft, Seattle, WA). UR1, sea urchin 1; UR2, sea urchin 2.

and an uncultured bacterium clone (Identity: 90%, E-value:
2.00e-89; Supplementary Table 2). A MEGABLAST search was
performed on the other 36 identified oligotypes, revealing most
to be closely related to uncultured Arcobacter sp., or uncultured
bacterium clones (Supplementary Table 2).

Statistical Analysis
Rarefaction curves representing the number of unique OTUs
from the normalized 16S rRNA sequences obtained from two
sea urchins and their environments (total of 10 samples) reached
or approached a plateau, indicating that a sufficient sequencing
depth was used to assess community diversity (Supplementary
Figure 1). Shannon (Shannon, 1948; Hill et al., 2003; Marcon
et al., 2014) and Simpson diversity indices (Simpson, 1949; Hill
et al., 2003) displayed relatively low diversity within the gut
tissue samples, whereas moderate diversity within egested fecal
pellet and gut digesta samples; and high diversity within pharynx
tissue, sea urchin feeds, and tank water samples (Table 1). The
multidimensional-scaling (MDS) plot (Kruskal and Wish, 1978;
Clarke, 1993; Clarke and Gorley, 2001) revealed three distinct
clusters of similarity among corresponding samples from the two
sea urchins (Figure 3). In theMDS plot, the first dimension of gut
tissues were differentiated from all other samples, and the second
dimension separated the pharynges and feeds from the rest of
the samples, i.e., the egested fecal pellet, gut digesta, and tank

water (Figure 3). Subsampling of OTUs showed no significant
differences in the cluster patterns of microbial communities in
the respective samples.

Inter-sample microbial community compositions showed
a similarity between samples (Figure 4). The gut tissue
revealed a significant abundance of members from order
Campylobacterales. The presence of Campylobacterales was
also observed to be highly abundant in the gut digesta and
egested fecal pellets, along with a significant presence of order
Vibrionales. In the pharynx tissue, orders Burkholderiales and
Caulobacterales were found to be abundant, whereas the tank
water had high representation of order Alteromonadales, and
the feed had a significant presence of Lactobacillales. The
feed also presented orders Burkholderiales and Caulobacterales
(Figure 4).

Discussion

Our study revealed that, although the sea urchin L. variegatus
has a primitive gut as compared to the highly compartmentalized
digestive systems in higher order deuterostomes (Sauchyn et al.,
2011; Holland, 2013), distinct microbial compositions and
abundances were noticed in the gut tissue, pharynx and the
gut digesta, which shared a striking similarity with the food
and culture environments. Additionally, it appears that the
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FIGURE 3 | 2D multidimensional scaling (MDS) graph generated through PRIMER-6 (www.primer-e.com). Overlay of similarity clusters were produced

according to Bray–Curtis Similarity values, set at 10% intervals from 20% to 50%. The pharynx tissue and sea urchin feed sample microbial ecologies clustered with a

similarity greater than 40%. The tank water, gut digesta, and egested fecal pellet samples also clustered together at a similarity greater than 20%. The gut tissue

samples from the two sea urchins showed a divergent cluster pattern, illustrating a reduced degree of similarity to the other samples of the study. UR1, sea urchin 1;

UR2, sea urchin 2. Similarity= Bray–Curtis Similarity (scaled to 100).

microbiota of the sea urchin consisted of a high abundance
of Proteobacteria, which is comparable to observations of
previously examined marine invertebrate gut microbiota (Van
Horn et al., 2011). For example, in the sea slug, members of
Alpha-, Beta-, and Gammaproteobacteria have been observed as
overrepresented (Devine et al., 2012), and in the gut of the sea
cucumber Apostichopus japonicus, an echinoderm, it was shown
that members of Delta- and Gammaproteobacteria are dominant
(Gao et al., 2014).

The luminal surface of the gut contained a low overall
bacterial diversity, but a high relative abundance of order
Campylobacterales of class Epsilonproteobacteria (Figure 1). It
has been reported that representatives from this class have
been found to inhabit many ecological niches, both terrestrial
and marine, performing a diversity of metabolic functions
(Eppinger et al., 2004; Gupta, 2006). In the marine environment,
members of Epsilonproteobacteria have been associated as
gill symbionts of hydrothermal vent dwellers such as the
bivalve Bathymodiolus azoricus (On, 2001) and gastropod
Cyathermia naticoides (Zbinden et al., 2014); as residents of
other bivalves such as mussels Brachidontes sp. of marine lakes
(Cleary et al., 2015) and the Chilean oyster Tiostrea chilensis
(Romero et al., 2002); as epibionts of crustaceans such as Kiwa
puravida (Goffredi et al., 2014); and lastly, as gut microbial
inhabitants of the aquacultured Norway lobster Nephrops

norvegicus (Meziti et al., 2012) and hydrothermal vent dwelling
shrimp, Rimicaris exoculata (Durand et al., 2010). Therefore
the commonality of the occurrence of Epsilonproteobacteria
in marine invertebrates and the sea urchins in our study
may indicate a mutual benefit between the bacterial taxa
and the host, perhaps at the physiological and nutritional
level.

Further analysis of the lower level of taxonomic groups
within Campylobacterales showed 37 oligotypes across all ten
samples, with Oligotype 1 displaying a dominant presence in
the gut tissue (Figure 2). This suggests that Oligotype 1 is the
preferred bacterial group in the sea urchin gut. Additionally,
a MEGABLAST search of the representative sequence of the
highly abundant gut tissue Oligotype 1 revealed an uncultured
species of Arcobacter sp., as well as Sulfuricurvum sp., and
Arcobacter bivalviorum (Identities >90%). In a previous study,
Epsilonproteobacteria clones identified as Arcobacter sp. were
found to be associated with marine organisms, including shrimp
species (Rimicaris exoculata) and the Chilean oyster (Tiostrea
chilensis) (Romero et al., 2002; Durand et al., 2010). Taxonomic
groups similar to Oligotype 1 were also found in the sea urchin
feed and water samples, although to a much lesser extent,
suggesting that the culture environment may have contributed
to the high abundance of Oligotype 1 in the gut tissue microbial
ecosystem following proliferation (Figure 2).
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FIGURE 4 | Heatmap of microbial compositions at the order level. The rows represent the bacterial taxa and the columns represent the 10 samples used in this

study. Both dendrograms were created using hierarchical clustering (complete linkage) of the compositional data. The heatmap was generated using the “heatmap.2”

function in R package (available at http://CRAN.R-project.org/package=gplots). UR1, sea urchin 1; UR2, sea urchin 2.

As food enters the digestive tract of sea urchins, it is enveloped
in a mucosal film that remains intact even after egestion, as a
microbial-enriched fecal pellet (Sauchyn et al., 2011; Holland,
2013). The microbiota of the gut digesta and egested fecal pellets
both contained a high abundance of Gammaproteobacteria,
specifically Vibrio of family Vibrionaceae (Figure 1). In as early
as 1954, Lasker and Geise reported colonization of bacteria in
the gut digesta through microscopic observation (Lasker and
Giese, 1954). Similarly in our study, a preliminary examination of
the egested fecal pellets using transmission electron microscopy
showed comma, round, and rod shaped structures, which
appeared to be bacteria resembling Vibrio, Arcobacter and
Agarivorans, genera later determined by NextGen sequencing
using the Illumina MiSeq sequencing platform (Supplementary
Figure 2). Besides morphological studies, much attention has

been allotted to the bacteria colonizing the ingested feed of the
sea urchin, with many investigations implicating those bacteria
as both crucial to the digestive physiology of the sea urchin, as
well as an enriched source of nutrients to organisms at various
trophic levels in the hydrosphere (Johannes and Satomi, 1966;
Koike et al., 1987; Sauchyn et al., 2011). Previous studies on
the gut related microbiota of sea urchins have described the
potential symbiotic support of certain strains of Vibrio to the sea
urchin Strongylocentrotus droebachiensis, specifically nitrogenase
activity, which is necessary for nitrogen fixing in the assimilation
of proteins in sea urchin gonad (Fong and Mann, 1980; Guerinot
et al., 1982).

Trends of microbial ecology in the sea urchin have been
suggested by Guerinot and Patriquin (1981), who proposed a
possibility of an endemic microbiota that will not dissociate
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from the gut wall of the sea urchin as food transits through
the digestive tract (Guerinot and Patriquin, 1981; Lawrence
et al., 2013). Evidence of this can be observed in the current
study, as the gut digesta and egested fecal pellets were heavily
dominated by Vibrio species, which were not observed to be
significant in the gut tissue (Figure 1). Moreover, a unique
oligotype (Oligotype 1) was observed in the gut tissue, which
did not appear to be as significant in the gut digesta and egested
fecal pellets. This indicates that there is a preference by the
host to select specific microbial taxa, perhaps necessary for their
nutrition and health (Thorsen, 1998). Moreover, the pharynx
tissue shared many of the bacterial taxa of the sea urchin feed
(Figure 1), suggesting a likely influence and transmittance of
microbes from the food source, which is supported through
oligotype analysis (Figure 2), a trend also observed by Meziti
et al. (2007) in P. lividus (Meziti et al., 2007). The outcome of this
study has established for the first time the microbial community
composition in the sea urchin L. variegatus gut ecosystem, as
well as its culture environments, using NextGen sequencing and
bioinformatics to achieve taxonomic coverage at the highest
level. Future evaluation of the functional metagenomics of

the gut microbiome of L. variegatus is warranted to establish
the role of the microbial community associated with the
digestive physiology, nutritional and other health benefits of this
animal.
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